JPH01215290A - Laser processing - Google Patents

Laser processing

Info

Publication number
JPH01215290A
JPH01215290A JP3940488A JP3940488A JPH01215290A JP H01215290 A JPH01215290 A JP H01215290A JP 3940488 A JP3940488 A JP 3940488A JP 3940488 A JP3940488 A JP 3940488A JP H01215290 A JPH01215290 A JP H01215290A
Authority
JP
Japan
Prior art keywords
sample
lens
laser
stage
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3940488A
Other languages
Japanese (ja)
Inventor
Nobuo Kimura
信夫 木村
Sei Murakami
聖 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3940488A priority Critical patent/JPH01215290A/en
Publication of JPH01215290A publication Critical patent/JPH01215290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To enable samples such as cells to be processed in an arbitrarily desired depth, by vibrating the condenser lens for laser beam in the axial direction, when they are processed by irradiating with laser beam. CONSTITUTION:When a sample such as cells are processed by irradiating it with a laser beam condensed with a lens, the lens is vibrated in the direction of the optical axis to reciprocate the focus, and simultaneously the stage holding the sample is allowed to move or the laser beam incident to the objective lens is polarized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、卵等の生細胞や微生物等の生試料にレーザ免
を照射して、生試料の加工を行うものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for processing a raw sample by irradiating a raw sample such as a living cell such as an egg or a microorganism with a laser beam.

〔従来の技術〕[Conventional technology]

従来の装置である生細胞レーザ穿孔装置の詳細は特公昭
62−7837号に記載されており、この装置の対物レ
ンズの近傍を第2図に示す。
Details of a conventional living cell laser perforation device are described in Japanese Patent Publication No. 7837/1983, and the vicinity of the objective lens of this device is shown in FIG.

レーザはAの焦点面で最も細く絞られ、その前後では曲
線をなす、生細胞等の試料3は、加工部゛を焦点面にお
いて穿孔したり、厚さが非常に薄い試料ではレーザを照
射しながら試料を載せたステージを移動し、試料を切断
していた。
The laser is focused at its narrowest point at the focal plane of A, and forms a curve before and after that.For samples 3, such as living cells, the processed area may be perforated at the focal plane, or for very thin samples, the laser may not be irradiated. The stage on which the sample was placed was moved while the sample was being cut.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、生細胞へDNA等を移入する穿孔機能
を主体にしており、切断機能については十分な配慮がさ
れていなかった。そのため第2図のように試料の厚さが
、加工が可能なビームの焦点深度に比べて十分薄い場合
は、試料を切断できる可能性があったが、直径100μ
m程度の球形の試料たとえば受精卵等では不可能であっ
た。
The above-mentioned conventional technology is mainly based on the perforation function for transferring DNA and the like into living cells, and sufficient consideration has not been given to the cutting function. Therefore, as shown in Figure 2, if the thickness of the sample was sufficiently thin compared to the depth of focus of the beam that could be processed, it was possible to cut the sample, but the diameter was 10μ.
This was not possible for samples with a spherical shape of approximately 200 m in diameter, such as fertilized eggs.

そのためこのような厚さの厚い試料を切断する場合は第
3図に示すように手動でステージを上下方向(Z方向)
に動かして試料をZ方向に動かし同時に切断方向(X方
向)にも移動する必要があつた。
Therefore, when cutting such a thick sample, manually move the stage up and down (Z direction) as shown in Figure 3.
It was necessary to move the sample in the Z direction and simultaneously move it in the cutting direction (X direction).

本装置の対物レンズはレーザを絞る機能と試料の拡大像
を得るという顕微鏡の機能の2つがあり、上記のように
ステージをZ方向に移動すると顕微鏡の機能が失われる
。従って試料の状態を把握できないまま切断操作を行う
こと−になる。そのため受精卵のような生試料を対象に
した場合は試料に余分な損傷を与えることが多く、試料
を死滅させてしまい失敗することが多かった。また手動
でステージを移動する操作は非常に労力を必要とした。
The objective lens of this device has two functions: the function of focusing the laser and the function of a microscope to obtain an enlarged image of the sample, and the microscope function is lost when the stage is moved in the Z direction as described above. Therefore, the cutting operation is performed without being able to grasp the condition of the sample. Therefore, when using live samples such as fertilized eggs, the method often causes excessive damage to the sample, causing the sample to die and often failing. In addition, manual operation of moving the stage required a great deal of effort.

本発明の目的は切断操作が容易であり、かつ切断の状況
を顕微鏡の拡大像で把握しながら切断操作ができるレー
ザ加工方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a laser processing method that facilitates the cutting operation and allows the cutting operation to be performed while grasping the cutting situation using an enlarged image of a microscope.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、ビームエキスパンダを構成するレンズを光
軸方向に加振することにより、対物レンズで集光される
レーザの焦点を光軸方向に往復移動し、同時に試料を保
護したステージを移動あるいは対物レンズに入射するレ
ーザ光の光軸を偏向することにより達成される。
The above purpose is to vibrate the lens constituting the beam expander in the optical axis direction to reciprocate the focal point of the laser focused by the objective lens in the optical axis direction, and at the same time move the stage that protects the sample. This is achieved by deflecting the optical axis of the laser beam that enters the objective lens.

〔作用〕[Effect]

ビームエキスパンダを構成するレンズを光軸方向に加振
すると、対物レンズで集光されるレーザの焦点は光軸方
向に往復移動する。この状態で試料を保持したステージ
をステージの平面内で移動すると上記焦点の光軸方向の
移動距離に近似する厚さで試料は線状に加工される。
When the lens constituting the beam expander is vibrated in the optical axis direction, the focal point of the laser focused by the objective lens moves back and forth in the optical axis direction. In this state, when the stage holding the sample is moved within the plane of the stage, the sample is processed into a linear shape with a thickness that approximates the moving distance of the focal point in the optical axis direction.

またこのステージの平面内の移動を対物レンズに入射す
るレーザ光の光軸を偏向することで焦点をステージの平
面内で移動し上記と同じ線上の加工を行うことができる
。上記の方法はいずれも試料を対物レンズの距離が一定
であるため、試料の加工状況が観察できるとともに、従
来技術に比べ。
Further, by deflecting the optical axis of the laser beam incident on the objective lens by moving the stage within the plane, the focus can be moved within the plane of the stage and processing along the same line as above can be performed. In all of the above methods, the distance between the sample and the objective lens is constant, so the processing status of the sample can be observed, and compared to conventional techniques.

加工の労力が著しく軽減される。Processing effort is significantly reduced.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第4図〜第7図に
より説明する。
An embodiment of the present invention will be described below with reference to FIG. 1 and FIGS. 4 to 7.

第1図は全体構成を示した図で、レーザ10は光学的イ
ンターフェイス11でビームを調整さ九た後、顕微鏡8
の一部である光路偏向装置9に導びかれ、対物レンズ1
に入射す売方向を制御されて対物レンズに入射する。対
物レンズに入射したレーザは細く絞られ、ステージ6に
固定された試料3に照射されて試料を加工する。顕微鏡
には試料像を観察するTVカメラ16と、試料の軸部と
レーザの照射点を比較して検出する輪郭検出器17がR
Kされている。またステージをステージの面内(XY力
方向及び上下方向(2方向)に制御するステージコント
ローラ7が設置されている。
FIG. 1 is a diagram showing the overall configuration, in which a laser 10 adjusts its beam with an optical interface 11, and then a microscope 8
The objective lens 1
The direction in which the light enters the object is controlled and the light enters the objective lens. The laser incident on the objective lens is narrowed down and irradiated onto the sample 3 fixed on the stage 6 to process the sample. The microscope has a TV camera 16 that observes the sample image, and a contour detector 17 that compares and detects the axial part of the sample and the laser irradiation point.
K has been used. A stage controller 7 is also installed to control the stage within the plane of the stage (XY force direction and vertical direction (two directions)).

11の光学的インターフェイスには対物レンズで絞られ
るレーザの焦点の位置を制御するビームエキスパンダ1
2が含まれており、さらにこのビームエキスパンダを構
成するレンズ13を、光軸方向に加振するレンズ加振装
置!14及びこのレンズの振動を制御するレンズ加振コ
ントローラ15が設置されている。
The optical interface 11 includes a beam expander 1 that controls the position of the focal point of the laser focused by the objective lens.
2 is included, and furthermore, a lens vibrating device that vibrates the lens 13 that constitutes this beam expander in the optical axis direction! 14 and a lens vibration controller 15 for controlling the vibration of this lens.

次に12のビームエキスパンダの詳細な説明を第4図を
用いて行う。
Next, a detailed explanation of the 12 beam expanders will be given using FIG.

第4図において左側の2ケのレンズはビームエキスパン
ダを構成するレンズ、右側は対物レンズである0図のビ
ームエキスパンダのレンズの光軸方向の移動により対物
レンズで絞られるビームの焦点は図のように光軸方向に
移動し、レンズの移動距離Ωと焦点の移動距離Δ禽は一
例を示すと第5図のようになる。
In Figure 4, the two lenses on the left constitute the beam expander, and the one on the right is the objective lens.As the lenses of the beam expander in Figure 0 move in the optical axis direction, the focus of the beam focused by the objective lens is as shown in Figure 4. An example of the movement distance Ω of the lens and the movement distance Δ of the focal point is shown in FIG. 5.

そこでこの挙動を利用すれば、試料と対物レンズの距離
は一定、すなわち試料の拡大像を見ながら試料を切断す
ることができる。
Therefore, by utilizing this behavior, the distance between the sample and the objective lens is constant, that is, the sample can be cut while viewing an enlarged image of the sample.

以下、本発明の動作を第1図及び第5〜第7図を用いて
説明する。
Hereinafter, the operation of the present invention will be explained using FIG. 1 and FIGS. 5 to 7.

試料の切断を開始すると、レンズ加振コントローラ15
とレンズ加振装置14によりビームエキスパンダのレン
ズは光軸方向に所定の距離(たとえば第5図のQl)だ
け往復運動を開始し、これにより対物レンズで絞られる
ビームの焦点も光軸方向に第5図のΔQxだけ上記のレ
ンズの移動と同じ周期で移動する。
When cutting the sample starts, the lens vibration controller 15
Then, the lens of the beam expander starts reciprocating motion by a predetermined distance (for example, Ql in FIG. 5) in the optical axis direction by the lens excitation device 14, and thereby the focus of the beam focused by the objective lens also moves in the optical axis direction. It moves by ΔQx in FIG. 5 at the same period as the lens movement described above.

この状態で6のステージをX方向に移動すると第6図の
ように試料は切断されていく、試料の厚さが第5図のΔ
aより薄いときは、試料の端部(第6図A点)までいく
と切断を終了する。
In this state, when stage 6 is moved in the X direction, the sample is cut as shown in Figure 6.The thickness of the sample is Δ
When it is thinner than a, cutting ends when it reaches the end of the sample (point A in Figure 6).

一方、試料の厚さがΔΩより厚いときは、試料の端部ま
でいくと17の輪郭検出器により検出され、その信号が
ステージコントローラ7へ入力され、ステージが第7図
に示すように所定の距離だけ上昇する。その後ステージ
はx7向に逆方向に移動し、切断を続行する0以上の動
作のくり返しにより試料が切断される。このときステー
ジが上昇した段階で顕微鏡の拡大像の焦点の位置がずれ
るが、この位置は新しい切断面を観察することになり1
次にステージが上昇するまで同じ面が観察される。
On the other hand, when the thickness of the sample is thicker than ΔΩ, the edge of the sample is detected by the contour detector 17, the signal is input to the stage controller 7, and the stage moves to a predetermined position as shown in FIG. Increases by distance. Thereafter, the stage moves in the opposite direction in the x7 direction, and the sample is cut by repeating zero or more operations to continue cutting. At this time, the position of the focal point of the enlarged image of the microscope shifts when the stage rises, but this position means that a new cut plane will be observed.
The same plane is then observed until the stage is raised.

試料の切断されやすさは試料の物性によるものであるが
、試料が切断されにくい場合、レンズの移動速度、ステ
ージの移動速度等をコントロールすることにより対応す
ることができる。
The ease with which a sample is cut depends on the physical properties of the sample, but if the sample is difficult to cut, this can be dealt with by controlling the moving speed of the lens, the moving speed of the stage, etc.

すなわち第7図は、10のレーザにパルレーザを用いた
場合の試料断面を示したもので、レーザの照射点を丸印
で示すと、照射点のZ方向の間隔はビームエキスパンダ
12のレンズの移動速度とレーザのパルス繰り返し周波
数に依存する。
In other words, FIG. 7 shows a cross section of a sample when a PAL laser is used as laser 10. If the laser irradiation points are indicated by circles, the spacing of the irradiation points in the Z direction is equal to the distance between the lenses of the beam expander 12. Depends on travel speed and laser pulse repetition frequency.

また照射点のX方向の間隔はステージのX方向の移動速
度に依存する。
Further, the interval between the irradiation points in the X direction depends on the moving speed of the stage in the X direction.

そのため第1図の18のように試料の物性値に応じて1
5のレンズ加振コントローラ、7のステージコントロー
ラ、10のレーザのパルス繰り返し周波数等を制御すれ
ば最適な条件で試料を切断することができる。
Therefore, as shown in 18 in Figure 1, 1
By controlling the lens vibration controller 5, the stage controller 7, the pulse repetition frequency of the laser 10, etc., the sample can be cut under optimal conditions.

以上、切断時にステージを移動する方法について述べた
が、試料の厚さが第5図のΔaよりも薄い場合は、ステ
ージを固定して、9の光路編向装置により対物レンズの
焦点の位fi (XY平面内)を変えることにより対応
することもできる。また試料がΔQより厚い場合、光路
偏向装置とステージの併用形も考えられる。
The method of moving the stage during cutting has been described above, but if the thickness of the sample is thinner than Δa in FIG. This can also be handled by changing the angle (in the XY plane). Furthermore, if the sample is thicker than ΔQ, a combination of an optical path deflector and a stage may be considered.

C発明の効果〕 本発明によれば厚さの厚い試料でも、試料の加工面と対
物レンズの距離を一定にできるため、加工の状況を顕微
鏡で観察することができ、また加工の労力を著しく低減
することができる。
C. Effects of the invention] According to the present invention, even if the sample is thick, the distance between the processed surface of the sample and the objective lens can be kept constant, so the processing status can be observed with a microscope, and the processing effort can be significantly reduced. can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の全体構成図、第2図及び第
3図は従来技術の対物レンズ近傍の正面図、第4図及び
第5図はビームエキスパンダの挙動の説明図、第6図は
本発明の一実施例の俯緻図。 第7図は切断時の試料の断面図で第6図のI−1断面で
ある。 1・・・対物レンズ、6・・・ステージ、7・・・ステ
ージコントローラ、9・・・光路偏向装置、12・・・
ビームエキスパンダ、14・・・レンズ加振装置、15
・・・レンズ加振コントローラ、16・・・TVカメラ
、17・・・輪郭検出器。
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, FIGS. 2 and 3 are front views of the vicinity of the objective lens of the prior art, and FIGS. 4 and 5 are explanatory diagrams of the behavior of the beam expander. FIG. 6 is a detailed diagram of one embodiment of the present invention. FIG. 7 is a sectional view of the sample at the time of cutting, which is the I-1 section in FIG. 6. DESCRIPTION OF SYMBOLS 1... Objective lens, 6... Stage, 7... Stage controller, 9... Optical path deflection device, 12...
Beam expander, 14... Lens excitation device, 15
...Lens excitation controller, 16...TV camera, 17...Contour detector.

Claims (1)

【特許請求の範囲】 1、レンズを用いてレーザ光を集光し、これを生細胞等
の試料に照射して試料を加工するレーザ加工方法におい
て、 前記レンズを光軸方向に加振することにより、前記レン
ズで集光されるレーザの焦点を光軸方向に往復移動する
とともに試料を保持したステージを移動あるいは対物レ
ンズに入射するレーザ光の光軸を偏向することにより試
料を所定の厚さで線状に加工することを特徴とするレー
ザ加工方法。
[Claims] 1. In a laser processing method in which a lens is used to focus laser light and the sample is irradiated with the laser light to process the sample, the lens is vibrated in the optical axis direction. By moving the focal point of the laser focused by the lens back and forth in the optical axis direction and moving the stage holding the sample, or by deflecting the optical axis of the laser beam incident on the objective lens, the sample is heated to a predetermined thickness. A laser processing method characterized by linear processing.
JP3940488A 1988-02-24 1988-02-24 Laser processing Pending JPH01215290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3940488A JPH01215290A (en) 1988-02-24 1988-02-24 Laser processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3940488A JPH01215290A (en) 1988-02-24 1988-02-24 Laser processing

Publications (1)

Publication Number Publication Date
JPH01215290A true JPH01215290A (en) 1989-08-29

Family

ID=12552055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3940488A Pending JPH01215290A (en) 1988-02-24 1988-02-24 Laser processing

Country Status (1)

Country Link
JP (1) JPH01215290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671297B2 (en) * 2003-11-20 2010-03-02 Ethicon, Inc. Method and apparatus for laser drilling workpieces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671297B2 (en) * 2003-11-20 2010-03-02 Ethicon, Inc. Method and apparatus for laser drilling workpieces

Similar Documents

Publication Publication Date Title
JP3919486B2 (en) Method and apparatus for laser micro-cutting
EP1209737A3 (en) Method and apparatus for specimen fabrication
JP3636683B2 (en) Laser microdissection method and apparatus
JPH04354532A (en) Method for manipulating fine particle with multiple beams
JP5432658B2 (en) Method and apparatus for preparing sample for transmission electron microscopy
EP2043131A3 (en) Minute sample processing method
US20060226376A1 (en) Sample milling/observing apparatus and method of observing sample
WO2007072709A1 (en) Laser material processing system
JP2005258413A (en) Micromanipulation system
CN107598389A (en) Laser processing device
US6300628B1 (en) Focused ion beam machining method and device thereof
EP1985987A2 (en) Laser micro-dissection procedure and device
WO2014002536A1 (en) Microscope imaging device, and microscope imaging method
JPH01215290A (en) Laser processing
JP3624754B2 (en) How to manipulate fine objects
JPS5350851A (en) Automatic focus control apparatus of microscope
JPWO2019230635A1 (en) Manipulation system and how to drive the manipulation system
JP2005216645A (en) Transmission electron microscope
JPH04237587A (en) Laser beam machine
JP2005335020A (en) Micro object machining device
JPH0276574A (en) Laser processing method
JP2003071828A (en) Laser micro-slitting device and its method
JP3644318B2 (en) Apparatus and method for operating fine object
JP2001041931A (en) Laser mass spectrometer
JP2003094396A (en) Laser manipulation device