JPH01214722A - Detecting device for inner-cylinder pressure of internal combustion engine - Google Patents

Detecting device for inner-cylinder pressure of internal combustion engine

Info

Publication number
JPH01214722A
JPH01214722A JP4108088A JP4108088A JPH01214722A JP H01214722 A JPH01214722 A JP H01214722A JP 4108088 A JP4108088 A JP 4108088A JP 4108088 A JP4108088 A JP 4108088A JP H01214722 A JPH01214722 A JP H01214722A
Authority
JP
Japan
Prior art keywords
cylinder pressure
output
signal
voltage
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4108088A
Other languages
Japanese (ja)
Inventor
Toshio Iwata
俊雄 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4108088A priority Critical patent/JPH01214722A/en
Publication of JPH01214722A publication Critical patent/JPH01214722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the implementation of an efficient signal processing being resistive to noise, by inputting an output signal of a piezoelectric type inner-cylinder pressure sensor in the form of a current and by measuring a knock signal from an output signal of LPF. CONSTITUTION:When a charge Q is outputted in accordance with an inner-cylinder pressure from the output of a piezoelectric type inner-cylinder pressure sensor 1, a current of -dQ/dt is outputted from an operational amplifier 51 to a resistance 52 by a feedback control of the amplifier 51. Due to a voltage drop of the resistance 52, an output voltage V1 of the amplifier 51 turns to be V1=-R1.dQ/dt when a resistance value of the resistance 52 is denoted by R1. This voltage V1 of the amplifier 51 is a voltage obtained by subjecting the inner-cylinder pressure to time differentiation. The voltage V is supplied to LPF 53. This LPF 53 attenuates a low frequency component caused by a change in the inner-cylinder pressure and also can output a high frequency component of pressure vibration, with a uniform frequency characteristic. By passing an output signal of the LPF 53 through BPF 54 having a characteristic of a central frequency, a knock signal can be extracted effectively from a pressure frequency component.

Description

【発明の詳細な説明】 〔並業上の利用分野〕 この発明は内燃機関の燃焼気筒内の圧力情報を計測する
内燃機関の筒内圧力検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to a cylinder pressure detection device for an internal combustion engine that measures pressure information in a combustion cylinder of an internal combustion engine.

〔従来の技術〕[Conventional technology]

内燃機関の燃焼状態や回転サイクル毎の動作を計測する
ために一般に燃焼気筒内の圧力が測定される。この測定
に用いられる筒内圧力センサとして圧電形筒内圧センナ
がよく利用されている。この圧1に形部内圧センサは圧
力に感応して電荷を発生する圧電素子に直接的あるいは
間接的に気筒内の圧力が印加されて、印W圧力に応じた
電荷Wkを出力するものである。例えば、圧電形節内圧
センサの一例ft第5図に示す。第5図においてαIJ
は圧電素子、++21は2枚の圧電素子にはさまれ、出
力信号をリード礫賭に導く電極、Q41はセンサの内部
構造部品を覆うケースである。この圧電形筒内圧センサ
はリング状の形状をしており、第6図に示すようにエン
ジンの燃焼気筒の土壁をなすシリンダヘッド(21と点
火プラグ(31との間に装着される。そして、燃焼気筒
内の圧力が点火プラグを通じて圧電形筒内圧センサ…の
圧電素子d1Jに伝達され、筒内圧力に応じた電荷が出
力される。
BACKGROUND OF THE INVENTION Generally, the pressure within a combustion cylinder is measured to measure the combustion state of an internal combustion engine and the operation of each rotation cycle. A piezoelectric cylinder pressure sensor is often used as the cylinder pressure sensor used for this measurement. In response to this pressure 1, the pressure inside the cylinder is directly or indirectly applied to a piezoelectric element that generates an electric charge in response to pressure, and outputs an electric charge Wk corresponding to the applied W pressure. . For example, an example of a piezoelectric nodal internal pressure sensor is shown in FIG. In Figure 5, αIJ
is a piezoelectric element, ++21 is an electrode that is sandwiched between the two piezoelectric elements and leads the output signal to the lead wire, and Q41 is a case that covers the internal structural parts of the sensor. This piezoelectric cylinder pressure sensor has a ring shape, and is installed between the cylinder head (21) and the spark plug (31), which form the earthen wall of the combustion cylinder of the engine, as shown in Fig. 6. The pressure in the combustion cylinder is transmitted through the spark plug to the piezoelectric element d1J of the piezoelectric cylinder pressure sensor, and an electric charge corresponding to the cylinder pressure is output.

ところで、上記圧電形量内圧センサの筒内圧力に対応す
る出力信号は電荷酸であるために、この電荷酸を電気的
処理しやすい電圧値に変換する必要がある。そこで、電
荷@ft*圧値に変換する手段として一般にチャージア
ンプが用いられていた。第7図にチャージアンプの基本
回路を示す。第7図において、U#−!オペアンプであ
り、(転)はコンデンサである。圧電形筒内圧センサ1
!)の出力はオペアンプ(9)の反転入力に接続きれ、
コンデンサーはオペアンプCTJの反転入力と出力との
間に接続される。まなオペアンプ(財)の非反転入力は
接地きれている。いま、オペアンプ(財)は反転及び非
反転の入力電圧が閤レベルになるように出力制御するも
のであり、圧電形量内圧センサIllから電荷Qが入力
されるとオペアンプi4Dは電荷Qをすべてコンデンサ
ーに充電するよう制御動作する。
By the way, since the output signal corresponding to the cylinder pressure of the piezoelectric internal pressure sensor is a charged acid, it is necessary to convert this charged acid into a voltage value that can be easily processed electrically. Therefore, a charge amplifier has generally been used as a means for converting the charge into a charge@ft*pressure value. Figure 7 shows the basic circuit of the charge amplifier. In FIG. 7, U#-! It is an operational amplifier, and (in) is a capacitor. Piezoelectric cylinder pressure sensor 1
! ) can be connected to the inverting input of the operational amplifier (9),
A capacitor is connected between the inverting input and the output of the operational amplifier CTJ. The non-inverting input of the Mana operational amplifier is grounded. Now, the operational amplifier (incorporated) controls the output so that the inverting and non-inverting input voltages are at the ground level, and when the charge Q is input from the piezoelectric internal pressure sensor Ill, the operational amplifier i4D transfers all the charge Q to the capacitor. The control operates to charge the battery.

従って、コンデンサ(6)の静電容量をCとτるとv−
Q/cなる電圧がオペアンプ(財)の出力に現われる。
Therefore, if the capacitance of the capacitor (6) is C and τ, then v-
A voltage Q/c appears at the output of the operational amplifier.

ここで電荷WkQは筒内圧力と比例関係にあるため、オ
ペアンプ−の出力電圧vB筒内圧力VC応じた値となり
、エンジン運転中には第8L%1に示すような燃焼圧力
信号を出力する0〔発明が解決しようとする課題〕 ところで、燃焼圧力情報としてノックによる圧力振動を
検出する場合、チャージアンプの出力電圧に燃焼圧力レ
ペルンζ灯して圧力振動レベルが非常に小さいため、圧
力振動信号がノイズによって乱されやすいという課題が
あった。
Here, since the electric charge WkQ is proportional to the cylinder pressure, the value corresponds to the output voltage vB of the operational amplifier cylinder pressure VC, and during engine operation, a combustion pressure signal as shown in No. 8L%1 is output. [Problem to be Solved by the Invention] By the way, when detecting pressure vibration due to knock as combustion pressure information, the pressure vibration signal is The problem was that it was easily disturbed by noise.

本発明はこのような課題に鑑みてなされたものであり、
圧電形筒内圧センサの出力信号からノックによる圧力振
動信号を得る場合に、ノックに関して振幅の大きい1語
号レベルを得ることを目的とする。
The present invention has been made in view of these problems,
When obtaining a pressure vibration signal due to knock from the output signal of a piezoelectric cylinder pressure sensor, the object is to obtain a single word level with a large amplitude regarding knock.

〔昧−を解決するための手段〕[Means for resolving ambiguity]

上記目的ケ達成するために1本発明に係る内燃機関の筒
内圧力信号鉄Wは圧電形筒内圧センサの出力信号を電流
の形で入力し、ローパスフィルタをこの電流入力の回路
に内蔵するか、あるいに後段に設置し、このローパスフ
ィルタの出力信号からノック信号を測定するものである
In order to achieve the above objects, 1. The cylinder pressure signal iron W of an internal combustion engine according to the present invention inputs the output signal of a piezoelectric type cylinder pressure sensor in the form of a current, and incorporates a low-pass filter in the circuit for this current input. , or installed at a later stage, and the knock signal is measured from the output signal of this low-pass filter.

〔作用〕[Effect]

本発明においては篭流入力回filローパスフィルタと
を用いることによって最適な周波数減債特性が得られる
ものである。
In the present invention, optimum frequency reduction characteristics can be obtained by using a low-pass filter for input circuit fil.

〔実施例〕〔Example〕

第1図に本発明の第一の実施例?示す。第1図において
、+111i圧電形筒内圧センサ、511はオペアンプ
、5?In抵抗、531はローパスフィルタ1、)41
はバンドパスフィルタである。圧電形筒内圧センサIl
lの出力はオペアンプfilの反転入力に接続され、抵
抗面はオペアンプSIlの出力と反転入力との間VC接
続される。また、オペアンプ5Ilの出力にはローパス
フィルタFIJが接続され、ローパスフィルタ53の出
力はバンドパスフィルタIに入力される。
Fig. 1 shows the first embodiment of the present invention? show. In Fig. 1, +111i piezoelectric cylinder pressure sensor, 511 operational amplifier, 5? In resistance, 531 is low pass filter 1, ) 41
is a bandpass filter. Piezoelectric cylinder pressure sensor Il
The output of I is connected to the inverting input of the operational amplifier fil, and the resistive surface is VC connected between the output and the inverting input of the operational amplifier SI1. Furthermore, a low-pass filter FIJ is connected to the output of the operational amplifier 5Il, and the output of the low-pass filter 53 is input to the band-pass filter I.

次に、第1図に示した実施例の動作r説明する。いま、
圧電形筒内圧セyすIllの出力から、第8図に示す筒
内圧力に対応して電荷Qが出力されると、オペアンプt
5aのフィードバック制御によって、抵抗団には−aQ
/atなる電流がオペアンプ5Ilから出力される。そ
して、抵抗面の電圧降下によって、オペアンプ5υの出
力電圧v1は抵抗+52の抵抗値ヲR1とすると、V、
 = −R,・き t となり、すなわち、圧[形部内圧センサの出力電流dQ
/dtが電圧値に変換されたものである。
Next, the operation of the embodiment shown in FIG. 1 will be explained. now,
When a charge Q is output from the output of the piezoelectric cylinder pressure sensor Ill in accordance with the cylinder pressure shown in FIG. 8, the operational amplifier t
Due to the feedback control of 5a, the resistance group has -aQ
A current /at is output from the operational amplifier 5Il. Then, due to the voltage drop on the resistor surface, the output voltage v1 of the operational amplifier 5υ becomes V, assuming that the resistance value of the resistor +52 is R1.
= -R,・kit, that is, pressure [output current dQ of the internal pressure sensor
/dt is converted into a voltage value.

このオペアンプ・5aの出力電圧v、Fi筒内圧力を時
間微分したものに相当する。
The output voltage v of this operational amplifier 5a corresponds to the time differentiation of the Fi cylinder pressure.

ここで、ノック等の圧力振動成分については圧力振動に
よる圧電形筒内圧センサIllの出力信号ケ周波数Iに
ついて Q = Q o” (kft ) とすると、オペアンプ611の出力IJLEE Vlは
V、= −2πf−RtQa −=+n (2πft)
となる。上式から、オペアンプbυの出力電圧V□の周
波数特性は第2図のtalに示すように周波数に定例し
たものである。それ改、第8図に示すような筒内圧力信
号のうち筒内の圧力変化を示す低い周波数成分の信号は
減衰し、第3図のtalに示すように圧力振動による侶
号収分のレベルが大きくなる。従って、ノック等の圧力
振動を計測する場合、信号レベルが大きいためノイズに
対して有利になる。
Here, regarding the pressure vibration component such as knocking, the output signal of the piezoelectric cylinder pressure sensor Ill due to pressure vibration is Q = Qo'' (kft) for the frequency I, then the output IJLEE Vl of the operational amplifier 611 is V, = -2πf −RtQa −=+n (2πft)
becomes. From the above equation, the frequency characteristic of the output voltage V□ of the operational amplifier bυ is fixed to the frequency as shown by tal in FIG. Furthermore, among the cylinder pressure signals shown in Fig. 8, the low frequency component signal indicating the pressure change in the cylinder is attenuated, and the level of the pressure fluctuation due to pressure vibration is reduced as shown in tal in Fig. 3. becomes larger. Therefore, when measuring pressure vibrations such as knocks, the signal level is large, which is advantageous against noise.

しかし、周波数に対して単調増加の特性のままではノッ
クの周波数に対しそれより旨い周波数の信号レベルが大
きくなるため、正確なノック信号の計測が不可能になる
。そこで、オペアンプ5υの後段に第6図のfb+に示
すようにノック周波数fKより充分低い遮断周波数fc
の特性をもツローハスフィルタを設置することによって
、オペアンプ5rJの出力周波数特性は第2図(0)の
ように設定され、面内圧力変化による低い周波数成分を
減衰させるとともに圧力振動の高い周波数成分は均一な
周波数特性で出力することができる。石して、第2図1
dlに示すような中心周波数fKの特性をもつバンドパ
スフィルタ・図に上記ローパスフィルタ層の出力信号を
通すことによって、第3図の(bIに示すように圧力振
動成分からノック信号を有効に抽出することができる。
However, if the characteristic of monotonically increasing frequency remains unchanged, the signal level of a frequency that is better than the knock frequency will become larger, making accurate measurement of the knock signal impossible. Therefore, the cutoff frequency fc, which is sufficiently lower than the knock frequency fK, is installed after the operational amplifier 5υ as shown in fb+ in Fig. 6.
By installing the filter, the output frequency characteristics of the operational amplifier 5rJ are set as shown in Figure 2 (0), which attenuates the low frequency components caused by in-plane pressure changes and attenuates the high frequency components of pressure vibrations. can output with uniform frequency characteristics. Stone, Figure 2 1
By passing the output signal of the low-pass filter layer through a band-pass filter having the characteristic of center frequency fK as shown in dl, the knock signal can be effectively extracted from the pressure vibration component as shown in bI in Fig. 3. can do.

久に、不発明による第2の実施f!AJ k 51図に
示す。第1の実施例の第1図と異なるところは、ローパ
スフィルタ5(至)が省略され、その代りに抵抗・54
と並列にコンデンサ5υが追加されている。
A long time ago, the second implementation by uninvention f! Shown in Figure AJ k 51. The difference from the first embodiment in FIG.
A capacitor 5υ is added in parallel with .

このコンデンサ6〜の追刀口によってオペアンプ6υの
出力電圧V、[コンデンサラθの静電容量をC。
The output voltage of the operational amplifier 6υ is V, and the capacitance of the capacitor θ is C.

とすると となり、その周波数特性は第6図の+O1に示すように
遮断周波数fcが なる高域通過形の特性となる。すなわち、コンデンサ5
〜を追加することによって、第1図におけるローパスフ
ィルタ1層の機itオペアンプ6υの回路にもたせるこ
とができる。
Then, the frequency characteristic becomes a high-pass type characteristic with a cutoff frequency fc as shown at +O1 in FIG. That is, capacitor 5
By adding .about. to the circuit of the operational amplifier 6υ with one layer of low-pass filter in FIG.

このように、圧電形筒内圧センサの出力信号ケミl光入
力として処理し、ローパスフィルタに通過させることに
よって、筒内圧力変化による低周波成分を減衰させると
ともに圧力像動等による高周波数分を均一化し、さらに
バンドパスフィルタによってノック特有の周波数成分の
みを抽出することで効率的にノック信号の計測を行うこ
とができる。
In this way, by processing the output signal of the piezoelectric cylinder pressure sensor as a chemical optical input and passing it through a low-pass filter, the low frequency components caused by changes in the cylinder pressure are attenuated, and the high frequency components caused by pressure image movement etc. are uniformed. By using a band-pass filter to extract only the frequency component unique to knocking, it is possible to efficiently measure the knocking signal.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明によれば、圧電形筒内圧セ
ンサの出力信号からノック信号等の圧力振動成分を計測
する場合VC,ノイズに強い効率的な信号処理が可能に
なるという効果がある。
As explained above, according to the present invention, when measuring a pressure vibration component such as a knock signal from an output signal of a piezoelectric cylinder pressure sensor, it is possible to perform efficient signal processing that is resistant to VC and noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による第1の夷#例の構成図、第2図は
第1図の実施例の谷部の周波数特性図、第3図は第1図
の実施例の動作波形図、第4図は本発明による第2の実
施例の構成図、第5図は圧電形筒内圧センサの断面構造
図、第6図は圧電形筒内圧センサの取付図、第7図は従
来装置の回路図、第8図は筒内圧力波形図である。
FIG. 1 is a configuration diagram of the first example according to the present invention, FIG. 2 is a frequency characteristic diagram of the valley part of the embodiment of FIG. 1, and FIG. 3 is an operation waveform diagram of the embodiment of FIG. 1. Fig. 4 is a configuration diagram of a second embodiment of the present invention, Fig. 5 is a sectional structural diagram of a piezoelectric cylinder pressure sensor, Fig. 6 is an installation diagram of the piezoelectric cylinder pressure sensor, and Fig. 7 is a diagram of a conventional device. The circuit diagram and FIG. 8 are cylinder pressure waveform diagrams.

Claims (1)

【特許請求の範囲】[Claims] (1)内燃機関の燃焼気筒内の圧力を検出する圧電形圧
力検出器、この圧電形圧力検出器の出力電流信号を受信
する電流入力回路、この電流入力回路に内蔵あるいはそ
の後段に設置されるローパスフィルタ、このローパスフ
ィルタの出力信号から上記内燃機関のノック信号を測定
するノック測定器とを備えた内燃機関の筒内圧力検出装
置。
(1) A piezoelectric pressure detector that detects the pressure in the combustion cylinder of an internal combustion engine, a current input circuit that receives the output current signal of this piezoelectric pressure detector, and a current input circuit that is built in or installed in the subsequent stage of this current input circuit. A cylinder pressure detection device for an internal combustion engine, comprising a low-pass filter and a knock measuring device for measuring a knock signal of the internal combustion engine from an output signal of the low-pass filter.
JP4108088A 1988-02-24 1988-02-24 Detecting device for inner-cylinder pressure of internal combustion engine Pending JPH01214722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4108088A JPH01214722A (en) 1988-02-24 1988-02-24 Detecting device for inner-cylinder pressure of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4108088A JPH01214722A (en) 1988-02-24 1988-02-24 Detecting device for inner-cylinder pressure of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH01214722A true JPH01214722A (en) 1989-08-29

Family

ID=12598483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4108088A Pending JPH01214722A (en) 1988-02-24 1988-02-24 Detecting device for inner-cylinder pressure of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH01214722A (en)

Similar Documents

Publication Publication Date Title
US4149231A (en) Capacitance-to-voltage transformation circuit
US4584885A (en) Capacitive detector for transducers
US5062294A (en) Apparatus for detecting pressure in cylinder of internal combustion engine
US2614416A (en) Force measuring system employing piezocapacitors
US5497101A (en) Device for effecting dynamic measurement of the distance between the facing faces of the rotor and the stator of a rotary machine
EP1162442B1 (en) Signal processing device for piezoelectric sensor with differentiating and integrating circuits
US4091683A (en) Single channel electrical comparative measuring system
US4459856A (en) CMOS Bridge for capacitive pressure transducers
JPH01214722A (en) Detecting device for inner-cylinder pressure of internal combustion engine
JPH0442771Y2 (en)
CN110749340A (en) Resistance-capacitance sensor signal measuring circuit
RU207514U1 (en) Piezoelectric accelerometer
JPH01214728A (en) Detecting device of inner-cylinder pressure of internal combustion engine
US3663955A (en) Apparatus for detecting error direction to establish the balanced state of a bridge circuit
JP3356029B2 (en) Electric quantity detection circuit
JP2001272414A (en) Sensor for detecting knocking of internal engine
JPS60203864A (en) Detector
JPH01213536A (en) Inside-cylinder pressure detector for internal combustion engine
JPH01240755A (en) Knocking detecting device for internal combustion engine
JPH06258127A (en) Capacitance type level meter
SU684733A1 (en) Converter of capacitor capacitance value into time-related voltage interval
JPH01237426A (en) Fault detecting apparatus of inner pressure in tube
SU1569742A1 (en) Transducer of signals of strain-gauge signals
KR100624640B1 (en) Method for measuring piezoelectricity
JPS631530B2 (en)