JPH0121680B2 - - Google Patents

Info

Publication number
JPH0121680B2
JPH0121680B2 JP2820282A JP2820282A JPH0121680B2 JP H0121680 B2 JPH0121680 B2 JP H0121680B2 JP 2820282 A JP2820282 A JP 2820282A JP 2820282 A JP2820282 A JP 2820282A JP H0121680 B2 JPH0121680 B2 JP H0121680B2
Authority
JP
Japan
Prior art keywords
air chamber
handset
measurement
volume
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2820282A
Other languages
Japanese (ja)
Other versions
JPS58146199A (en
Inventor
Yoshiro Marutani
Hiroshi Irii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2820282A priority Critical patent/JPS58146199A/en
Publication of JPS58146199A publication Critical patent/JPS58146199A/en
Publication of JPH0121680B2 publication Critical patent/JPH0121680B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、電話用受話器等の音響出力部からみ
た内部音響インピーダンスを簡便に精度良く測定
するための測定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring method for easily and accurately measuring internal acoustic impedance viewed from an acoustic output section of a telephone receiver or the like.

従来の受話器の内部音響インピーダンスの測定
は、被測定受話器に押し当てたカツプラの結合気
室内に他の校正用受話器を取付けて音響的に駆動
し、その結合気室内の音圧の絶対値と位相をプロ
ーブチユーブマイク等を用いて測定することによ
つて行われていた(例えば日本電信電話公社電気
通信研究所・昭和56年4月発行の研究実用化報告
第30巻第4号の第923頁〜第935頁に記載の論文
「受話器の実耳損失」参照)。そのためインピーダ
ンスを求める測定装置として結合気室内の音圧の
絶対値と位相の測定を行なう装置が必要であり、
特に位相の測定には高価な測定器を必要とするの
で、簡便には行なえないという欠点があつた。
Conventionally, the internal acoustic impedance of a handset is measured by attaching another calibration handset to the coupling air chamber of the coupler pressed against the receiver under test and driving it acoustically. was measured using a probe tube microphone, etc. (for example, Research and Practical Application Report Vol. 30, No. 4, page 923, published by Nippon Telegraph and Telephone Public Corporation Telecommunications Research Institute, April 1981). (See the paper “Real Ear Loss of Handsets” on pages 935 to 935). Therefore, as a measurement device for determining impedance, a device that measures the absolute value and phase of the sound pressure in the coupled air chamber is required.
In particular, the phase measurement requires an expensive measuring device, so it has the disadvantage that it cannot be easily carried out.

本発明は上述の如き従来技術の欠点を克服する
ためになされたものであり、従つて本発明の目的
は、受話器の内部音響インピーダンスを精度良く
簡便に測定することのできる測定方法を提供する
ことにある。
The present invention has been made to overcome the drawbacks of the prior art as described above, and an object of the present invention is to provide a measuring method that can accurately and easily measure the internal acoustic impedance of a telephone receiver. It is in.

本発明の要点は、一定周波数の交流で駆動され
る受話器の受話面にカツプラを押し当て、該カツ
プラの結合気室内の容積を少なくも3段階にわた
つて変化させ、各段階における前記結合気室内の
音圧の比を測定により求め、求まつた該比から所
定の演算により前記受話器の内部音響インピーダ
ンスを算出するようにした点にある。
The gist of the present invention is to press a coupler against the receiving surface of a handset driven by alternating current at a constant frequency, change the volume of the coupled air chamber of the coupler in at least three stages, and change the volume of the coupled air chamber at each stage. The present invention is characterized in that the ratio of the sound pressures is determined by measurement, and the internal acoustic impedance of the handset is calculated from the determined ratio by a predetermined calculation.

なお受話器の内部音響インピーダンスの測定が
必要になるのは上記文献にも記載されているよう
に次の理由による。即ち電話機の通話品質を客観
的計算法により求めようとするとき、耳たぶと受
話口の間に存する間隙から受話音が洩れることに
なり受話品質が劣化するので、そのことを考慮に
入れなくてはならない。このため、かかる劣化を
評価するパラメータとしての漏洩損失Leを求め
る必要があるが、この漏洩損失Leは、受話器の
内部音響インピーダンスが分れば、それと漏洩損
失の等価回路定数等から容易に求め得る性質のも
のである。更に受話器の内部インピーダンスを小
さくすると漏洩の影響に左右されずに望ましい受
話が出来ることによる。このような事情によつて
受話器の内部音響インピーダンスを求めることが
必要になる場合がある。
The reason why it is necessary to measure the internal acoustic impedance of the handset is as described in the above-mentioned document for the following reason. In other words, when trying to determine the speech quality of a telephone using an objective calculation method, it is necessary to take this into consideration, since the received sound will leak through the gap between the earlobe and the earpiece, degrading the receiving quality. It won't happen. Therefore, it is necessary to find the leakage loss L e as a parameter for evaluating such deterioration, but this leakage loss L e can be easily calculated from the internal acoustic impedance of the handset and the equivalent circuit constant of the leakage loss. It is of a quality that can be sought. Furthermore, by reducing the internal impedance of the handset, it is possible to receive a desired call without being influenced by the influence of leakage. Due to such circumstances, it may be necessary to determine the internal acoustic impedance of the handset.

次に図を参照して本発明の一実施例を説明す
る。
Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は本発明による測定方法を実施するのに
必要な測定装置の構成概要を示す断面図である。
同図において、1はカツプラを構成する円筒、2
は該円筒1内を左右に移動可能なシリンダであ
り、該シリンダ2内には、コンデンサマイクロホ
ン21とインピーダンス変換のための前置増幅器
22が含まれており、またシリンダ2の後端には
指針23が取り付けられている。3は目盛であ
り、シリンダ2の移動に伴つて一緒に移動した指
針23の示す該目盛位置が、そのときにおける円
筒1内の結合気室4の容積を示すようになつてい
る。そのほか6は受話器、7は円筒1を押し当て
られている受話口、8は受話器6へつながるリー
ド端子、10は円筒1に設けられた通気孔であつ
てピストン2の移動により結合気室4内の圧力が
変動するのを防止するためのもの、11は前置増
幅器22から出力を取り出すためのコードであ
る。
FIG. 1 is a sectional view showing an outline of the configuration of a measuring device necessary for carrying out the measuring method according to the present invention.
In the same figure, 1 is a cylinder constituting the coupler, 2
is a cylinder that can be moved left and right within the cylinder 1, and the cylinder 2 contains a condenser microphone 21 and a preamplifier 22 for impedance conversion, and a pointer is provided at the rear end of the cylinder 2. 23 is attached. 3 is a scale, and the scale position indicated by the pointer 23 that moves together with the movement of the cylinder 2 indicates the volume of the combined air chamber 4 inside the cylinder 1 at that time. In addition, 6 is a telephone receiver, 7 is an earpiece against which the cylinder 1 is pressed, 8 is a lead terminal connected to the telephone receiver 6, and 10 is a vent provided in the cylinder 1, which is inserted into the joint air chamber 4 by the movement of the piston 2. 11 is a code for taking out the output from the preamplifier 22.

第2図は第1図における線A−A′に沿つた断
面図である。
FIG. 2 is a sectional view taken along line A-A' in FIG.

次に本発明による測定方法を説明するわけであ
るが、その前に測定原理を説明する。
Next, the measurement method according to the present invention will be explained, but before that, the measurement principle will be explained.

第3図は第1図に示した測定系の電気的等価回
路を示す回路図であるが、受話器の結合気室側か
らみた内部音響インピーダンスはホー、テブナン
の原理から第3図に示す電気的等価回路を用いて
与えられる。ここでP0は受話器の駆動音圧、ZR
は受話器の内部音響インピーダンス、Ciは結合気
室容積のコンプライアンスであり、結合気室の容
積Viとは、Ci=Vi/k(但し、kは空気の体積弾
性率)なる関係があるので、結合気室の容積Vi
分ればコンプライアンスCiはすぐに求まる。また
結合気室の容積内の音圧をPiとする。
Fig. 3 is a circuit diagram showing the electrical equivalent circuit of the measurement system shown in Fig. 1.The internal acoustic impedance seen from the coupled air chamber side of the handset is determined by the electrical impedance shown in Fig. 3 based on Ho and Thevenin's principles. Given using an equivalent circuit. where P 0 is the driving sound pressure of the handset, ZR
is the internal acoustic impedance of the receiver, C i is the compliance of the combined air chamber volume, and the relationship with the combined air chamber volume V i is C i = V i /k (where k is the bulk modulus of air). Therefore, if the volume V i of the combined air chamber is known, the compliance C i can be found immediately. Also, let P i be the sound pressure within the volume of the combined air chamber.

さて本測定においては、結合気室の容積Viを少
なくも3段階(i=1、2、3)にわたつて変化
させることが必要であり、各段階の容積V1、V2
およびV3に対応するコンプライアンスをC1、C2
およびC3とし、各段階の容積内における音圧を
P1、P2およびP3とする。すると、受話器の内部
音響インピーダンスZR=A+jBのAとBは次式
で与えられる。但し(j2=−1)であり、Aは
ZRの実数部、BはZRの虚数部を示す。
Now, in this measurement, it is necessary to change the volume V i of the combined air chamber in at least three stages (i = 1, 2, 3), and the volumes V 1 and V 2 of each stage are
and compliance corresponding to V 3 for C 1 , C 2
and C 3 , and the sound pressure in the volume of each stage is
Let P 1 , P 2 and P 3 . Then, A and B of the internal acoustic impedance ZR=A+jB of the receiver are given by the following equation. However, (j 2 = -1) and A is
B indicates the real part of ZR, and B indicates the imaginary part of ZR.

なお、ωは角周波数を表わし、A≧0である。 Note that ω represents an angular frequency, and A≧0.

ここで上記式(1)、(2)、(3)の導出の仕方を説明し
ておく。
Here, we will explain how to derive the above equations (1), (2), and (3).

第3図の等価回路においてコンプライアンスCi
を流れる電流はjωCiPiであるから、次式が成立す
る。
In the equivalent circuit of Figure 3, compliance C i
Since the current flowing through is jωC i P i , the following equation holds.

Po=(ZR+1/jωCi)jωCiPi ……(イ) ここで、ωは駆動角周波数、j=√−1であ
る。
Po=(ZR+1/jωC i )jωC i P i ...(a) Here, ω is the driving angular frequency, and j=√−1.

ここで、ZR=A+jBとおき、上式(イ)を書き換
えると、次式のようになる。
Here, if we set ZR=A+jB and rewrite the above equation (a), we get the following equation.

Po=(A+jB+1/jωCi)jωCiPi =(1−ωCiB+jωCiA)Pi ……(ロ) さて、Piは(ロ)のように複素数であるが、測定に
より得られる値は絶対値である。
Po=(A+jB+1/jωC i )jωC i P i =(1−ωC i B+jωC i A) P i ...(B) Now, P i is a complex number as in (B), but the value obtained by measurement is the absolute value.

そこで式(ロ)よりPiの絶対値を求めると次式とな
る。
Therefore, the absolute value of P i is calculated from equation (b) and becomes the following equation.

|Po/Pi2=(1−ωCiB)2+ω2Ci 2A2 ……(ハ) 式(ハ)よりA、Bを求めることにより、内部イン
ピーダンスZR=A+jBを得られるので、今Pi
Ciの3水準(i=1、2、3)について考えると
次式(ニ)が得られる。
|Po/P i2 = (1-ωC i B) 22 C i 2 A 2 ...(C) By finding A and B from equation (C), we can obtain the internal impedance ZR = A + jB. , now P i ,
Considering three levels of C i (i=1, 2, 3), the following equation (d) is obtained.

これにより、P1〜P3、C1〜C3を測定すること
によりAとBとは一義的に決定することができ
る。
Thereby, A and B can be uniquely determined by measuring P 1 to P 3 and C 1 to C 3 .

式(ニ)を|ZR|2=A2+B2を用いて書き換える
と次式となる。
Rewriting equation (d) using |ZR| 2 = A 2 + B 2 results in the following equation.

さらに整理すると ω2{(P1/P22C1 2−C2 2}|ZR|2 −2ω{(P1/P22C1−C2}B=(P1/P22−1 ω2{(P1/P32C1 2−C3 2}|ZR|2 −2ω{(P1/P32C1−C3}B=(P1/P32−1 上式よりBさらにはAを連立方程式により解く
と、式(1)〜(3)が得られる。
To further organize, ω 2 {(P 1 /P 2 ) 2 C 1 2 −C 2 2 } | ZR | 2 −2ω {(P 1 /P 2 ) 2 C 1 −C 2 }B=(P 1 /P 2 ) 2 −1 ω 2 {(P 1 /P 3 ) 2 C 1 2 −C 3 2 } | ZR | 2 −2ω {(P 1 /P 3 ) 2 C 1 −C 3 }B=(P 1 /P 3 ) 2 -1 From the above equation, when B and A are solved by simultaneous equations, equations (1) to (3) are obtained.

以上、(1)、(2)、(3)式から分るように、コンプラ
イアンスC1、C2、C3はそれぞれ結合気室の各段
階における容積V1、V2、V3から直ちに求まるも
のであるから、測定を要するのは、各段階の容積
内における音圧P1、P2、P3の比(P1/P2)、
(P1/P3)であり、これらが求まれば所望の受話
器内部音響インピーダンスが演算によつて容易に
求まる。
As can be seen from equations (1), (2), and (3) above, the compliances C 1 , C 2 , and C 3 can be immediately determined from the volumes V 1 , V 2 , and V 3 at each stage of the combined air chamber, respectively. Therefore, what needs to be measured is the ratio of the sound pressures P 1 , P 2 , and P 3 (P 1 /P 2 ) in the volume of each stage,
(P 1 /P 3 ), and once these are determined, the desired internal acoustic impedance of the receiver can be easily determined by calculation.

ここで注意すべきことは、各段階の容積内にお
ける音圧P1、P2、P3の絶対値を求める必要はな
く、あくまで音圧比(P1/P2)、(P1/P3)を求
めればそれで足りる点であり、このことにより測
定そのものがきわめて簡便になるが、そのことは
後に説明する。
What should be noted here is that it is not necessary to find the absolute values of the sound pressures P 1 , P 2 , and P 3 within the volume of each stage, but only the sound pressure ratios (P 1 /P 2 ), (P 1 /P 3 ) is sufficient, and this makes the measurement itself extremely simple, which will be explained later.

第1図に戻り、本発明による測定方法を説明す
る。
Returning to FIG. 1, the measurement method according to the present invention will be explained.

先ず、図示せざる発振器から一定周波数の正弦
波交流を発生させ、これをリード端子8を介して
受話器6に加え、駆動する。これにより受話器6
は音圧P1を結合気室4内へ発生する。シリンダ
2内の先端位置に配置されたコンデンサマイクロ
ホン21がその音圧P1を検出して電気信号に変
換し、この電気信号は前置増幅器22を介しコー
ド11から取り出され、図示せざる測定計器によ
り測定される。
First, an oscillator (not shown) generates a sine wave alternating current of a constant frequency, and this is applied to the receiver 6 via the lead terminal 8 to drive it. As a result, the handset 6
generates a sound pressure P 1 into the joint air chamber 4. A condenser microphone 21 placed at the tip of the cylinder 2 detects the sound pressure P 1 and converts it into an electrical signal. It is measured by

次にシリンダ2を移動して結合気室4の容積を
変え同様にしてそのときの音圧P2に対応する電
気信号を測定し、その後さらにシリンダ2を移動
して結合気室4の容積を変え、そのときの音圧
P3に対応する電気信号を測定する。音圧P1、P2
P3の絶対値を求めることが必要であつたとすれ
ば、電気信号を音圧に較正するために、マイクロ
ホン21の感度とか、増幅器22のゲイン等が問
題になり甚だ厄介であるが、本発明の測定法にお
いては、先にも述べた如く、音圧比(P1/P2)、
(P1/P3)が求まれば良いので、対応する電気信
号の比により音圧比は求まるから、上述の如き厄
介な問題は発生しない。
Next, move the cylinder 2 to change the volume of the combined air chamber 4, measure the electrical signal corresponding to the sound pressure P2 at that time, and then move the cylinder 2 further to change the volume of the combined air chamber 4. change the sound pressure at that time
Measure the electrical signal corresponding to P 3 . Sound pressure P 1 , P 2 ,
If it were necessary to find the absolute value of P3 , it would be extremely troublesome to calibrate the electrical signal to the sound pressure, since the sensitivity of the microphone 21, the gain of the amplifier 22, etc. would become a problem. In the measurement method, as mentioned earlier, the sound pressure ratio (P 1 /P 2 ),
Since it is sufficient to find (P 1 /P 3 ), the sound pressure ratio can be found from the ratio of the corresponding electrical signals, so the troublesome problem described above does not occur.

第4図は従来の方法により絶対値と位相から求
めた受話器内部音響インピーダンスの絶対値を×
印で、本発明の測定方法により求めたそれを〇印
で示し比較したグラフであるが、低い周波数範囲
では良く一致していることが認められるであろ
う。
Figure 4 shows the absolute value of the internal acoustic impedance of the receiver obtained from the absolute value and phase using the conventional method.
This is a graph showing the results obtained by the measurement method of the present invention as indicated by the marks and the values determined by the measurement method of the present invention shown as the ○ marks for comparison, and it can be seen that there is good agreement in the low frequency range.

以上説明したとおり、本発明の測定方法によれ
ば、従来要した如き高価な位相計を必要とせず、
また本発明の実施に際し使用するコンデンサマイ
クロホン、増幅器、電気計器等は、感度や特性が
測定実施中の時間内だけ一定で不変であればよ
く、それ以外では変化したとしても、電気的最終
出力の比には影響を与えないから、きわめて簡便
に測定を行ない得るという利点がある。
As explained above, according to the measurement method of the present invention, there is no need for an expensive phase meter as required in the past.
Furthermore, the sensitivity and characteristics of the condenser microphone, amplifier, electric meter, etc. used in carrying out the present invention need only be constant and unchanging during the measurement period; Since it does not affect the ratio, it has the advantage that measurement can be carried out very easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による測定方法を実施するのに
必要な測定装置の構成概要を示す断面図、第2図
は第1図における線A−A′に沿つた断面図、第
3図は第1図に示した測定系の電気的等価回路
図、第4図は従来方法による測定値と本発明の方
法による測定値とを比較して示したグラフ、であ
る。 符号説明、1……カツプラを構成する円筒、2
……シリンダ、21……コンデンサマイクロホ
ン、22……前置増幅器、23……指針、3……
目盛、4……結合気室、6……受話器、7……受
話口、8……リード端子、10……通気孔、11
……コード。
FIG. 1 is a cross-sectional view showing an outline of the configuration of a measuring device necessary to carry out the measuring method according to the present invention, FIG. 2 is a cross-sectional view taken along line A-A' in FIG. 1, and FIG. FIG. 1 is an electrical equivalent circuit diagram of the measurement system shown in FIG. 1, and FIG. 4 is a graph showing a comparison between the measured values by the conventional method and the measured values by the method of the present invention. Explanation of symbols, 1... Cylinder forming Katsupura, 2
... Cylinder, 21 ... Condenser microphone, 22 ... Preamplifier, 23 ... Pointer, 3 ...
Scale, 4... Combined air chamber, 6... Receiver, 7... Earpiece, 8... Lead terminal, 10... Ventilation hole, 11
……code.

Claims (1)

【特許請求の範囲】 1 一定周波数の交流で駆動される受話器の受話
面にカツプラを押し当て、該カツプラの結合気室
内の容積Vを少なくも3段階にわたつて変化させ
てV1、V2、V3を得、各段階における前記結合気
室内の音圧P1、P2、P3の比(P1/P2)、(P1/P3
を測定により求め、求まつた該比から下記の演算
式(1)乃至(4)により前記受話器の内部音響インピー
ダンスZR(=A+jB)を算出することを特徴とす
る受話器の内部音響インピーダンスの測定方法。 記 但し Ci=Vi/k 但し(i=1、2、3) ……(4) なお、kは空気の体積弾性率を、ωは角周波数
をそれぞれ表わし、A≧0である。
[Claims] 1. A coupler is pressed against the receiving surface of a handset driven by alternating current at a constant frequency, and the volume V in the coupled air chamber of the coupler is varied in at least three stages to V 1 , V 2 . , V 3 and the ratio of the sound pressures P 1 , P 2 , P 3 in the combined air chamber at each stage (P 1 /P 2 ), (P 1 /P 3 )
is determined by measurement, and the internal acoustic impedance ZR (=A+jB) of the handset is calculated from the determined ratio using the following arithmetic expressions (1) to (4). . Record however C i =V i /k where (i=1, 2, 3)...(4) Note that k represents the bulk modulus of air, ω represents the angular frequency, and A≧0.
JP2820282A 1982-02-25 1982-02-25 Measuring method of internal acoustic impedance for receiver Granted JPS58146199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2820282A JPS58146199A (en) 1982-02-25 1982-02-25 Measuring method of internal acoustic impedance for receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2820282A JPS58146199A (en) 1982-02-25 1982-02-25 Measuring method of internal acoustic impedance for receiver

Publications (2)

Publication Number Publication Date
JPS58146199A JPS58146199A (en) 1983-08-31
JPH0121680B2 true JPH0121680B2 (en) 1989-04-21

Family

ID=12242076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2820282A Granted JPS58146199A (en) 1982-02-25 1982-02-25 Measuring method of internal acoustic impedance for receiver

Country Status (1)

Country Link
JP (1) JPS58146199A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677359B (en) * 2017-10-20 2023-09-12 深圳精拓创新科技有限公司 Acoustic impedance tester and acoustic impedance testing method

Also Published As

Publication number Publication date
JPS58146199A (en) 1983-08-31

Similar Documents

Publication Publication Date Title
Rabinowitz Measurement of the acoustic input immittance of the human ear
Møller Transfer function of the middle ear
CN107396272B (en) Microphone calibration compensation from coupler transfer function
US4289143A (en) Method of and apparatus for audiometrically determining the acoustic impedance of a human ear
US5577511A (en) Occlusion meter and associated method for measuring the occlusion of an occluding object in the ear canal of a subject
EP1127475B1 (en) An electroacoustic communications unit
Hudde Measurement of the eardrum impedance of human ears
Fletcher et al. The frequency—Sensitivity of normal ears
US11992309B2 (en) Wideband acoustic immittance measurement apparatus
KR20050026967A (en) Electrical impedance based audio compensation in audio devices and methods therefor
CN111065035B (en) Bone conduction earphone testing method and testing system
US9693159B2 (en) Method of fitting a hearing aid and a hearing aid
JPS5847026B2 (en) How to calibrate acoustic radiation transducers
JPH0121680B2 (en)
CN115243187A (en) Method for measuring sensitivity of condenser microphone
Benson The Calibration and Use of Probe‐Tube Microphones
Siegel Cross-talk in otoacoustic emission probes
JPH10160614A (en) Acoustic device for specifying leakage position
JP2561451B2 (en) Calibrator for characteristic difference correction
US6456717B1 (en) System for assuring proper acoustic connection of a device under test to a test fixture
JP3535329B2 (en) Acoustic leak location identification device
Charan et al. Evaluation of new couplers for circumaural earphones
CN115523999B (en) Particle collision noise detection transducer sensitivity measuring method and system
Corliss et al. A Cavity Pressure Method for Measuring the Gain of Hearing Aids
KR100650709B1 (en) Meansurement system of noise with c-microphone