JPH01216245A - Electron spin resonance device - Google Patents

Electron spin resonance device

Info

Publication number
JPH01216245A
JPH01216245A JP63041197A JP4119788A JPH01216245A JP H01216245 A JPH01216245 A JP H01216245A JP 63041197 A JP63041197 A JP 63041197A JP 4119788 A JP4119788 A JP 4119788A JP H01216245 A JPH01216245 A JP H01216245A
Authority
JP
Japan
Prior art keywords
magnetic field
cavity resonator
sample
electron spin
spin resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63041197A
Other languages
Japanese (ja)
Other versions
JP2892005B2 (en
Inventor
Motoji Iketani
池谷 元伺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP4119788A priority Critical patent/JP2892005B2/en
Publication of JPH01216245A publication Critical patent/JPH01216245A/en
Application granted granted Critical
Publication of JP2892005B2 publication Critical patent/JP2892005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/10Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using electron paramagnetic resonance

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Radiation (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To use a cavity resonator made of a superconducting material by providing a window or hole to the cavity resonator or arranging a magnet in the cavity resonator, and eliminating the influence of the cavity resonator on the magnetic field of a sample part. CONSTITUTION:A sample 5 is put in the cavity resonator 3 together with a sample tube 2 and microwave absorption by resonance based upon the magnetism of an electron spin is measured. The cavity resonator 3 made of the superconducting material is provided with slit type windows 4 in parallel to a microwave current, so the magnetic field enters the resonator 3 to produce a nearly uniform magnetic field at the position of the sample 5. Further, a sample 15 is positioned outside the cavity resonator 13 and the microwave absorption can be measured by utilizing a leaked microwave from the hole provided to the resonator 13. In this case, the magnet 11 produces the magnetic field at the part of the sample 15. Further, the magnetic field can be formed at the part of the sample by putting the magnet 21 in the cavity resonator 23. In either case, the cavity resonator made of the superconducting material is usable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1fitl下における電子スピンの磁性によ
るマイクロ波吸収を計測する電子スピン共鳴装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron spin resonance apparatus that measures microwave absorption due to the magnetism of electron spins under 1 fitl.

〔従来の技術〕[Conventional technology]

電子スピン共鳴(ESR)は、磁場下における電子スピ
ンの磁性によるマイクロ波吸収をいい、この吸収量から
電子スピンの濃度を調べることができる。電子スピンは
、物質中では対をなすためにその磁性が観測されないが
、放射線照射や化学反応によって不対電子が生じると、
この不対電子によるESR信号が電子スピン共鳴装置で
観測される。このことから、ESRは、放射線線量計測
や、自然放射II計測による地質年代測定に利用されて
いる。さらには、ESR画像処理により不対電子の分布
を調べる方法も研究(例えば池谷元伺著、rEsR年代
瀾定」、1987、アイオニクス社)されている。
Electron spin resonance (ESR) refers to microwave absorption due to the magnetism of electron spins under a magnetic field, and the concentration of electron spins can be determined from the amount of absorption. Electron spins form pairs in materials, so their magnetism cannot be observed, but when unpaired electrons are created by radiation irradiation or chemical reactions,
ESR signals due to these unpaired electrons are observed with an electron spin resonance device. For this reason, ESR is used for radiation dose measurement and geological dating using natural radiation II measurement. Furthermore, research is also being conducted on a method of examining the distribution of unpaired electrons by ESR image processing (for example, Motoki Ikeya, "REsR Era Determination", 1987, Ionics Co., Ltd.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ESR装置では、試料を空洞共振器内部に挿入するが、
空洞共振器の壁における抵抗のためマイクロ波損失が起
きる。そこで、空洞共振器を超電導材料で作製すると、
マイクロ波損失はなくなるが、磁気共鳴の測定に不可欠
の磁場を印加しても、マイスナー効果のために空洞共振
器内部に磁場が入らなくなるという問題が生じる。さら
に、超電導と磁界は相反する性質もあるため、磁界によ
って超電導が部分的に常電導になる所謂「第2種超電導
」状態が起きる。このため、ESHにおいて磁気共鳴用
超電導空洞共振器は利用されていなかった。
In an ESR device, a sample is inserted inside a cavity resonator.
Microwave losses occur due to resistance in the walls of the cavity. Therefore, if a cavity resonator is made of superconducting material,
Although microwave loss is eliminated, there is a problem in that even if a magnetic field is applied, which is essential for magnetic resonance measurements, the Meissner effect prevents the magnetic field from entering inside the cavity resonator. Furthermore, since superconductivity and a magnetic field have contradictory properties, a so-called "type 2 superconductivity" state occurs in which superconductivity partially becomes normal conductivity due to the magnetic field. For this reason, superconducting cavity resonators for magnetic resonance have not been used in ESH.

ESR画像処理においては、核磁気共鳴(NMR)画像
処理と同様に、磁場勾配を印加するのが通常の手法であ
ったが、この磁場勾配コイルを超微細なコイルで局所磁
界にして印加する方式も考案(例えば同上著書、P2O
3、付録■、ESR両像処理−CT−ESRとESR顕
微鏡を参照)されている。また、コイルを機械的に挿入
することにより局所磁界を実現する方式もkXされてい
る。
In ESR image processing, the usual method is to apply a magnetic field gradient, similar to nuclear magnetic resonance (NMR) image processing, but this method uses an ultrafine coil to apply a local magnetic field. also devised (for example, the same book, P2O
3. Appendix ①, ESR image processing - CT-ESR and ESR microscope). Additionally, a method of realizing a local magnetic field by mechanically inserting a coil has also been proposed.

本発明は、上記の考察に基づくものであって、試料部分
にかかる磁場の安定性を高め、ESRの感度向上を図る
と共に、局所的に磁場を強めるかまたは変11(交流)
磁場を印加し掃引することにより、ESRL!ii像を
得ることができる電子スピン共鳴装置を提供することを
目的とする。
The present invention is based on the above consideration, and aims to improve the stability of the magnetic field applied to the sample part and improve the sensitivity of ESR, and at the same time, it is possible to locally strengthen or change the magnetic field (alternating current)
By applying and sweeping a magnetic field, ESRL! An object of the present invention is to provide an electron spin resonance apparatus that can obtain ii images.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明の電子スピン共鳴装置は、試料におけ
る磁場を乱さないような空洞共振器の構成及び試料と磁
石の配置したことを特徴とするものである。すなわち、
空洞共振器の内部に試料を配置する場合には、試料部に
おける磁場を乱さないように空洞共振器に窓を設け、或
いは空洞共振器内部に磁石を配置する。また、空洞共振
器の外側に試料を配置すると共に空洞共振器に孔を設け
て漏れマイクロ波を試料に供給し、空洞共1i!ifが
磁場に影響を与えないようにする。
To this end, the electron spin resonance apparatus of the present invention is characterized by the configuration of the cavity resonator and the arrangement of the sample and magnet so as not to disturb the magnetic field in the sample. That is,
When placing a sample inside a cavity resonator, a window is provided in the cavity resonator or a magnet is placed inside the cavity resonator so as not to disturb the magnetic field in the sample section. In addition, the sample was placed outside the cavity resonator, and a hole was provided in the cavity to supply leakage microwaves to the sample. If should not affect the magnetic field.

〔作用〕[Effect]

本発明の電子スピン共鳴装置では、空洞共振器が磁場に
客♂を与えないようにするので、空洞共振器に超電導材
料を用いることができ、Q値を高くすることができる。
In the electron spin resonance apparatus of the present invention, since the cavity resonator does not affect the magnetic field, a superconducting material can be used for the cavity resonator, and the Q value can be increased.

また、空洞共振t:の外側に試料を配置し、空洞共振器
に影響されずに試料の磁場を制御することによって局所
豹変vA磁場を掃引することができ、簡便にESRii
lii像を得ることができる。
In addition, by placing the sample outside the cavity resonance t: and controlling the sample's magnetic field without being affected by the cavity resonator, it is possible to sweep the locally suddenly changing vA magnetic field, making it easy to
lii image can be obtained.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は超電導材料で実現した短形憂洞共振器(TE、
。2モード用)による本発明の1実施例を示す図、第2
図は超電導材料で実現した円筒空洞共振器(TEOll
 モード)による他の実施例を示す図である。図中、l
は磁石、2は試料管、3は空洞共振器、4は窓、5は試
料を示す。
Figure 1 shows a rectangular tunnel resonator (TE) made of superconducting material.
. Figure 2 shows an embodiment of the present invention according to
The figure shows a cylindrical cavity resonator (TEOll) made of superconducting material.
FIG. In the figure, l
2 is a magnet, 2 is a sample tube, 3 is a cavity resonator, 4 is a window, and 5 is a sample.

第1図及び第2図に示す空洞共振器3は、超電導材料に
より構成し、外部磁界侵入用の窓4を備えたものである
。磁石lとしては、永久磁石または電磁石が使用され、
空洞共振器3は、いづれも、磁石1により発生する磁界
が内部に侵入できるよう常電導材料または空隙によるス
リット状の窓4をもち、この部分からの磁界が試料5に
あたるように構成されている。
The cavity resonator 3 shown in FIGS. 1 and 2 is made of a superconducting material and is provided with a window 4 for the entry of an external magnetic field. A permanent magnet or an electromagnet is used as the magnet l,
Each of the cavity resonators 3 has a slit-shaped window 4 made of a normally conducting material or an air gap so that the magnetic field generated by the magnet 1 can penetrate inside, and is configured so that the magnetic field from this part hits the sample 5. .

超電導空洞共振器3において、スリット穴がない場合に
は、磁石lの発生する外部磁界が空洞共振器3の壁によ
り内部へ侵入できないため、内部に収容した試料につい
て磁気共鳴による測定ができない、そこで、本発明では
上記の如きスリットを備えた構成を採用することにより
磁気共鳴による測定を可能にしている。
If the superconducting cavity resonator 3 does not have a slit hole, the external magnetic field generated by the magnet l cannot penetrate into the interior of the cavity resonator 3 due to the walls of the cavity resonator 3, and therefore the sample housed inside cannot be measured by magnetic resonance. In the present invention, measurement by magnetic resonance is made possible by employing a configuration including a slit as described above.

例えばスリット穴が1個の場合には、その穴の位置で磁
界は侵入するけれども、試料5の位置では磁界が乱れる
。しかし、スリット穴を複数個にした場合には、試料3
の位置での磁界をほぼ均一にし、磁気共鳴の測定に充分
に耐え得る程度の乱れに抑えることができる。
For example, when there is only one slit hole, the magnetic field enters at the position of that hole, but the magnetic field is disturbed at the position of the sample 5. However, when multiple slit holes are made, sample 3
The magnetic field at the position can be made almost uniform, and the disturbance can be suppressed to a level sufficient to withstand magnetic resonance measurements.

従って、窓4のスリットは、マイクロ波電流を切ること
により電磁界を乱さないように、常に空洞共FiH3の
マイクロ波電流と平行方向となるような形状が採用され
る。なお、空洞共振器3の壁に流れる′:ri流のパタ
ーンは、空洞共振器3の共振モードによって異なる。
Therefore, the slit of the window 4 is shaped so that the cavity is always parallel to the microwave current of the FiH 3 so as not to disturb the electromagnetic field by cutting off the microwave current. Note that the pattern of the ':ri flow flowing on the wall of the cavity resonator 3 differs depending on the resonance mode of the cavity resonator 3.

第3図は超電導空洞共振器の外部に試料を配置して外部
磁界を供給できるようにした実施例を示す図、第4図は
超電導空洞共振器内で磁界を作る本発明の他の実施例を
示す図である。図中、11と21は磁石、13と23は
超電導空洞共振器、15と25は試料、22は試料管を
示す。
Fig. 3 shows an embodiment in which a sample is placed outside a superconducting cavity resonator to supply an external magnetic field, and Fig. 4 shows another embodiment of the present invention in which a magnetic field is generated within the superconducting cavity. FIG. In the figure, 11 and 21 are magnets, 13 and 23 are superconducting cavity resonators, 15 and 25 are samples, and 22 is a sample tube.

上記第1図及び第2図に示す実施例では、超電導空洞共
振器に窓4を設けることによって内部に収容した試料の
磁界を均一にしているが、第3図に示す例は、超電導空
洞共振器13部分に磁場がかからtζいように、試料1
5を超電導空洞共振器13の外部において孔を設け、超
電導空洞共振器13の孔からの漏れマイクロ波を利用す
るものである。
In the embodiments shown in FIGS. 1 and 2 above, the magnetic field of the sample housed inside is made uniform by providing a window 4 in the superconducting cavity resonator, but in the example shown in FIG. 3, the superconducting cavity resonance Sample 1 was placed in such a way that the magnetic field was not applied to the container
5 is provided with a hole outside the superconducting cavity resonator 13, and microwaves leaking from the hole of the superconducting cavity resonator 13 are utilized.

また、第4図に示す例は、外部磁界を超電導空洞共振器
23内部に発生させるものである。この場合には、磁石
21として超電導コイル、或いは強い永久磁石片を用い
る。このような物体を超電導空洞共振器23内部に入れ
ることにより、余分なESR信号が現れたり、マイクロ
波損失が生じることは避けられないが、特殊試料の場合
には、超小型TuSR装置を実現できる点で有利である
Further, in the example shown in FIG. 4, an external magnetic field is generated inside the superconducting cavity resonator 23. In this case, a superconducting coil or a strong permanent magnet piece is used as the magnet 21. By putting such an object inside the superconducting cavity resonator 23, it is inevitable that an extra ESR signal will appear and microwave loss will occur, but in the case of a special sample, an ultra-small TuSR device can be realized. It is advantageous in this respect.

なお、このようなESR放射線線呈計は、常電導空洞共
振器でも節単に作製することができる。
Note that such an ESR radiation meter can be simply manufactured using a normally conducting cavity resonator.

ESR信号を怒度良く検出できる空洞共振器を利用する
と、次のような応用ができる。
Using a cavity resonator that can detect ESR signals with high intensity can be used in the following applications.

第5図は人体歯牙の放射線被爆線量評価装置として利用
した本発明の1実施例を示す図、第6図は光伝導局所磁
場掃引ESR顕微鏡の例を示す図である0図中、31は
被検者、32は下顎前歯、33は漏れ方式孔付空洞共振
器、34と41は永久磁石、35はヨーク、36は磁場
掃引コイル、37は空洞共振器孔と磁場変調コイル、3
8は導波管、39はマイクロ波、40は磁場調整捧、4
3は空洞共振器、44は窓、45は試料、46は光伝導
半導体、47はレンズ、48は移動掃引パターン、49
は光源、50は光照射パターン、51は電源、52はス
イッチ、53は電極、54は磁I@変調用交流磁場を示
す。
Fig. 5 is a diagram showing an embodiment of the present invention utilized as a radiation exposure dose evaluation device for human teeth, and Fig. 6 is a diagram showing an example of a photoconductive local magnetic field sweeping ESR microscope. Examiner, 32 is a mandibular anterior tooth, 33 is a leakage type cavity resonator, 34 and 41 are permanent magnets, 35 is a yoke, 36 is a magnetic field sweep coil, 37 is a cavity resonator hole and a magnetic field modulation coil, 3
8 is a waveguide, 39 is a microwave, 40 is a magnetic field adjustment device, 4
3 is a cavity resonator, 44 is a window, 45 is a sample, 46 is a photoconductive semiconductor, 47 is a lens, 48 is a moving sweep pattern, 49
50 is a light source, 50 is a light irradiation pattern, 51 is a power source, 52 is a switch, 53 is an electrode, and 54 is a magnetic I@ modulation alternating current magnetic field.

第5図に示す例は、歯牙を抜歯せずに、歯牙エナメルか
ら直接人体被曝線量を評価するのに好適なESR線量計
に応用した例を示している。ヨーク35は、「コ」の字
状の鉄材による磁気回路を形成し、空洞共振器33は、
このヨーク35を貫通して取り付けられ、導波管38を
通してマイクロ波が供給されるようになっている。そし
て、空洞、共振器33の先端に空洞共振器孔と磁場変調
コイル37を設けると共に、その上下に位置するヨ一り
35の先端に永久磁石34を設け、空洞共振器33の先
端で試料のESR線呈を測定するが、そのC1i場を掃
引するのに使用するのが(磁場掃引コイル36である。
The example shown in FIG. 5 shows an example in which the ESR dosimeter is applied to an ESR dosimeter suitable for directly evaluating human body exposure dose from tooth enamel without extracting teeth. The yoke 35 forms a U-shaped magnetic circuit made of iron material, and the cavity resonator 33
It is attached to pass through this yoke 35, and microwaves are supplied through a waveguide 38. A cavity resonator hole and a magnetic field modulation coil 37 are provided at the tip of the cavity resonator 33, and a permanent magnet 34 is provided at the tip of the yoke 35 located above and below the sample. A magnetic field sweep coil 36 is used to sweep the C1i field to measure the ESR radiation.

なお、磁場調整棒40は、この磁場掃引コイル36に代
えて磁場掃引に使用するものであってネジでもよく、こ
のストロークを変えることによりヨーク35における磁
気回路の抵抗を調整する。
The magnetic field adjusting rod 40 is used for sweeping the magnetic field instead of the magnetic field sweeping coil 36, and may be a screw, and the resistance of the magnetic circuit in the yoke 35 is adjusted by changing its stroke.

このように磁場の掃引は、磁気回路の抵抗を変化させる
ことによって同様の磁場制御を行うことができるので、
磁場掃引コイル36や磁場調整捧40を使用するだけで
なく、他の構成を採用してもよいことは勿論である。
In this way, sweeping the magnetic field can perform similar magnetic field control by changing the resistance of the magnetic circuit, so
Of course, in addition to using the magnetic field sweep coil 36 and the magnetic field adjustment shaft 40, other configurations may be adopted.

被蝉音人体の硬組織の歯牙のエナメルがヒドロキシアパ
タイトの微結晶からなる。放射線により生じる不対電子
は不純物に捕らえられて安定化するので、歯牙のエナメ
ルの被輝線量をESRで検出することが出来る。このこ
とから原爆破蝉者や放射線治療患者の抜歯歯牙から、人
体被爆腺蟹を求めることが行われた(前掲、ESI?年
代測定、第11章)。
Tooth enamel, a hard tissue in the human body, is composed of microcrystals of hydroxyapatite. Since unpaired electrons generated by radiation are captured by impurities and stabilized, the amount of brightening radiation in tooth enamel can be detected by ESR. This led to the determination of human radiation exposure gland crabs from the extracted teeth of atomic bomb survivors and radiation therapy patients (Ibid., ESI? Dating, Chapter 11).

第5図に示す装置では、第3図に示す例と同じように、
空洞共振器33からの漏れによるマイクロ波磁界を利用
してESR線品を計量するものであり、被v4汗の被爆
標品を計測する場合には、図示の如く歯の部分が孔37
に近接するように下頴が磁石ギャップ内に挿入されると
、口腔内と7部の下に強力な小型磁石またはTL磁石3
4が配置される。
In the device shown in FIG. 5, as in the example shown in FIG.
The ESR wire product is measured using the microwave magnetic field generated by the leakage from the cavity resonator 33, and when measuring an exposed sample of V4 sweat, the tooth part is inserted into the hole 37 as shown in the figure.
When the lower mouth is inserted into the magnet gap so that it is close to the
4 is placed.

次に、光照射による光伝導を利用し、光伝導の位置を変
化させて直流または磁気変調用の交流を発生させ、その
位置を掃引することにより不対電子分布の画像を得るE
SR顕微鏡の応用例を第6図により説明する。
Next, using photoconduction caused by light irradiation, the position of photoconduction is changed to generate direct current or alternating current for magnetic modulation, and by sweeping the position, an image of the unpaired electron distribution is obtained.
An application example of the SR microscope will be explained with reference to FIG.

第6図のESR顕微鏡は本発明の「漏れマイクロ波」を
利用する高!5度空洞共振′2:の他の応用例であり、
光源49、移動掃引パターン48、レンズ47は、例え
ば同図ら)の光照射パターン50に示すような所定のパ
ターンを光伝導半導体46上に光照射する手段である。
The ESR microscope shown in Figure 6 uses the "leakage microwave" of the present invention. This is another application example of 5 degree cavity resonance '2:
The light source 49, the moving sweep pattern 48, and the lens 47 are means for irradiating the photoconductive semiconductor 46 with light in a predetermined pattern, such as that shown in the light irradiation pattern 50 of FIG.

このような光照射パターン50を光伝導半導体46上の
Tin53の間で形成すると、斜線部に電流が流れるた
め、電流の集中する細い幅の部分に磁界が生じる。電源
が交流の場合には、局所的な交流磁界が生じ、耐昇共鳴
吸収が変調されるので、ロック・イン・アンプでこの周
波数分のみを増幅すると、局所的スピン濃度が判る。従
って、移動掃引パターン48をX。
When such a light irradiation pattern 50 is formed between the tin layers 53 on the photoconductive semiconductor 46, a current flows in the diagonally shaded portion, and a magnetic field is generated in the narrow width portion where the current is concentrated. When the power source is alternating current, a local alternating magnetic field is generated and anti-resonance absorption is modulated, so if only this frequency is amplified with a lock-in amplifier, the local spin concentration can be determined. Therefore, the moving sweep pattern 48 is

2の2次元平面で移動させ、光伝導半導体46上のパタ
ーン細部を移動させると、スピン公布が判る。このよう
に光伝導半導体46上におけろ光照射パターン50の位
置を掃引することにより、機械的にコイルを移動させる
ことなく、局所磁場を掃引でさFi像信号が得られる。
2, and move the details of the pattern on the photoconductive semiconductor 46, spin promulgation can be seen. By sweeping the position of the light irradiation pattern 50 on the photoconductive semiconductor 46 in this manner, an Fi image signal can be obtained by sweeping the local magnetic field without mechanically moving the coil.

この方式によれば、超電導空洞共振器はど高感度ではな
いが、常電導でも磁場位置の掃引が可能である。なお、
光源49は、レーザー光でもよい、光を交流にチョップ
すれば、変調磁場が得られる。
According to this method, although the superconducting cavity resonator is not very sensitive, it is possible to sweep the magnetic field position even with normal conduction. In addition,
The light source 49 may be a laser beam, and by chopping the light into alternating current, a modulated magnetic field can be obtained.

ESR計測において、試料に局所的に磁場を印加して共
鳴吸収を計測するか、磁気共鳴状態にある試料に局所的
に磁場を付加して共鳴状態からすらせることにより、信
号強度の分布を知ることができる。この方式は通常の磁
場勾配方式とは原理的に異なる0局所磁場の掃引を(a
)機械的に行う場合と(b) T、気的に行う場合につ
いては、すでに別途V7案されている。本発明の上記実
施例は、これらの方式に代わるものである。
In ESR measurement, the distribution of signal intensity can be determined by applying a magnetic field locally to a sample and measuring resonance absorption, or by locally applying a magnetic field to a sample in a magnetic resonance state to bring it out of the resonance state. be able to. This method differs in principle from the normal magnetic field gradient method by sweeping the zero local magnetic field (a
) Mechanical method and (b) mechanical method have already been proposed separately in V7. The embodiments of the invention described above are an alternative to these approaches.

なお、本発明は、上記の実施例にげていされるものでは
なく、種々の変形が可能である。
Note that the present invention is not limited to the above embodiments, and various modifications are possible.

空洞共振器を金属で実現する場合には、スリットや常電
導体窓が必要である。これは、セラミック超電導物質の
場合でも変わらないが、セラミックス材料のペレット焼
成において、マイクロ波電流の方向を考慮した常電導交
情共振器空隙内部にペレットを焼成させる形で、より筒
車な超電導空洞共Ti器を作製することもできる。
When realizing a cavity resonator with metal, slits and normal conductor windows are required. This does not change in the case of ceramic superconducting materials, but in pellet firing of ceramic materials, a more cylindrical superconducting cavity is created in which the pellets are fired inside the cavity of a normal-conducting exchange resonator, taking into account the direction of the microwave current. A Ti vessel can also be produced.

超電導空洞共振器を磁場掃引の通常のIESR装置に用
いると、第2種超電導材料では常電導との混在状態がス
ムーズに変化しない。すなわち、磁束のポルテックスの
ピン止めが不純物または粒界で起きる。このため、ES
R信号強度は、数百倍強いにもかかわらず、雑音が著し
く大きくなる。
When a superconducting cavity resonator is used in a normal IESR device that sweeps a magnetic field, the mixed state with normal conductivity does not change smoothly in type 2 superconducting materials. That is, portex pinning of magnetic flux occurs at impurity or grain boundaries. For this reason, E.S.
Even though the R signal strength is several hundred times stronger, the noise is significantly higher.

これを避けるためには、磁界を一定として周波数を変化
させるESR法が望ましい、最近のマイクロ波発生器(
ガンダイオード)と容量を変化させるバラクタ−ダイオ
ードを超電導空洞共振器内部に組み込むことにより、こ
のようなESRは実現可能である。
In order to avoid this, it is desirable to use the ESR method, which changes the frequency while keeping the magnetic field constant.
Such ESR can be realized by incorporating a varactor diode (Gunn diode) and a varactor diode that changes the capacitance inside the superconducting cavity resonator.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、空洞
共R器に超電導材料を用いることができ、Q値を高(す
ることができる。また、空洞共振器の外側に試料を配置
し、空洞共振器に影舌されずに試料の磁場を制御するこ
とによって局所的変調磁場を掃引することができ、簡便
にESR画像を得ることができる。
As is clear from the above description, according to the present invention, a superconducting material can be used for the cavity R resonator, and the Q value can be increased. By controlling the magnetic field of the sample without being affected by the cavity resonator, the locally modulated magnetic field can be swept, and an ESR image can be easily obtained.

特に、マイクロ波等の電磁波による゛障害が問題とされ
、米国では1mW/Cm”以下にするよう規制されてい
る。ESRIa!計測では、1〜10mWまでを歯牙の
計測に用いているが、本発明の方式による孔の部分(〜
5+wmφ)は、最大でも数mW/cm”以下になり、
歯牙による吸収によって、他の部分では、1mW/cm
”以下になる。
In particular, interference caused by electromagnetic waves such as microwaves is a problem, and in the United States it is regulated to be below 1 mW/Cm. In ESRIa! measurement, 1 to 10 mW is used for tooth measurements, but in this The hole part according to the method of the invention (~
5+wmφ) will be several mW/cm” or less at maximum,
1mW/cm in other parts due to absorption by teeth
“It will be less than that.

また、上部の磁石34または鉄板ヨーク35の配置は、
電磁波の影響を受けやすい眼部への直接的漏れはシール
ドされるように安全性を考え設計することは容易に可能
である。さらに口腔内の唾液などの水分の存在は、電磁
波を吸収し&lI織を保護するのにも役立つ。
Furthermore, the arrangement of the upper magnet 34 or iron plate yoke 35 is as follows:
It is easy to design with safety in mind so that direct leakage to the eye area, which is susceptible to electromagnetic waves, is shielded. Furthermore, the presence of moisture such as saliva in the oral cavity also helps to absorb electromagnetic waves and protect the tissue.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超T;、導材料で実現した短形空洞共振器(T
E、。2モード用)による本発明の1実施例を示す図、
第2図は超電導材料で実現した円筒空洞共振器(TEo
++モード)による他の実施例を示す図、第3図は超電
導空洞共振器の外部に試料を配置して外部磁界を供給で
きるようにした実施例を示す図、第4図は超電導空洞共
振器内で磁界を作る本発明の他の実施例を示す図、第5
図は被爆線量評価装置として利用した本発明の1実施例
を示す図、第6図は光伝導局所磁場掃引ESR顕微鏡の
例を示す図である。 l・・・(8石、2・・・試料管、3・・・空洞共振器
、4・・・窓、5・・・試訃1.11と21−磁石、1
3と23・・・P3電導空洞共振器、15と25・・・
試t’L22・・・試料管。 出 願 人   新技術開発事業団 代理人 弁理士  阿 部 ni!  古第5図 (a)    第6図
Figure 1 shows a rectangular cavity resonator (T
E. FIG. 2 is a diagram showing an embodiment of the present invention (for two modes),
Figure 2 shows a cylindrical cavity resonator (TEo) made of superconducting material.
++ mode), Figure 3 is a diagram showing an example in which the sample is placed outside the superconducting cavity resonator so that an external magnetic field can be supplied, and Figure 4 is the superconducting cavity resonator. Figure 5 showing another embodiment of the present invention creating a magnetic field within the
The figure shows an embodiment of the present invention used as an exposure dose evaluation device, and FIG. 6 shows an example of a photoconductive local magnetic field sweeping ESR microscope. l...(8 stones, 2...sample tube, 3...cavity resonator, 4...window, 5...sample 1.11 and 21-magnet, 1
3 and 23...P3 conductive cavity resonator, 15 and 25...
Test t'L22...sample tube. Applicant New Technology Development Corporation Agent Patent Attorney Abe ni! Old Figure 5 (a) Figure 6

Claims (9)

【特許請求の範囲】[Claims] (1)試料における磁場を乱さないような空洞共振器の
構成及び試料と磁石の配置にしたことを特徴とする電子
スピン共鳴装置。
(1) An electron spin resonance apparatus characterized by having a cavity resonator configuration and a sample and magnet arrangement that do not disturb the magnetic field in the sample.
(2)超電導空洞共振器を用いたことを特徴とする請求
項1記載の電子スピン共鳴装置。
(2) The electron spin resonance apparatus according to claim 1, characterized in that a superconducting cavity resonator is used.
(3)空洞共振器に常電導材料又は空隙によるスリット
状の窓を設け、空洞共振器の内部に試料を配置したこと
を特徴とする請求項2記載の電子スピン共鳴装置。
(3) The electron spin resonance apparatus according to claim 2, wherein the cavity resonator is provided with a slit-shaped window made of a normal conductive material or a void, and the sample is placed inside the cavity resonator.
(4)マイクロ波電流の流れに沿った形状の窓を形成し
たことを特徴とする請求項3記載の電子スピン共鳴装置
(4) The electron spin resonance apparatus according to claim 3, characterized in that a window is formed in a shape that follows the flow of microwave current.
(5)空洞共振器内部に磁石を配置したことを特徴とす
る請求項1記載の電子スピン共鳴装置。
(5) The electron spin resonance apparatus according to claim 1, characterized in that a magnet is disposed inside the cavity resonator.
(6)空洞共振器に孔を設けて該孔からの漏れマイクロ
波を試料に供給することを特徴とする請求項1記載の電
子スピン共鳴装置。
(6) The electron spin resonance apparatus according to claim 1, wherein a hole is provided in the cavity resonator, and microwaves leaking from the hole are supplied to the sample.
(7)試料に局所的変調磁場を掃引することを特徴とす
る請求項6記載の電子スピン共鳴装置。
(7) The electron spin resonance apparatus according to claim 6, characterized in that a locally modulated magnetic field is swept across the sample.
(8)試料に近接して光伝導半導体を配置し、該光伝導
半導体に光をパターン照射して局所的変調磁場を掃引す
ることを特徴とする請求項7記載の電子スピン共鳴装置
(8) The electron spin resonance apparatus according to claim 7, characterized in that a photoconductive semiconductor is disposed close to the sample, and the photoconductive semiconductor is irradiated with light in a pattern to sweep the locally modulated magnetic field.
(9)磁気回路の抵抗を制御することによって磁場を掃
引することを特徴とする請求項7記載の電子スピン共鳴
装置。
(9) The electron spin resonance apparatus according to claim 7, wherein the magnetic field is swept by controlling the resistance of the magnetic circuit.
JP4119788A 1988-02-24 1988-02-24 Electron spin resonance device Expired - Lifetime JP2892005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4119788A JP2892005B2 (en) 1988-02-24 1988-02-24 Electron spin resonance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4119788A JP2892005B2 (en) 1988-02-24 1988-02-24 Electron spin resonance device

Publications (2)

Publication Number Publication Date
JPH01216245A true JPH01216245A (en) 1989-08-30
JP2892005B2 JP2892005B2 (en) 1999-05-17

Family

ID=12601695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4119788A Expired - Lifetime JP2892005B2 (en) 1988-02-24 1988-02-24 Electron spin resonance device

Country Status (1)

Country Link
JP (1) JP2892005B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312306A1 (en) * 2000-08-25 2003-05-21 Yamagata Public Corporation for the Development of Industry Method and apparatus for measuring electron spin resonance
JP2012026769A (en) * 2010-07-20 2012-02-09 Fukushima Medical Univ Electronic spin resonance apparatus
CN113093260A (en) * 2021-02-08 2021-07-09 中国人民解放军军事科学院军事医学研究院 In-vivo measurement method and device for radiation dose measurement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6963325B2 (en) * 2017-03-03 2021-11-05 グローバル レゾナンス テクノロジーズ,エルエルシー Physical dosimetry systems and how to implement radiation exposure measurement strategies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4812555U (en) * 1971-06-24 1973-02-12
JPS517390A (en) * 1974-07-04 1976-01-21 Idec Izumi Corp SHIIKENSUKONTOROORANO PUROGURAMINGUHOSHIKI
JPS6051660A (en) * 1983-08-29 1985-03-23 ハリマセラミック株式会社 Manufacture of sliding nozzle plate
JPS6051659A (en) * 1983-08-30 1985-03-23 ハリマセラミック株式会社 Porous nozzle
JPS6147979A (en) * 1984-08-14 1986-03-08 Toshiba Corp Cleaning method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4812555U (en) * 1971-06-24 1973-02-12
JPS517390A (en) * 1974-07-04 1976-01-21 Idec Izumi Corp SHIIKENSUKONTOROORANO PUROGURAMINGUHOSHIKI
JPS6051660A (en) * 1983-08-29 1985-03-23 ハリマセラミック株式会社 Manufacture of sliding nozzle plate
JPS6051659A (en) * 1983-08-30 1985-03-23 ハリマセラミック株式会社 Porous nozzle
JPS6147979A (en) * 1984-08-14 1986-03-08 Toshiba Corp Cleaning method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1312306A1 (en) * 2000-08-25 2003-05-21 Yamagata Public Corporation for the Development of Industry Method and apparatus for measuring electron spin resonance
EP1312306A4 (en) * 2000-08-25 2005-09-07 Yamagata Public Corp For The D Method and apparatus for measuring electron spin resonance
JP2012026769A (en) * 2010-07-20 2012-02-09 Fukushima Medical Univ Electronic spin resonance apparatus
CN113093260A (en) * 2021-02-08 2021-07-09 中国人民解放军军事科学院军事医学研究院 In-vivo measurement method and device for radiation dose measurement
CN113093260B (en) * 2021-02-08 2024-05-24 中国人民解放军军事科学院军事医学研究院 In-vivo measurement method and device for radiation dose measurement

Also Published As

Publication number Publication date
JP2892005B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
Yang et al. Noninvasive imaging method of microwave near field based on solid-state quantum sensing
US6280384B1 (en) Intracorporeally introducible suspension of ferromagnetic particles and method using same for spatially resolved body temperature monitoring
EP0163779A1 (en) Magnetic resonance apparatus
JPH01216245A (en) Electron spin resonance device
CN103033526A (en) Cylindrical electron paramagnetic resonance probe for detecting external sample
Meredith et al. Application of a SQUID magnetometer to NMR at low temperatures
JPH04138130A (en) Magnetic resonance imaging equipment
Sakai et al. Sector-type double-focusing beta-ray spectrometer
US4429277A (en) Nuclear magnetic resonance apparatus utilizing multiple magnetic fields
Yamanaka et al. ESR cavities for in vivo dosimetry of tooth enamel
Junwang et al. Development of X-band TE 111 mode ESR cavity for in vivo tooth dosimetry
Dickie et al. Lifetime of the 6 s 6 p 1 P 1 level of barium
Smith et al. Level-Crossing Signals in Stepwise Fluorescence
Honig et al. Precision absolute measurements of strong and highly inhomogeneous magnetic fields
Bucka et al. Lifetimes and g J Factors in Excited States of Chromium. Hyperfine Structure of Cr 53
Hochi et al. Applications of microwave scanning ESR microscope: human tooth with metal
Guo et al. Comparison of Four X-Band TE 111 Cavities for In Vivo ESR Tooth Dosimetry
JP3144045B2 (en) Magnetic field measurement material
JP2000321344A (en) Resonator
Beehler et al. Experimental evaluation of a thallium beam frequency standard
Almog et al. Hand‐held electron spin resonance scanner for subcutaneous oximetry using OxyChip
Masuyama et al. Highly sensitive macro-scale diamond magnetometer operated by dynamical decoupling sequence with coplanar waveguide resonator
Singer Biological flow and process tracing using nuclear and electron paramagnetic resonance
Aripin et al. Submillimeter wave ESR measurement for Cr 3+ in ruby crystal using a gyrotron as a radiation source
Kumar et al. Evaluation of Electric and Magnetic Fields Distribution and SAR with the Help of Intensity of Time Averaged Electromagnetic Wave

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term