JPH0121504B2 - - Google Patents

Info

Publication number
JPH0121504B2
JPH0121504B2 JP56066204A JP6620481A JPH0121504B2 JP H0121504 B2 JPH0121504 B2 JP H0121504B2 JP 56066204 A JP56066204 A JP 56066204A JP 6620481 A JP6620481 A JP 6620481A JP H0121504 B2 JPH0121504 B2 JP H0121504B2
Authority
JP
Japan
Prior art keywords
iron powder
iron
developer
sample
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56066204A
Other languages
Japanese (ja)
Other versions
JPS57181555A (en
Inventor
Yasuyuki Iitsuna
Keigo Aoi
Shoichi Takeuchi
Keiji Sato
Hiroshi Tokura
Tsuneo Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP56066204A priority Critical patent/JPS57181555A/en
Publication of JPS57181555A publication Critical patent/JPS57181555A/en
Publication of JPH0121504B2 publication Critical patent/JPH0121504B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1087Specified elemental magnetic metal or alloy, e.g. alnico comprising iron, nickel, cobalt, and aluminum, or permalloy comprising iron and nickel
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1075Structural characteristics of the carrier particles, e.g. shape or crystallographic structure

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は保存安定性及び耐摩耗性に優れ、高電
気抵抗を有する球形鉄粉に関し、特に静電荷像現
像用現像剤のキヤリアに供したとき優れた性能を
有する球形の鉄粉キヤリアに関するものである。 例えば電子写真等においては光導電性要素より
成る感光体に暗所において一様な表面電荷を付与
した後、像様の露光を施して静電荷像を形成し、
これをトナー及びキヤリアより成る現像剤を用い
て現像し可視像を形成するようにしている。 一般にかかる静電荷像を現像する方法には液体
現像法と乾式現像法とがあり、液体現像法とは絶
縁性有機液体中に各種の顔料や染料を微細粒子と
して分散して成る液体現像剤を用いて現像する方
法であり、乾式現像法とは天然または合成の樹脂
中にカーボンブラツク等の着色剤を分散含有して
成るトナーと称する微粉末検電粉を使用する現像
方法である。この乾式現像法にはトナーのみを主
成分とする現像剤を用いる毛ブラシ法、インプレ
ツシヨン法、パウダークラウド法等の外に、磁性
体粒子またはガラスビーズ等より成るキヤリアと
前記トナーとの混合体を現像剤として用いる磁気
ブラシ法、カスケード法等が知られている。 これらの現像方法において、現像剤中のトナー
粒子が静電荷像に付着して可視像が形成され、こ
の可視像は熱、圧力、溶媒蒸気等によりそのまま
感光体上に定着されるか、紙その他の支持体に転
写され、後に定着される。 本発明は上記現像方法のうち、磁気ブラシ法に
用いる現像剤のキヤリア、すなわちトナーと共に
撹拌されることによつてトナーに所望の電荷を付
与すると共に、前記磁気ブラシの磁気的搬送手段
によりトナーがその表面に被着して搬送され、結
果的に現像剤の搬送媒体となるキヤリアに関する
ものである。 従来上記磁気ブラシにより搬送される現像剤の
キヤリアとしては磁場によつてその方向に強く磁
化する物質、例えばフエライト、マグネタイトを
はじめとして鉄、コバルト、ニツケルなどの強磁
性を示す元素を含む合金あるいは化合物、または
強磁性元素を含まないが適当に熱処理することに
よつて強磁性を示すようになる合金、例えばマン
ガン−銅−アルミニウムもしくはマンガン−銅−
錫などのホイスラー合金とよばれる種類の合金ま
たは二酸化クロム等が知られている。 しかしながら原料の入手及び加工が容易である
こと、経済的に優利であること等の理由で鉄粉ま
たはその酸化物が一般に実用化されている。かか
る鉄粉キヤリアは、例えば特公昭47−19398号公
報に記載されており、これは原料鉄材を窒素又は
アンモニア気流中で加熱窒化し、これを微粉砕後
必要により脱窒し分級することにより製造される
ものである。 かかる鉄粉キヤリアは強磁性を有することから
磁気ブラシにより磁気的に搬送されるので、現像
剤の搬送媒体としての機能その他現像剤中のトナ
ーの材質を選択すれば摩擦によりトナーに電荷を
付与する機能を有する。しかしながらかかる鉄粉
は抵抗値が極めて低く所謂る導電性キヤリアであ
るため感光体上の潜像電荷と接触したときこれを
リークせしめるので所謂の濃度を有するトナー像
を形成することができない。かかる鉄粉キヤリア
のもつ欠点を改良するものとして、例えば特公昭
48−73358号公報には、粉砕した鉄粉を酸素気流
中で加熱して酸化被膜を形成し、体積抵抗を約
108〜1010Ωcm迄高めた鉄粉キヤリアが開示され
ている。かかる鉄粉キヤリアは潜像電荷のリーク
を或る程度軽減することができるとしても粒子表
面に形成される酸化被膜は機械的衝撃及び摩擦に
弱く、化学的物理的に不安定であり、引いてはこ
れがトナーとの摩擦帯電性を不確実なものとし、
所望のトナー像を形成することができない。 さらには上述の各公報に記載される鉄粉キヤリ
アは原料鉄材を粉砕機により粉砕して製造される
ため、凹凸の多い不規則な形状を有するものとな
つている。このためかかる鉄粉キヤリアを現像剤
に使用したときは以下の如き欠点を有する。 (1) 現像剤の搬送過程でキヤリアの「カケ」や
「ワレ」が発生し易く、これらが感光体表面を
損傷し、結果的に複写画像を悪化する。 (2) 現像剤の搬送の過程で摩擦抵抗が増大し、現
像ローラーに加わるトルクが増大し、さらには
現像剤の流動状態が悪化し現像機能が低下す
る。 これら粉砕鉄粉キヤリアを改良したものとして
カナダ特許第838061号明細書に記載される球形鉄
粉キヤリアがある。これは鉄線材に酸化防止処理
を施した後、ガスバーニングガンに装着し、アセ
チレンと酸素との高圧混合ガスを導入燃焼して上
記鉄線材を溶融粉霧し、これを酸化防止剤を含む
冷媒中に吹き込み造粒して球形鉄粉キヤリアを製
造するものである。この方法によれば球形化され
た鉄粉キヤリアが得られるがアセチレンと酸素と
の混合ガスの燃焼下に溶融粉霧されるものである
から工程中種々の酸化防止処理を含むとはいえキ
ヤリア粒子内及び粒子表面に酸化生成物を含むこ
とは避けられず、既述の酸化鉄粉のもつ欠点が内
在する。さらには生成された鉄粉の体積抵抗は明
細書の記載よりみて106Ω・cm付近にあるものと
推定され、これを用いた現像剤により静電荷像を
現像したとき、潜像電荷のリークを伴い、所望の
トナー像をうることができない。 かかる問題を改良するものとして、例えば前記
カナダ特許第838061号明細書及び特開昭50−
37546号公報には球形鉄粉を芯材とし、この表面
に樹脂をコートしたキヤリアが開示されている。
かくすることによりキヤリア粒子表面が所望の抵
抗値となるよう成形することが可能となり、現像
に際して潜像電荷のリークがなく、しかもエツヂ
効果により細字が高濃度、かつシヤープなものと
なるなど一面において優れた効果を奏することが
できるが、芯材となる鉄粉粒子が酸化変質され易
く、化学的及び物理的に不安定であるため芯材と
樹脂被膜との接着性が悪く、使用中剥離したり摩
耗する等の欠点があり、実用上望ましい鉄粉キヤ
リアが得られていないのが実情である。 本発明はかかる実情に鑑みてなされたものであ
りその目的とするところは、粒子表面が硬く、耐
摩耗性に優れており、化学的にも物理的にも安定
であり、しかも高電気抵抗を有するものであり、
これを例えば静電荷像の現像用現像剤に供したと
き潜像電荷をリークせしめることなく鮮明な複写
画像を形成しうる現像剤用キヤリアを提供するに
ある。 さらに他の目的は現像時の流動性がすぐれてお
り、現像効率のすぐれた現像用キヤリアを提供す
るにある。 さらに他の目的は樹脂被覆を施したコーテング
キヤリアを形成した場合芯材と樹脂被覆層との接
着性のすぐれた球形鉄粉を提供するにある。 前記の目的はシリコン及びマンガンを0.2〜10
重量%含有する鉄合金に高電流を流して放電溶融
し、同時に高圧の不活性ガスを導入して溶融した
合金を噴霧しこれを冷媒中に吹き込み冷却して成
形する製造方法によつて形成された球形鉄粉粒子
より成り当該粒子の表面に前記シリコン及びマン
ガンがより高密度に存在する球形鉄粉により達成
される。 本発明の球形鉄粉は既述のようにシリコン及び
マンガン成分を0.2〜10重量%好ましくは0.3〜3.0
重量%含有すると共にこれらの成分が鉄粉粒子表
面に高密度に分布するように作られているもので
あり、このため粒子内部及び表面共に化学的にも
物理的にも安定で保存耐久性に優れている。 さらに本発明の鉄粉は真円度の高い球形鉄粉で
あつて、鉄粉粒子表面の硬度が大であるため保存
中及び使用時摩耗及び破壊を生ぜず効果的な現像
性が長期に亘り確保される。又コーテング被膜を
形成した場合でも接着性のすぐれた被膜を形成で
きると共に鉄粉表面が滑面であることから優れた
滑面被膜を有するものとなすことができる。さら
には前記粒子表面層が従来技術では達成し得なか
つた109〜1012Ω・cmという高い電気抵抗を示す。
このため複写機に装着された感光体上に形成され
た静電荷像に現像したとき当該潜像の電荷をリー
クさせることがなくシヤープなトナー像を形成す
ることができる。 本発明の球形鉄粉の特徴である粒子表面にシリ
コン及びマンガンをより高密度に含有しているこ
とは後述する実施例第2図{粒子断面をX線マイ
クロアナライザー(XMA)により走査撮影した
写真}により明瞭に認識することができる。この
ように粒子表面にシリコン及びマンガンが高密度
に分布する理由は以下の本発明の製造方法に関す
る説明により理解されるであろう。 本発明の球形鉄粉を製造するには、例えばシリ
コン及びマンガンを0.2〜10重量%含有する1〜
4mmφ径の鉄線材を公知の電気ワイヤーガンに装
備し、当該ガンに高電流を流して鉄線材をアーク
放電により溶融し、高圧の不活性ガスを導入して
噴霧し、これを冷媒中に吹き込み冷却して成形す
る。上記電気ワイヤーガンにおいては鉄線材は数
千度に加熱されるので、成分金属は全て溶融混合
され、表面張力の関係でマンガン及びシリコンは
鉄の表面上に浮上析出し、電気抵抗の大なる高密
度層を形成し、しかも真円度大なる鉄粉が形成さ
れるものと推察される。また上記製造方法におい
ては溶融鉄材を不活性ガスにより噴霧しているの
で粒子内部及び表面共に酸化されることがなく、
硬く堅牢かつ緻密にして化学的にも物理的にも安
定した鉄粉が形成されるものと推察される。かく
して形成された球形鉄粉の化学的物理的特性は例
えば以下の方法により検定される。 化学的安定性については、JIS Z 2371に準じ
て塩水噴霧テストを行い赤錆の発生の有無を調べ
る。 粒子の堅牢度についてはマイクロビツカーズ硬
度計により粒子表面だけでなく内部をも含めた硬
度(HmV)を測定する。又粒子の強磁性の度合
は磁気天秤により飽和磁化(σs)を測定する。 粒子の体積抵抗については、銅板上に内径13mm
の塩化ビニール製円筒を立て、円筒の底部には銅
板に密着し、かつ円筒に嵌合する真鍮製電極を設
け、上から試料鉄粉5gを流下して充填し、その
上から260gの真鍮製分銅電極を載置して試料鉄
粉を加圧するようにし、両電極間に50又は100V
の直流電圧を印加して測定する。 以上述べた数々の測定法に基く本発明の球形鉄
粉の特性は、後述する実施例において従来品と比
較測定されたが、いづれの場合においても、本発
明の鉄粉が従来品に比して格段に優れており、結
果的に電子写真用として供したとき優れた適性を
有することが確認された。 本発明の鉄粉は上述の諸特性に限らず、近時注
目されている樹脂被膜を形成したキヤリアに適用
した場合においても芯材となる本発明の鉄粉の化
学的及び物理的に安定した特徴がそのまま生かさ
れ、接着性及び耐摩耗性に優れた電子写真用樹脂
被覆キヤリアを提供することができる。 本発明の球形鉄粉は静電荷像現像用現像剤に供
される場合は通常20〜1000μの粒径が望ましく、
例えば樹脂中に着色剤必要により荷電制御剤など
を含有し、粒径1〜30μのトナーと混合して使用
され、トナー1〜10重量部に対しキヤリア90〜99
重量部の割合で混合使用される。 かくして作成された現像剤は静電記録、静電印
刷電子写真等の静電荷像現像用として好適に利用
される。 以下本発明を実施例により具体的に説明するが
本発明の実施の態様はこれに限定されるものでは
ない。 実施例 1 シリコン0.5重量%、マンガン1.0重量%、鉄
98.3重量%の組成を有する1.6mmφの鉄合金ワイ
ヤー20Kgを公知の電気ワイヤーガンに装着し、こ
れに高電流を流して上記のワイヤーを放電溶融
し、同時に4.0Kg/cm2の高圧窒素ガスを導入して
溶融した合金を噴霧し、これを30cmの距離で水中
にアトマイズした。かくして19.5Kgの本発明の球
形鉄粉(試料No.1)を得た。また別にシリコン
2.0重量%、マンガン2.5重量%、鉄95.3重量%の
鉄合金ワイヤーを用いた他は同様にして19.5Kgの
本発明の球形鉄粉(試料No.2)を得た。さらに別
にシリコン7.0重量%、マンガン6.0重量%、鉄
86.5重量%の鉄合金ワイヤーを用いた他は同様に
して19.5Kgの本発明の鉄粉(試料No.3)を得た。 又別にシリコン0.1重量%、マンガン0.1重量%
鉄99.5重量%の鉄合金ワイヤーを用いた他は試料
No.1と同様にして、19.5Kgの比較用球形鉄粉(試
料No.4)を得た。上記試料No.1、試料No.2、試料
No.3及び試料No.4の4種の球形鉄粉をそれぞれ
100〜200メツシユの粒度内に篩分けしたところ、
試料No.1は9.5Kg、試料No.2は9.3Kg、試料No.3は
7.2Kgがそれぞれ得られたが、比較用試料No.4は
3Kgしか得られなかつた。 更にマンガン2.0重量%、シリコン2.5重量%、
鉄95.3重量%の組成からなる鉄合金をボールミル
にて粉砕を行い、100〜200メツシユに篩分けした
ものを比較用鉄粉(試料No.5)として準備した。
更に、上記試料No.5と同じ組成からなる鉄合金を
溶解し、公知の方法で水蒸気を用いて憤霧し、得
られた合金粉を100〜200メツシユに篩分けし、比
較用鉄粉(試料No.6)として準備した。 これら6種の試料の特性をしらべるため下記の
テストを行つた。 (1) 既述の測定法に従つて化学組成重量%飽和磁
化(σs)cgs/emu、体積抵抗Ω・cm、マイク
ロビツカース硬度HmV、見掛密度g/cm3その
他表面性を測定し、それらの値を第1表に示し
た。
The present invention relates to spherical iron powder having excellent storage stability and abrasion resistance and high electrical resistance, and particularly to a spherical iron powder carrier having excellent performance when used as a carrier for a developer for developing electrostatic images. be. For example, in electrophotography, a photoreceptor made of a photoconductive element is given a uniform surface charge in a dark place, and then imagewise exposed to light to form an electrostatic charge image.
This is developed using a developer consisting of toner and carrier to form a visible image. Generally, there are two methods for developing such electrostatic images: liquid development method and dry development method.The liquid development method uses a liquid developer made by dispersing various pigments and dyes as fine particles in an insulating organic liquid. The dry developing method is a developing method that uses fine electrostatic detection powder called a toner, which is made by dispersing a coloring agent such as carbon black in a natural or synthetic resin. This dry development method includes a bristle brush method, an impression method, a powder cloud method, etc. using a developer whose main component is toner only, and a method in which the toner is mixed with a carrier made of magnetic particles or glass beads. A magnetic brush method, a cascade method, etc., which use a body as a developer, are known. In these developing methods, toner particles in a developer adhere to an electrostatically charged image to form a visible image, and this visible image is either fixed directly onto the photoreceptor by heat, pressure, solvent vapor, etc. It is transferred to paper or other support and later fused. Among the above-mentioned developing methods, the present invention provides a carrier of the developer used in the magnetic brush method, in which the toner is stirred together with the toner, thereby imparting a desired charge to the toner, and the toner is transported by the magnetic conveyance means of the magnetic brush. This relates to a carrier that is adhered to the surface of the developer and is transported, and eventually becomes a transport medium for the developer. Conventionally, the carrier for the developer conveyed by the magnetic brush has been a material that is strongly magnetized in the direction of a magnetic field, such as an alloy or compound containing ferromagnetic elements such as ferrite and magnetite, as well as iron, cobalt, and nickel. , or alloys that do not contain ferromagnetic elements but become ferromagnetic by appropriate heat treatment, such as manganese-copper-aluminum or manganese-copper-
A type of alloy called Heusler alloy such as tin, chromium dioxide, etc. are known. However, iron powder or its oxides are generally put into practical use because they are easy to obtain and process raw materials, and are economically advantageous. Such an iron powder carrier is described, for example, in Japanese Patent Publication No. 47-19398, and is produced by heating and nitriding raw iron material in a nitrogen or ammonia stream, pulverizing it, and then denitrifying and classifying it if necessary. It is something that will be done. Since the iron powder carrier has ferromagnetism, it is magnetically conveyed by a magnetic brush, so it functions as a developer conveyance medium and, if the material of the toner in the developer is selected, it can impart an electric charge to the toner by friction. Has a function. However, since such iron powder is a so-called conductive carrier having an extremely low resistance value, when it comes into contact with the latent image charge on the photoreceptor, it leaks the charge, making it impossible to form a toner image having a so-called density. To improve the drawbacks of such iron powder carriers, for example,
Publication No. 48-73358 discloses that pulverized iron powder is heated in an oxygen stream to form an oxide film, and the volume resistance is reduced to approx.
An iron powder carrier with an increased resistance of 10 8 to 10 10 Ωcm is disclosed. Although such an iron powder carrier can reduce the leakage of latent image charges to some extent, the oxide film formed on the particle surface is susceptible to mechanical shock and friction, and is chemically and physically unstable. This makes the triboelectricity with the toner uncertain,
A desired toner image cannot be formed. Furthermore, since the iron powder carriers described in the above-mentioned publications are manufactured by pulverizing raw iron materials using a pulverizer, they have irregular shapes with many unevenness. Therefore, when such an iron powder carrier is used as a developer, it has the following drawbacks. (1) Chips and cracks in the carrier tend to occur during the developer transport process, and these damage the surface of the photoreceptor, resulting in the deterioration of the copied image. (2) Frictional resistance increases during the conveyance process of the developer, increasing the torque applied to the developing roller, and furthermore, the fluidity of the developer deteriorates, resulting in a decrease in the developing function. An improved version of these crushed iron powder carriers is the spherical iron powder carrier described in Canadian Patent No. 838,061. After applying anti-oxidation treatment to the iron wire, it is attached to a gas burning gun, and a high-pressure mixed gas of acetylene and oxygen is introduced and burned to melt the iron wire into atomized powder, which is then used as a refrigerant containing an antioxidant. A spherical iron powder carrier is produced by blowing into the powder and granulating it. According to this method, spherical iron powder carriers can be obtained, but since the molten powder is atomized while burning a mixed gas of acetylene and oxygen, the carrier particles are subjected to various anti-oxidation treatments during the process. The inclusion of oxidation products inside and on the particle surface is unavoidable, and the above-mentioned drawbacks of iron oxide powder are inherent. Furthermore, the volume resistivity of the produced iron powder is estimated to be around 10 6 Ω・cm based on the description in the specification, and when an electrostatic charge image is developed with a developer using this powder, leakage of latent image charge occurs. Therefore, a desired toner image cannot be obtained. To improve this problem, for example, the above-mentioned Canadian Patent No. 838061 and Japanese Unexamined Patent Application Publication No. 1988-
Publication No. 37546 discloses a carrier whose core material is spherical iron powder and whose surface is coated with resin.
This makes it possible to mold the surface of the carrier particles to a desired resistance value, and there is no leakage of latent image charge during development.Furthermore, the edge effect makes the fine print highly concentrated and sharp. Although it can produce excellent effects, the iron powder particles that make up the core material are easily oxidized and degraded, and are chemically and physically unstable, so the adhesion between the core material and the resin coating is poor, and it may peel off during use. The reality is that iron powder carriers that are desirable in practice have not been obtained due to drawbacks such as wear and tear. The present invention was made in view of the above circumstances, and its purpose is to have a particle surface that is hard, has excellent wear resistance, is chemically and physically stable, and has high electrical resistance. have,
It is an object of the present invention to provide a developer carrier capable of forming a clear copy image without leaking latent image charges when this is applied to a developer for developing an electrostatic image, for example. Still another object is to provide a developing carrier which has excellent fluidity during development and has excellent developing efficiency. Still another object is to provide spherical iron powder that exhibits excellent adhesion between the core material and the resin coating layer when a resin-coated coating carrier is formed. The above purpose is to contain silicon and manganese from 0.2 to 10
It is formed by a manufacturing method in which a high current is passed through an iron alloy containing % by weight to melt it by electrical discharge, and at the same time, a high-pressure inert gas is introduced to spray the molten alloy, which is then blown into a refrigerant to cool and form it. This is achieved by using spherical iron powder particles in which silicon and manganese are present at a higher density on the surface of the particles. As mentioned above, the spherical iron powder of the present invention contains 0.2 to 10% by weight of silicon and manganese components, preferably 0.3 to 3.0% by weight.
It is made so that these components are distributed in a high density on the surface of iron powder particles, and therefore both inside and on the surface of the particles are chemically and physically stable and have long storage durability. Are better. Furthermore, the iron powder of the present invention is a spherical iron powder with high roundness, and the hardness of the surface of the iron powder particles is large, so that it does not cause wear or breakage during storage or use, and has effective developability over a long period of time. Secured. Furthermore, even when a coating film is formed, a film with excellent adhesiveness can be formed, and since the surface of the iron powder is smooth, an excellent smooth film can be obtained. Furthermore, the particle surface layer exhibits a high electrical resistance of 10 9 to 10 12 Ω·cm, which could not be achieved by conventional techniques.
Therefore, when an electrostatic charge image formed on a photoreceptor mounted in a copying machine is developed, a sharp toner image can be formed without leaking the charge of the latent image. The characteristic feature of the spherical iron powder of the present invention is that it contains silicon and manganese at a higher density on the particle surface, as shown in Example 2, which will be described later. } can be clearly recognized. The reason why silicon and manganese are distributed in such a high density on the particle surface will be understood from the following explanation regarding the manufacturing method of the present invention. In order to produce the spherical iron powder of the present invention, for example, 1- to
A known electric wire gun is equipped with a 4 mm diameter iron wire, a high current is passed through the gun, the iron wire is melted by arc discharge, a high pressure inert gas is introduced and atomized, and this is blown into the refrigerant. Cool and shape. In the above-mentioned electric wire gun, the iron wire is heated to several thousand degrees, so all the component metals are melted and mixed, and due to surface tension, manganese and silicon float and precipitate on the iron surface, resulting in a large increase in electrical resistance. It is surmised that iron powder that forms a dense layer and has a high degree of roundness is formed. In addition, in the above manufacturing method, since the molten iron material is atomized with an inert gas, neither the inside nor the surface of the particles will be oxidized.
It is presumed that iron powder that is hard, robust, dense, and chemically and physically stable is formed. The chemical and physical properties of the spherical iron powder thus formed are tested, for example, by the following method. Regarding chemical stability, conduct a salt spray test according to JIS Z 2371 to check for the occurrence of red rust. Regarding the fastness of particles, the hardness (HmV) of not only the surface of the particles but also the inside of the particles is measured using a MicroVickers hardness meter. The degree of ferromagnetism of the particles is determined by measuring the saturation magnetization (σ s ) using a magnetic balance. For the volume resistance of the particles, the inner diameter of 13 mm was measured on the copper plate.
A cylinder made of vinyl chloride is set up, and a brass electrode is installed at the bottom of the cylinder, which is in close contact with the copper plate and fits into the cylinder. 5 g of sample iron powder is poured down from above to fill it, and 260 g of brass powder is placed on top of it. Place a weight electrode to pressurize the sample iron powder, and apply 50 or 100 V between both electrodes.
Measure by applying a DC voltage of The characteristics of the spherical iron powder of the present invention based on the numerous measurement methods described above were measured in comparison with conventional products in the Examples described below, and in all cases, the iron powder of the present invention was compared with conventional products. As a result, it was confirmed that it had excellent suitability when used for electrophotography. The iron powder of the present invention is not limited to the above-mentioned properties, but also has chemical and physical stability of the iron powder of the present invention, which serves as a core material, even when applied to a carrier with a resin coating, which has been attracting attention recently. It is possible to provide a resin-coated carrier for electrophotography with excellent adhesiveness and abrasion resistance, while making the most of the characteristics as they are. When the spherical iron powder of the present invention is used in a developer for electrostatic image development, it is usually desirable that the particle size is 20 to 1000 μm.
For example, the resin may contain a colorant, a charge control agent, etc. if necessary, and be mixed with a toner having a particle size of 1 to 30μ.
They are mixed and used in parts by weight. The developer thus prepared is suitably used for developing electrostatic images such as electrostatic recording and electrostatic printing electrophotography. EXAMPLES The present invention will be specifically explained below with reference to Examples, but the embodiments of the present invention are not limited thereto. Example 1 Silicon 0.5% by weight, manganese 1.0% by weight, iron
20kg of 1.6mmφ iron alloy wire with a composition of 98.3% by weight was attached to a known electric wire gun, and a high current was passed through it to discharge and melt the wire, while at the same time high pressure nitrogen gas of 4.0kg/cm 2 was applied. The molten alloy was introduced and atomized into water at a distance of 30 cm. In this way, 19.5 kg of spherical iron powder (sample No. 1) of the present invention was obtained. Also silicon
A spherical iron powder (Sample No. 2) of the present invention weighing 19.5 kg was obtained in the same manner except that an iron alloy wire containing 2.0% by weight of manganese, 2.5% by weight of manganese, and 95.3% by weight of iron was used. Furthermore, silicon 7.0% by weight, manganese 6.0% by weight, iron
Iron powder of the present invention (sample No. 3) weighing 19.5 kg was obtained in the same manner except that 86.5% by weight iron alloy wire was used. In addition, silicone 0.1% by weight, manganese 0.1% by weight
The other samples used were iron alloy wires containing 99.5% iron.
In the same manner as No. 1, 19.5 kg of spherical iron powder for comparison (sample No. 4) was obtained. Above sample No. 1, sample No. 2, sample
Four types of spherical iron powder, No. 3 and Sample No. 4, respectively.
When sieved to a particle size of 100 to 200 mesh,
Sample No. 1 is 9.5Kg, Sample No. 2 is 9.3Kg, Sample No. 3 is
7.2 kg was obtained for each, but only 3 kg was obtained for comparative sample No. 4. In addition, 2.0% by weight of manganese, 2.5% by weight of silicon,
An iron alloy having a composition of 95.3% by weight of iron was ground in a ball mill and sieved into 100 to 200 meshes to prepare iron powder for comparison (sample No. 5).
Furthermore, an iron alloy having the same composition as Sample No. 5 was melted and atomized using steam using a known method, and the obtained alloy powder was sieved into 100 to 200 meshes to obtain comparative iron powder ( Sample No. 6) was prepared. The following tests were conducted to examine the characteristics of these six types of samples. (1) Measure the chemical composition, weight % saturation magnetization (σ s ) cgs/emu, volume resistance Ω・cm, microvitkers hardness HmV, apparent density g/cm 3 and other surface properties according to the measurement method described above. , and their values are shown in Table 1.

【表】 但し見掛密度はJIS Z 2504に規定される測定
法による。又表面性は粒子の電子顕微鏡写真より
粒子表面の平滑性を目視判定し、良好〇、やや良
好△、不良×、の3段階で評価した。第1表より
本発明の球形鉄粉は抵抗率、硬さ、表面性等にお
いて比較用鉄粉に比し格段に優れていることがわ
かる。 次にJIS Z 2371に準ずる塩水噴霧テストを行
つた。その結果本発明の鉄粉である試料No.1、試
料No.2、試料No.3は赤錆の発生が認められず化学
的にも安定したものであつたが、比較用鉄粉であ
る試料No.4は全面に赤錆を生じており、化学的に
極めて不安定なものであることがわかつた。 また、試料No.5およびNo.6も上面の一部に赤錆
が発生した。 第1図はSample1とSample4の示差熱天秤測定
結果であり本発明品であるSample1では温度を上
昇して行つても酸化反応による示差熱のピークが
認められず、酸化抵抗の大きいことが明らかであ
る。 又さらには、X線マイクロアナライザー
(EPMA)により本発明の試料No.1粒子の形状写
真、シリコン成分の分布写真、マンガン成分の分
布写真、鉄成分の分布写真、を撮影し、それぞれ
第2図a,b,c,d、のものが得られた。これ
らの写真よりみて、本発明の鉄粉は真円度の高い
球形を有し、その表面にはシリコン及びマンガン
を高密度に分布していることが明確に理解され
る。 以上の測定結果より、本発明の鉄粉が電子写真
用として数々の優れた特性を有しており、極めて
有用なものであることが理解される。 実施例 2 上記実施例1のNo.1〜No.4の4種類の鉄粉1Kg
中に、 スチレン−アクリル樹脂 100部 カーボンブラツク 5部 負の電荷制御剤 3部 を混合し、加熱下に練合せ、これに冷却粉砕及び
分級して得られた平均粒径15μのトナー20gづつ
を混合し、4種類の現像剤を調整した。 これらの現像剤をU−Bix W複写機(小西六
写真工業社製)の改造機にそれぞれ装着して
20000回の耐久テストを行つた。その結果本発明
の試料No.1、試料No.2及び試料No.3を用いた現像
剤はいづれも初期の画像と大差がなく鮮明な画像
が得られたが、試料No.4を用いた比較用現像剤は
3000回より濃度低下及び白ヌケが顕著となつた。 更に、実施例1の試料No.1〜6の6種類の鉄粉
1Kg中に、上述のトナー20gづつを混合し、6種
類の現像剤を調整した。これらの現像剤をU−
Bix W複写機の改造機にそれぞれ装着し、室温
35℃、相対湿度80%に保持した環境室内で20000
回の耐久テストを行つた。その結果、本発明の試
料No.1〜No.3を用いた現像剤の場合はいずれも初
期の画像と大差なく鮮明な画像が得られたが、試
料No.4とNo.6を用いた現像剤の場合は5000回目付
近より濃度低下及び地汚れが顕著となつた。ま
た、No.5を用いた現像剤の場合は2500回目付近よ
り画像に感光体のキズによるタテスジが認められ
るようになつた。 実施例 3 次に上記実施例1のNo.1〜No.4の4種の鉄粉に
流動化ベツト法により、それぞれにポリスチレン
系樹脂の被膜を形成した。 これら樹脂被膜をを形成した鉄粉キヤリア1Kg
中に前記処法のトナー20gづつを混合して調整し
た4種類の現像剤を用い、U−Bix W改造機に
装着してそれぞれ50000回のコピーテストを行つ
た。その結果本発明の鉄粉を用いた現像剤は
50000回コピー後も初期と大差なく鮮明な画像が
得られたが、比較用鉄粉を用いた現像剤は30000
回付近より樹脂被膜の剥離が観測され、画像の濃
度低下及びカブリの発生が生じていた。
[Table] However, the apparent density is based on the measurement method specified in JIS Z 2504. The surface smoothness of the particle surface was visually determined from an electron micrograph of the particle, and evaluated on a three-grade scale: good ○, slightly good △, and poor ×. From Table 1, it can be seen that the spherical iron powder of the present invention is significantly superior to the comparative iron powder in terms of resistivity, hardness, surface properties, etc. Next, a salt spray test according to JIS Z 2371 was conducted. As a result, the iron powder of the present invention, Sample No. 1, Sample No. 2, and Sample No. 3, showed no red rust and were chemically stable, but the iron powder for comparison was No. 4 had red rust all over its surface and was found to be chemically extremely unstable. In addition, red rust occurred on a portion of the upper surface of samples No. 5 and No. 6 as well. Figure 1 shows the differential thermal balance measurement results of Sample 1 and Sample 4. Sample 1, which is a product of the present invention, shows no peak of differential heat due to oxidation reaction even when the temperature is increased, and it is clear that the oxidation resistance is high. be. Furthermore, a photograph of the shape of the sample No. 1 particle of the present invention, a distribution photograph of silicon component, a distribution photograph of manganese component, and a distribution photograph of iron component were taken using an X-ray microanalyzer (EPMA), and these photographs are shown in Figure 2. A, b, c, and d were obtained. From these photographs, it is clearly understood that the iron powder of the present invention has a highly rounded spherical shape, and silicon and manganese are distributed at high density on its surface. From the above measurement results, it is understood that the iron powder of the present invention has many excellent properties for use in electrophotography and is extremely useful. Example 2 1 kg of four types of iron powder No. 1 to No. 4 of Example 1 above
Into this, 100 parts of styrene-acrylic resin, 5 parts of carbon black, and 3 parts of negative charge control agent were mixed, kneaded under heating, cooled, crushed and classified, and 20 g each of toner with an average particle size of 15 μm was added. They were mixed to prepare four types of developers. These developers were installed in a modified U-Bix W copier (manufactured by Konishiroku Photo Industry Co., Ltd.).
It has undergone 20,000 durability tests. As a result, the developers using Sample No. 1, Sample No. 2, and Sample No. 3 of the present invention all produced clear images with no major difference from the initial image, but the developer using Sample No. 4 The developer for comparison is
After 3000 times, the density decrease and white spots became noticeable. Further, 20 g of each of the above-mentioned toners were mixed into 1 kg of six types of iron powder of Sample Nos. 1 to 6 of Example 1 to prepare six types of developers. These developers are U-
Installed on each modified Bix W copier and kept at room temperature.
20,000 in an environmental chamber maintained at 35℃ and 80% relative humidity.
We conducted several durability tests. As a result, in the case of the developer using samples No. 1 to No. 3 of the present invention, clear images were obtained with no major difference from the initial image, but with the developer using samples No. 4 and No. 6. In the case of the developer, a decrease in density and background smearing became noticeable around the 5000th time. In addition, in the case of the developer using No. 5, vertical streaks due to scratches on the photoreceptor began to be observed in the image from around the 2500th time. Example 3 Next, a film of polystyrene resin was formed on each of the four iron powders No. 1 to No. 4 of Example 1 by the fluidized bed method. 1kg of iron powder carrier with these resin coatings
Four types of developers prepared by mixing 20 g of the above-mentioned toner each were installed in a modified U-Bix W machine and 50,000 copy tests were conducted on each developer. As a result, the developer using the iron powder of the present invention is
Even after 50,000 copies, a clear image was obtained with no major difference from the initial copy, but the comparison developer using iron powder was 30,000 copies.
Peeling of the resin film was observed around the time of printing, resulting in decreased image density and fogging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は示差熱天秤による本発明鉄粉と鈍鉄粉
の酸化状態を示す測定結果のグラフであり、第1
図aは実施例1の試料4(純鉄粉)について、第
1図bは実施例1の試料1の測定結果を示してい
る。第2図は本発明実施例に従う球形鉄粉の金属
組織を示す写真であり、第2図aはX線マイクロ
アナライザーによる形状を撮影したもの、第2図
b,cおよびdは球形鉄粉中に含有されるSi量、
Mn量およびFe量の分布状態を撮影したものであ
る。
FIG. 1 is a graph of measurement results showing the oxidation state of iron powder of the present invention and blunt iron powder using a differential thermal balance.
Figure a shows the measurement results for Sample 4 (pure iron powder) of Example 1, and Figure 1B shows the measurement results for Sample 1 of Example 1. Fig. 2 is a photograph showing the metallographic structure of spherical iron powder according to an example of the present invention, Fig. 2 a is a photograph of the shape taken with an X-ray microanalyzer, and Fig. 2 b, c and d are photographs showing the metal structure of spherical iron powder. The amount of Si contained in
This is a photograph of the distribution state of the amount of Mn and the amount of Fe.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄中にシリコンおよびマンガンをそれぞれ
0.2〜10重量%含有する鉄合金に高電流を流して
放電溶融し、同時に高圧の不活性ガスを導入して
溶融した合金を噴霧し、これを冷媒中に吹き込み
冷却して成形する製造方法によつて形成された球
形鉄粉粒子より成り、当該粒子の表面に前記シリ
コンおよびマンガンがより高密度に存在すること
を特徴とする球形鉄粉キヤリア。
1 Silicon and manganese in iron respectively
A manufacturing method in which a high current is applied to an iron alloy containing 0.2 to 10% by weight to melt it by electrical discharge, and at the same time, high-pressure inert gas is introduced to spray the molten alloy, which is then blown into a refrigerant to cool and form it. A spherical iron powder carrier comprising spherical iron powder particles formed in this way, characterized in that the silicon and manganese are present at a higher density on the surface of the particles.
JP56066204A 1981-05-02 1981-05-02 Spherical powdered iron carrier Granted JPS57181555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56066204A JPS57181555A (en) 1981-05-02 1981-05-02 Spherical powdered iron carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56066204A JPS57181555A (en) 1981-05-02 1981-05-02 Spherical powdered iron carrier

Publications (2)

Publication Number Publication Date
JPS57181555A JPS57181555A (en) 1982-11-09
JPH0121504B2 true JPH0121504B2 (en) 1989-04-21

Family

ID=13309069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56066204A Granted JPS57181555A (en) 1981-05-02 1981-05-02 Spherical powdered iron carrier

Country Status (1)

Country Link
JP (1) JPS57181555A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333408Y2 (en) * 1985-11-28 1991-07-16
JPH04321078A (en) * 1990-12-28 1992-11-11 Konica Corp Developing device
JP2607405B2 (en) * 1991-07-25 1997-05-07 コニカ株式会社 Development method
JP2770816B2 (en) * 1996-06-04 1998-07-02 ミノルタ株式会社 toner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834190A (en) * 1971-09-06 1973-05-16
JPS4851638A (en) * 1971-10-28 1973-07-20
JPS51127735A (en) * 1975-04-14 1976-11-08 Hoechst Ag Method of tonor carrier particles for dry duplicator operated by magnetic brush method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834190A (en) * 1971-09-06 1973-05-16
JPS4851638A (en) * 1971-10-28 1973-07-20
JPS51127735A (en) * 1975-04-14 1976-11-08 Hoechst Ag Method of tonor carrier particles for dry duplicator operated by magnetic brush method

Also Published As

Publication number Publication date
JPS57181555A (en) 1982-11-09

Similar Documents

Publication Publication Date Title
US5795693A (en) Carrier for electrophotography, two component-type developer and image forming method
US6898406B2 (en) Developing device having a developer forming a magnet brush
JPS5913732B2 (en) Iron powder development carrier and its manufacturing method, developer and image forming method
US5432033A (en) Method of electrophotographically forming visual image
JP3637452B2 (en) Carrier for developing electrostatic image
US5395717A (en) Developer for developing latent electrostatic images and method of forming images by using the developer
JPH0260186B2 (en)
JPH0121504B2 (en)
JPS61180247A (en) Developer for electrostatic latent image
US6134413A (en) Carrier for magnetic developer and method of electrophotographically forming visual image
US4873540A (en) Image recording method
JP3284488B2 (en) Two-component developer, developing method and image forming method
US4751164A (en) Method of making carrier for use in electrophotographic developers
JPS5964854A (en) Developer
CA1158915A (en) Magnetic imaging method in which a developed image is pressure transferred from the surface of an overcoated electroconductive material
JPH086305A (en) Magnetic carrier for developer
US4912003A (en) Reverse development method
JPS62294259A (en) Developer for electrostatic charge image
JPS61188548A (en) Electrostatic charge image developing carrier
JP3769762B2 (en) Electrostatic image developer
JPS5895748A (en) Transfer type magnetic toner particle
JP2837671B2 (en) Developer for electrostatic latent image
JP2000214625A (en) Electrostatic charge image developing negative charge type toner and image forming method
JPH04211279A (en) Image recording method
JPH06332266A (en) Developing device