JPH01215960A - Manufacture of aluminum alloy substrate - Google Patents

Manufacture of aluminum alloy substrate

Info

Publication number
JPH01215960A
JPH01215960A JP4100988A JP4100988A JPH01215960A JP H01215960 A JPH01215960 A JP H01215960A JP 4100988 A JP4100988 A JP 4100988A JP 4100988 A JP4100988 A JP 4100988A JP H01215960 A JPH01215960 A JP H01215960A
Authority
JP
Japan
Prior art keywords
disk
substrate
aluminum alloy
strain
alloy substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4100988A
Other languages
Japanese (ja)
Inventor
Motoharu Sato
元治 佐藤
Kozo Hoshino
晃三 星野
Junjiro Kawakami
川上 順次郎
Hideyoshi Usui
碓井 栄喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4100988A priority Critical patent/JPH01215960A/en
Publication of JPH01215960A publication Critical patent/JPH01215960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain an Al-alloy substrate reduced in strain variation due to heating by subjecting a disk of Al alloy containing specific amounts of Mg and Mn to outside diameter working, to softening treatment, and successively to partial cutting of the disk and to surface finishing. CONSTITUTION:A disk of an Al alloy containing 2-5% Mg and 0.1% Mn is subjected to disk outside diameter working and then to softening treatment. Successively, a part of the disk is cut off, and surface finish working is applied to the above disk. By this method, the Al-alloy substrate in which strain after working is reduced and also the increase in strain due to subsequent heat treatment is regulated to <=10mum can be obtained. This Al-alloy substrate is used for film formation, semiconductor substrate grinding and supporting, etc.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は成膜用及び半導体基盤研磨支持用アルミニウム
合金基板の製造に係り、特に真空成膜等において用いら
れる表面仕上げ時及び加熱時に歪変化の少ないアルミニ
ウム合金基板を製造する方法に関するものである。 (従来の技術) 半導体素子基板として用いられているものの代表格はシ
リコン基板であり、不純物添加によりP塑成いはN型の
半導体となり、また表面を酸化することで絶縁膜を簡単
に作ることができる等の特徴を有している。 近年、集積度の増大、それに伴う素子の三次元化及び素
子性能の向上等からS OI (S 1liconOn
 I n5ulator)技術或いはW S I (W
aferS cale I ntegration)技
術等の新しい技術が注目されている。 一般にシリコンウェハー上に素子を形成する場合、能動
層として使用されているのは極く表面層のみである。素
子性能を向上させるためには、この表面層のみを利用す
わば良いことになり、そのためにSO工技術が用いられ
ている。例えば、[日経エレク1〜ロニクスJ 、 1
986年10月6日号、p、76に既述されているよう
に、シリコンウェハー上に形成した素子の性能を向上す
るために、素予形成後、素子上に研磨支持用基板を貼り
付け、素子裏面のシリコン層を研磨することで能動層の
みを残した後、研磨支持用基板を剥がし、薄くなったシ
リコンウェハーに他の基板を貼り付けている(例えば、
シリコン基板上に絶縁層を介してシリコンを載せるS○
■構造がある)。この場合の研磨支持用基板にはシリコ
ンウェハーを用いており、素子形成したシリコンウェハ
ーと同一のシリコンウェハーが必要となり、素子価格が
高くなる原因となっている。また薄くなったシリコンウ
ェハーを貼り付ける基板においては、素子の発熱を考え
ると放熱性の良いものが要求されている。 次に、省エネルギーとして注目されている太陽電池につ
いて見た場合、その構造は結晶太陽電池とアモルファス
太陽電池に大別される。 結晶太陽電池の場合には基板そのものに太陽電池が形成
されるのに対し、アモルファス太陽電池は金属或いは絶
縁基板上に湿式若しくは乾式法により太陽電池が形成さ
れる。乾式法の代表的なものとしてプラズマC,V、D
、(化学気相成長)法及びa、D、(グロー放電)法等
があるが、いずれの方法とも性能向上のために基板を加
熱する必要がある。この場合には基板の熱による歪増加
が少ないことが必要である。一般に絶縁基板としてはガ
ラスが用いられ、金属基板としてはステンレス鋼が用い
られている。ガラスの場合に・は、電卓等の民生用とし
ては有効であるが、大電力を必要とするような場合には
大面積のものが必要となり、ガラスの性質である割れる
等の心配があり、信頼性に問題がある。このような問題
を解決するためにステンレスが使われているが、ガラス
に比べて高価であり、また宇宙用等の用途を考えた場合
、重量物であるため、輸送に要するエネルギーは莫大な
ものとなる。 (発明が解決しようとする課題) それぞ九の用途について見た場合、以上のような問題が
あるが、総じて、研磨支持用基板においてはシリコンで
は高コストであり、また欠は易い等の問題があり、貼り
合わせ基板においては放熱性等に問題がある。また太陽
電池基板においては、ガラスでは割れ易く、ステンレス
鋼では高価で重い等の問題がある。 なお、これらの基板で共通して要求される特性としては
、表面仕上げ後の歪が小さく、且つ熱処理前後での歪増
加の小さいことであり、上記以外の材質の基板を検討す
る場合はこれらの特性を満足するものでなければならな
い。更に従来の装置等をそのまま使用することを考える
と、その形状もシリコンウェハーと同じにする必要があ
る。 従来より、これらの特性を満たす基板材料として、安価
且つ軽量で、加工し易く熱伝導率が高いために放熱性の
高いアルミニウム合金を使用することが試みられている
が、未だ充分な材料は見出されていないのが実情である
。 本発明は、か\る事情に鑑みてなされたものであって、
アルミニウム合金基板として表面仕上げ後の歪が小さく
、且つ熱処理前後での歪増加が小さいものを製造し得る
方法を提供することを目的とするものである。 (課題を解決するための手段) 前記目的を達成するため、本発明者らは、従来のアルミ
ニウム合金基板製造法における合金組成及び製造工程に
ついて種々検討した結果、組成を適切に調整すると共に
製造工程の順序を特定することにより、歪変化、特に加
熱による歪変化を可及的に少なくシ得ることを見い出し
、ここに本発明を完成したものである。 すなわち、本発明は、Mg:2〜5%及びMn:0.1
%以上を含み、残部がAQ及び不可避的不純物からなる
アルミニウム合金円板につき、円板外径加工及び軟質化
処理を適宜順序で施した後、円板の一部カット→表面仕
上げ加工をこの順序で施すことにより、表面仕上げ加工
後の歪が小さく且つその後の熱処理による歪増加が10
μm以下のアルミニウム合金基板を得ることを特徴とす
る成膜用及び半導体基盤研磨支持用アルミニウム合金基
板の製造方法を要旨とするものである。 以下に本発明を更に詳細に説明する。 従来、例えば、磁気ディスク用アルミニウム合金として
はAfl−Mg系合金が多用されてきたが、記録密度の
向上から基板表面の面精度が要求され、晶出物等が重要
視されるようになり、高純度アルミベースのAfl−M
g2元系合金が使用されてきている。磁気ディスクを作
製する場合、例えば、スパッタγ−Fe203法ではそ
の工程において300℃以上の熱処理が行なわれ、一般
にアルマイト基板上に成膜されるが、両面でのアルマイ
ト膜厚差が生じたり或いはアルミニウム合金基板自体が
上記熱処理時の熱により歪むことがモジュレーションエ
ラー等の発生原因となっている。 本発明者らの研究によれば、AQ−Mg2元系合金にお
いては、熱処理する際、基板の支持方法或いは熱源の方
向等により歪の発生が異なることを確認したが、数10
μmも歪むものもあり、このような合金を精度や素子性
能の要求される半導体基盤研磨支持用基板或いは成膜用
基板として用いることは困難であることが判った。そこ
で、この対策について更に鋭意研究を重ねた結果、AQ
−M g −M n 3元系合金を用いる本発明をなし
たものである。 まず、本発明における化学成分の限定理由について説明
する。 Mgは基板に所定の機械的性質及び加工性を付与するの
に不可欠の元素であるが、2%以上添加しなければその
効果は得られない。しかし、5%を超えて多すぎるとM
g−8i系品出物量が多くなり、更に溶解鋳造時の高温
酸化により非金属介在物(MgO)を生成し、仕上げ加
工時の表面精度が低下することになり、半導体基盤研磨
支持用基板として或いは素子形成用基板としての用をな
さなくなる。したがって、Mg量は2〜5%の範囲とす
る。 Mnは所定の機械的性質及び加工性を付与すると共に耐
食性を高めるのに効果のある元素であり、かつ、本発明
法において熱処理による歪の発生を抑制する効果を持つ
元素であることが確認された。 歪発生の抑制のためにはMnを少なくとも0.1%以上
含むことが必要であり、多量に添加してもよい。しかし
、0.5%を超えると粗大なAfl−Fe−Mn系品出
物が生成され易くなり、仕上げ加エアー 時の表面精度低下の原因となるため、0.5%以下であ
るのが好ましい。 なお、アルミニウム合金には製造上不純物が含まれるが
、不純物量は本発明の効果を損なわない限度で許容され
る。 次に、上記化学成分を有するアルミニウム合金基板の製
造工程について説明する。 本発明では、上記アルミニウム合金は常法により溶融し
、鋳造後、均熱化加熱、熱間圧延、冷間圧延することに
より所定のアルミニウム合金基板を得ることができる。 次いで、本発明では、このアルミニウム合金基板に対し
、円板外径加工→軟質化処理(又は軟質化処理→円板外
径加工)→円板の一部カット→表面仕上げ加工をこの順
序で施す。 従来より、磁気ディスク用基板においては、所定のディ
スク径に合わせてアルミニウム合金基板をドーナツ状に
打ち抜き、歪取りのための焼鈍を行うことにより軟質材
とし、その後、端面加工及びグラインド、ダイヤターン
、クロスポリッシュ、電解複合研磨等による表面仕上加
工が行なわれている。 しかし、本発明者らがA Q −Mg −Mn系のアル
ミニウム合金基板の製造において上記製造工程を採用し
試験を行なったところ、円板の一部をカットする工程を
どの工程間に入れるかにより、歪の発生が大きく異なる
ことを確認した。そこで、更に鋭意研究を重ねた結果、
例えば、成膜時の基板温度が4o○℃とすると、これ以
上の温度で焼鈍を行ない、次いで円板の一部をカットし
、表面仕上げを行うならば、その後の熱処理前後での歪
増加の少ないアルミニウム合金基板が得られることを見
い出し、本製造工程を開発するに至ったのである。 したがって、本製造工程の場合、アルミニウム合金円板
に対し、円板外径加工及び軟質化処理を施した後であっ
て、且つ表面仕上げ加工前に、円板の一部カットを施す
ことが肝要である。 円板の一部をカットする方法としては、シャー切断、ミ
ーリング、レーザーカット、放電加工等の種々の態様が
可能である。 円板外径加工及び軟質化処理は、それらの条件、順序は
特に制限されない。軟質化処理としては、通常、磁気デ
ィスク用基板と同様、荷重を加えて焼鈍を行うプレス焼
鈍でよく、この時の処理温度は成膜時に受ける温度以上
であればよいが、460℃になるとアルミニウム合金基
板同士が貼り付いて、剥離時に応力を受け、歪を発生さ
せるため、離型剤などを用いない時は4.60℃以下の
処理温度とするのが好ましい。 表面仕上げ加工は、粗切削、粗グラインド等の粗仕上げ
加工並びに仕上げブラインド等であるが、本発明ではい
ずれの仕上げ加工も円板の一部カット後に施すのである
。表面仕上げ加工条件は特に制限されない。 なお、軟質化処理前に切削、粗グラインド等の面粗仕上
げ、或いは円板の一部カット等の工程が入ると、軟質化
処理時の積み付けの際、荷重分布が不均一になる恐れが
あり、これらの工程は軟質化処理後に行う必要がある。 なお、円板外径加工の前に軟質材としたものを用いても
よい。 本発明法では、通常、円板外径加工→軟質化処理→円板
の一部カット→粗グラインド→仕上げグライン1くの工
程によるのが望ましい。 次に本発明の詳細な説明する。 失胤樵よ 化学成分として、Mgを3.5%の一定量とし、Mnを
0%(無添加)、0.1%、0.25%添加し、残部が
Afl及び不可避的不純物からなるアルミニウム合金板
のそれぞれを約1.4mm厚に圧延した後、150mm
φの円板に打抜き、外周端面を丸く加工した後、425
℃にて2時間のプレス焼鈍を行った。 次いで、引き続き(比較例)、又は一部については円板
の一部カットを行なった後(本発明例)、粗グライン1
〜及び仕上げグラインド加工を行って表面仕上げした後
、面歪測定機(N4DEK)により歪を観測した。 その結果、歪はMn量(すなわち、組成)に関係なく約
6μmであった。板厚、板厚偏差及び表面粗度等が一定
であることがら、これは、プレス焼鈍の際に用いるスペ
ーサーの歪が約6μmであるので、はとんどスペーサー
により決定されていると考えられる。 そこで、更に熱処理による歪変化を考察するため、成膜
時の加熱状態と同一の状況、すなわち、円板を垂直に保
持し、400℃(成膜温度に相当)×2時間での大気中
熱処理を行い、その後、歪を測定した。Mn添加負と熱
処理前後での歪の増加量の関係を第1表に示す。なお、
一部のものについては焼鈍条件を350℃×2時間とし
た。 第  1  表 第1表に示した結果から明らかなように、Mnを添加し
た場合は、無添加の場合に比べ、熱処理による歪の増加
量は小さな値を示しており、Mn添加量が多くなると更
に顕著な差が見られる。また焼鈍温度を熱処理温度40
0℃よりも低い350℃にした場合には、比較例2に示
すようにMn添加効果が小さくなっており、Mn添加効
果が成膜時の加熱温度以上で焼鈍した場合に発揮される
ことがわかる。 実施例2 Mn:0.23%及びMg:3.5%を含み、残部がA
fl及び不可避的不純物からなるアルミニウム合金板を
作製し、約1.4mm厚さに圧延した後、15Qmmφ
の円板に打ち抜いた。端面を丸く加工後。 工程による歪の発生状況を調べるため、第2表に示す製
造工程に従い、425℃×2時間の焼鈍工程及び円板の
一部をカットする工程等の順序を変えた工程にて加工し
9次いで粗グラインド及び仕上げグラインドを行い、約
1.3mm厚で150mmφ(一部カットのシリコンウ
ェハーと同形状)アルミニラム合金基板を作製した。な
お、作製された基板の板厚、板厚偏差及び表面粗度は各
基板とも同じであった。 次いで、実施例1と同様、基板を垂直に保持し、400
 ’CX 2時間の熱処理を行った結果を第2表に併記
する。 第2表から明らかなように、本発明により作製されたア
ルミニウム合金基板は、表面仕上げ後の歪が小さいばか
りか、熱処理後の歪も小さく、しかも熱処理前後での歪
増加量も小さい。 一方、比較例は、いずれも粗グラインド又は粗切削等の
表面仕上げ加工の一部を円板の一部カット工程前に行っ
たため、表面仕上げ後の歪のみならず、熱処理後の歪も
大きい。たとえ焼鈍後に円板の一部カットを行っても、
表面仕上げ後の歪が小さくならないことがわかる。この
ことは、熱処理工程のない半導体基板研磨用基板等の作
製においても本発明の工程が有効であることを示してい
る。
(Industrial Application Field) The present invention relates to the production of aluminum alloy substrates for film formation and semiconductor substrate polishing support, and in particular to the production of aluminum alloy substrates that exhibit little strain change during surface finishing and heating used in vacuum film formation, etc. It's about how to do it. (Prior art) A silicon substrate is typically used as a semiconductor element substrate, and by adding impurities it becomes a P-type or N-type semiconductor, and by oxidizing the surface, an insulating film can be easily formed. It has characteristics such as being able to In recent years, S OI (S
I n5ulator) technology or W S I (W
New technologies such as aferScale integration) technology are attracting attention. Generally, when devices are formed on a silicon wafer, only the surface layer is used as an active layer. In order to improve device performance, it is sufficient to utilize only this surface layer, and SO technology is used for this purpose. For example, [Nikkei Elec 1 ~ Ronix J, 1
As already stated in the October 6, 1986 issue, p. 76, in order to improve the performance of devices formed on silicon wafers, a polishing support substrate is pasted on the device after preliminary formation. After polishing the silicon layer on the back of the device to leave only the active layer, the polishing support substrate is peeled off and another substrate is attached to the thinned silicon wafer (for example,
S○ placing silicon on a silicon substrate via an insulating layer
■There is a structure). In this case, a silicon wafer is used as the polishing support substrate, and the same silicon wafer as the silicon wafer on which the element is formed is required, which causes an increase in the element price. Furthermore, the substrate to which the thinned silicon wafer is attached is required to have good heat dissipation properties, considering the heat generated by the elements. Next, when looking at solar cells, which are attracting attention for their energy-saving properties, their structures can be broadly divided into crystalline solar cells and amorphous solar cells. In the case of a crystalline solar cell, a solar cell is formed on the substrate itself, whereas in an amorphous solar cell, a solar cell is formed on a metal or insulating substrate by a wet or dry method. Typical dry methods include plasma C, V, and D.
, (chemical vapor deposition) method, a, D, (glow discharge) method, etc., but all methods require heating of the substrate in order to improve performance. In this case, it is necessary that the increase in distortion of the substrate due to heat be small. Generally, glass is used as the insulating substrate, and stainless steel is used as the metal substrate. In the case of glass, it is effective for consumer use such as calculators, but if a large amount of power is required, a large area is required, and there is a risk of breaking due to the nature of glass. There are reliability issues. Stainless steel is used to solve these problems, but it is more expensive than glass, and when considering applications such as space, it is heavy and requires a huge amount of energy to transport. becomes. (Problems to be Solved by the Invention) When looking at each of the nine uses, there are the above problems, but overall, silicon is expensive for polishing support substrates, and there are problems such as easy shortage. Therefore, there are problems with heat dissipation and the like in bonded substrates. Further, in the case of solar cell substrates, there are problems such as glass being easily broken and stainless steel being expensive and heavy. The characteristics commonly required for these substrates are low distortion after surface finishing and small increase in strain before and after heat treatment.When considering substrates made of materials other than those listed above, these characteristics are required. It must satisfy the characteristics. Furthermore, considering that the conventional equipment can be used as is, it is necessary to make the shape the same as that of the silicon wafer. Conventionally, attempts have been made to use aluminum alloys, which are inexpensive, lightweight, easy to process, and have high thermal conductivity, as well as high heat dissipation properties, as a substrate material that satisfies these characteristics. The reality is that it has not been released. The present invention was made in view of the above circumstances, and
The object of the present invention is to provide a method for manufacturing an aluminum alloy substrate that has small distortion after surface finishing and a small increase in distortion before and after heat treatment. (Means for Solving the Problems) In order to achieve the above object, the present inventors conducted various studies on the alloy composition and manufacturing process in the conventional aluminum alloy substrate manufacturing method, and as a result, they appropriately adjusted the composition and improved the manufacturing process. It has been discovered that by specifying the order of the above, strain changes, particularly strain changes due to heating, can be minimized as much as possible, and the present invention has now been completed. That is, in the present invention, Mg: 2 to 5% and Mn: 0.1
% or more, with the remainder consisting of AQ and unavoidable impurities. After processing the outer diameter of the disc and softening it in an appropriate order, cut a portion of the disc → perform surface finishing processing in this order. By applying this process, the distortion after surface finishing is small and the increase in distortion due to subsequent heat treatment is 10%.
The gist of the present invention is a method for manufacturing an aluminum alloy substrate for film formation and for supporting semiconductor substrate polishing, which is characterized by obtaining an aluminum alloy substrate with a size of .mu.m or less. The present invention will be explained in more detail below. Conventionally, for example, Afl-Mg alloys have been widely used as aluminum alloys for magnetic disks, but improvements in recording density require surface precision of the substrate surface, and crystallized substances have become important. High purity aluminum base Afl-M
g-binary alloys have been used. When manufacturing magnetic disks, for example, in the sputtering γ-Fe203 method, a heat treatment of 300°C or more is performed in the process, and the film is generally formed on an alumite substrate, but there may be a difference in the alumite film thickness on both sides, or the aluminum The fact that the alloy substrate itself is distorted by the heat during the heat treatment is a cause of modulation errors and the like. According to the research conducted by the present inventors, it was confirmed that when heat-treating the AQ-Mg binary alloy, the occurrence of strain differs depending on the method of supporting the substrate, the direction of the heat source, etc.
It has been found that it is difficult to use such alloys as semiconductor substrate polishing support substrates or film forming substrates that require high precision and device performance. Therefore, as a result of further intensive research on this countermeasure, we found that AQ
The present invention uses a -Mg-Mn ternary alloy. First, the reasons for limiting the chemical components in the present invention will be explained. Mg is an essential element for imparting predetermined mechanical properties and workability to the substrate, but the effect cannot be obtained unless it is added in an amount of 2% or more. However, if it exceeds 5%, M
The amount of G-8i type products increases, and non-metallic inclusions (MgO) are generated due to high temperature oxidation during melting and casting, resulting in a decrease in surface accuracy during finishing processing, making it difficult to use as a substrate for semiconductor substrate polishing support. Otherwise, it becomes useless as a substrate for forming elements. Therefore, the Mg amount is in the range of 2 to 5%. It has been confirmed that Mn is an element that is effective in imparting predetermined mechanical properties and workability as well as increasing corrosion resistance, and is also an element that has the effect of suppressing the occurrence of distortion due to heat treatment in the method of the present invention. Ta. In order to suppress the occurrence of strain, it is necessary to contain at least 0.1% of Mn, and a large amount may be added. However, if it exceeds 0.5%, coarse Afl-Fe-Mn-based products are likely to be generated, which may cause a decrease in surface precision during air finishing, so it is preferably 0.5% or less. . Note that although the aluminum alloy contains impurities due to manufacturing, the amount of impurities is allowed within a limit that does not impair the effects of the present invention. Next, a manufacturing process of an aluminum alloy substrate having the above chemical components will be explained. In the present invention, the above-mentioned aluminum alloy is melted by a conventional method, and after casting, a predetermined aluminum alloy substrate can be obtained by soaking, heating, hot rolling, and cold rolling. Next, in the present invention, this aluminum alloy substrate is subjected to disk outer diameter processing → softening treatment (or softening treatment → disk outer diameter processing) → cutting a portion of the disk → surface finishing processing in this order. . Conventionally, magnetic disk substrates have been produced by punching an aluminum alloy substrate into a donut shape to match a predetermined disk diameter, annealing it to remove distortion to make it a soft material, and then processing the end face, grinding, diamond turning, etc. Surface finishing processes such as cross polishing and electrolytic composite polishing are performed. However, when the present inventors adopted the above-mentioned manufacturing process to manufacture an AQ-Mg-Mn-based aluminum alloy substrate and conducted a test, it was found that depending on which process the process of cutting a part of the disk is inserted, It was confirmed that the occurrence of strain was significantly different. Therefore, as a result of further intensive research,
For example, if the substrate temperature at the time of film formation is 4°C, if annealing is performed at a higher temperature, then a part of the disk is cut and the surface is finished, the strain increase before and after the subsequent heat treatment will be reduced. They discovered that a small amount of aluminum alloy substrates could be obtained and developed this manufacturing process. Therefore, in the case of this manufacturing process, it is important to cut a portion of the aluminum alloy disk after processing the outer diameter of the disk and softening it, but before finishing the surface. It is. Various methods such as shear cutting, milling, laser cutting, and electrical discharge machining can be used to cut a portion of the disk. The conditions and order of the disk outer diameter processing and softening treatment are not particularly limited. As a softening treatment, press annealing, which is performed by applying a load and annealing in the same way as for magnetic disk substrates, is usually sufficient, and the treatment temperature at this time may be higher than the temperature applied during film formation, but at 460°C, aluminum Since the alloy substrates stick to each other and are subjected to stress during peeling, causing distortion, it is preferable to set the processing temperature to 4.60° C. or lower when a mold release agent or the like is not used. Surface finishing processing includes rough finishing processing such as rough cutting and rough grinding, as well as finishing blinding, and in the present invention, any finishing processing is performed after a portion of the disk is cut. Surface finishing processing conditions are not particularly limited. Furthermore, if a process such as surface roughening such as cutting or rough grinding, or cutting a part of the disk is performed before the softening treatment, there is a risk that the load distribution will be uneven when stacking during the softening treatment. Yes, these steps need to be performed after the softening treatment. Note that a soft material may be used before processing the outer diameter of the disk. In the method of the present invention, it is usually desirable to perform the following steps: machining of the outer diameter of a disk, softening treatment, cutting a portion of the disk, rough grinding, and finishing grinding. Next, the present invention will be explained in detail. As a chemical component, Mg is a fixed amount of 3.5%, Mn is added at 0% (no addition), 0.1%, and 0.25%, and the balance is Afl and inevitable impurities. After rolling each of the alloy plates to a thickness of about 1.4 mm,
After punching into a disk of φ and rounding the outer peripheral end surface, 425
Press annealing was performed at ℃ for 2 hours. Next, after (comparative example) or after cutting a part of the disk (inventive example), coarse grain 1
After finishing the surface by performing ~ and finishing grinding, the strain was observed using a surface strain measuring machine (N4DEK). As a result, the strain was approximately 6 μm regardless of the Mn content (ie, composition). Since the plate thickness, plate thickness deviation, surface roughness, etc. are constant, this is thought to be mostly determined by the spacer, since the strain of the spacer used during press annealing is approximately 6 μm. . Therefore, in order to further consider the strain change due to heat treatment, we conducted heat treatment in the atmosphere at 400°C (corresponding to the film formation temperature) for 2 hours under the same heating conditions as during film formation, i.e., holding the disk vertically. was carried out, and then the strain was measured. Table 1 shows the relationship between the negative Mn addition and the increase in strain before and after heat treatment. In addition,
For some products, the annealing conditions were 350° C. for 2 hours. Table 1 As is clear from the results shown in Table 1, when Mn is added, the amount of increase in strain due to heat treatment is smaller than when it is not added, and as the amount of Mn added increases. An even more significant difference can be seen. In addition, the annealing temperature was changed to the heat treatment temperature of 40
When the temperature is 350°C, which is lower than 0°C, the effect of Mn addition becomes smaller as shown in Comparative Example 2, and the effect of Mn addition is exhibited when annealing is performed at a temperature higher than the heating temperature during film formation. Recognize. Example 2 Contains Mn: 0.23% and Mg: 3.5%, the balance is A
An aluminum alloy plate made of fl and unavoidable impurities was produced and rolled to a thickness of about 1.4 mm, and then rolled to a thickness of 15 Q mmφ.
It was punched out into a disc. After rounding the end face. In order to investigate the occurrence of distortion due to the process, according to the manufacturing process shown in Table 2, the disk was processed by changing the order of the annealing process at 425°C for 2 hours and the process of cutting a part of the disk. Rough grinding and finishing grinding were performed to produce an aluminum ram alloy substrate with a thickness of about 1.3 mm and a diameter of 150 mm (same shape as a partially cut silicon wafer). Note that the board thickness, board thickness deviation, and surface roughness of the produced substrates were the same for each board. Next, as in Example 1, the substrate was held vertically and heated for 400 minutes.
'CX The results of 2 hours of heat treatment are also listed in Table 2. As is clear from Table 2, the aluminum alloy substrate produced according to the present invention not only has a small strain after surface finishing, but also a small strain after heat treatment, and also has a small increase in strain before and after heat treatment. On the other hand, in all of the comparative examples, a part of the surface finishing process such as rough grinding or rough cutting was performed before the step of partially cutting the disk, so that not only the distortion after the surface finishing but also the distortion after the heat treatment was large. Even if a part of the disc is cut after annealing,
It can be seen that the distortion does not decrease after surface finishing. This shows that the process of the present invention is effective even in the production of substrates for polishing semiconductor substrates, etc. that do not require a heat treatment process.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、特定量のMgと
Mnを含むアルミニウム合金基板とするので、成膜時等
の熱処理前後での歪増加が少ないばかりか、円板外周加
工→軟質化処理→円板の一部カット→表面仕上げ加工の
採用により、表面仕上げ後の歪が小さく、且つ熱処理後
の歪増加も小さくすることができる。またアルミニウム
合金を使用するので、安価且つ軽量で、放熱性の高い成
膜用及び半導体基盤研磨支持用基板が作製できる等、優
れた効果が得られる。 特許出願人   株式会社神戸製鋼所 代理人弁理士  中  村   尚
(Effects of the Invention) As detailed above, according to the present invention, since an aluminum alloy substrate containing specific amounts of Mg and Mn is used, not only the increase in strain before and after heat treatment during film formation is small, but also By employing the process of processing the outer circumference of the plate → softening process → cutting a portion of the disc → surface finishing process, the distortion after surface finishing can be reduced, and the increase in distortion after heat treatment can also be reduced. Further, since an aluminum alloy is used, excellent effects can be obtained, such as being able to produce a substrate for film formation and semiconductor substrate polishing support that is inexpensive, lightweight, and has high heat dissipation. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 重量%で(以下、同じ)、Mg:2〜5%及びMn:0
.1%以上を含み、残部がAL及び不可避的不純物から
なるアルミニウム合金円板につき、円板外径加工及び軟
質化処理を適宜順序で施した後、円板の一部カット→表
面仕上げ加工をこの順序で施すことにより、表面仕上げ
加工後の歪が小さく且つその後の熱処理による歪増加が
10μm以下のアルミニウム合金基板を得ることを特徴
とする成膜用及び半導体基盤研磨支持用アルミニウム合
金基板の製造方法。
In weight% (hereinafter the same), Mg: 2 to 5% and Mn: 0
.. For an aluminum alloy disk containing 1% or more and the remainder consisting of AL and unavoidable impurities, after performing disk outer diameter processing and softening treatment in an appropriate order, cut a part of the disk → perform surface finishing processing in this manner. A method for manufacturing an aluminum alloy substrate for film formation and semiconductor substrate polishing support, characterized in that by applying the steps in this order, an aluminum alloy substrate with small distortion after surface finishing processing and an increase in distortion due to subsequent heat treatment of 10 μm or less is obtained. .
JP4100988A 1988-02-24 1988-02-24 Manufacture of aluminum alloy substrate Pending JPH01215960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100988A JPH01215960A (en) 1988-02-24 1988-02-24 Manufacture of aluminum alloy substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100988A JPH01215960A (en) 1988-02-24 1988-02-24 Manufacture of aluminum alloy substrate

Publications (1)

Publication Number Publication Date
JPH01215960A true JPH01215960A (en) 1989-08-29

Family

ID=12596392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100988A Pending JPH01215960A (en) 1988-02-24 1988-02-24 Manufacture of aluminum alloy substrate

Country Status (1)

Country Link
JP (1) JPH01215960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151737A (en) * 2011-12-26 2013-08-08 Kobe Steel Ltd Aluminum alloy substrate for magnetic disk and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151737A (en) * 2011-12-26 2013-08-08 Kobe Steel Ltd Aluminum alloy substrate for magnetic disk and method for producing the same

Similar Documents

Publication Publication Date Title
JP3403918B2 (en) High purity copper sputtering target and thin film
US6478902B2 (en) Fabrication and bonding of copper sputter targets
JP5675577B2 (en) Tungsten sputtering target and manufacturing method thereof
KR19990029673A (en) Tantalum sputtering target, manufacturing method and assembly thereof
JP2011162835A (en) Manufacturing method of pure copper plate, and pure copper plate
JPWO2005045090A1 (en) Tantalum sputtering target
JPH10158829A (en) Production of assembly of sputtering target
TWI412635B (en) Mixed with silicon wafers
WO2011099426A1 (en) Pure copper plate production method, and pure copper plate
WO2021177461A1 (en) Pure copper plate, copper/ceramic joined body, and insulated circuit substrate
US20150197848A1 (en) Sputtering Target
JP5291754B2 (en) Sputtering target for solar cell
WO2012057057A1 (en) Titanium target for sputtering
JP2002220659A (en) Working and bonding of copper sputter target
CN111448611B (en) Aluminum alloy substrate for magnetic disk, method for producing same, and magnetic disk using same
JP7419885B2 (en) Mo alloy target material and its manufacturing method
JP2001049426A (en) Manufacture of copper sputtering target, and assembly of copper sputtering target and backing plate
JPH01215960A (en) Manufacture of aluminum alloy substrate
JPH09143704A (en) Titanium target for sputtering and its production
JP2000343240A (en) Solid-state diffusion bonded product with small bonding pressure, and its manufacture
KR102471488B1 (en) Manufacturing method of the bonded body of a target material and a backing plate, and the bonded body of a target material and a backing plate
JP5038553B2 (en) Manufacturing method of sputtering target
JPH0225548A (en) Manufacture of aluminum-alloy substrate
JPH1150244A (en) Sputtering target material and its production
JP2006152404A (en) Method for manufacturing aluminum alloy sheet for magnetic disk, aluminum alloy sheet for magnetic disk, and aluminum alloy substrate for magnetic disk