JPH0121471B2 - - Google Patents

Info

Publication number
JPH0121471B2
JPH0121471B2 JP57099036A JP9903682A JPH0121471B2 JP H0121471 B2 JPH0121471 B2 JP H0121471B2 JP 57099036 A JP57099036 A JP 57099036A JP 9903682 A JP9903682 A JP 9903682A JP H0121471 B2 JPH0121471 B2 JP H0121471B2
Authority
JP
Japan
Prior art keywords
directions
transmitter
ultrasonic pulse
pulse signal
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57099036A
Other languages
Japanese (ja)
Other versions
JPS58214867A (en
Inventor
Shozo Uchihashi
Itsuo Fukuoka
Kazuo Yamauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP9903682A priority Critical patent/JPS58214867A/en
Publication of JPS58214867A publication Critical patent/JPS58214867A/en
Publication of JPH0121471B2 publication Critical patent/JPH0121471B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/96Sonar systems specially adapted for specific applications for locating fish

Description

【発明の詳細な説明】 この発明は広範囲方向の水中探知を行なう水中
探知装置において、指向性受波ビームの副極によ
つて生じる偽像を無くすことを目的とする。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to eliminate false images caused by sub-poles of a directional receiving beam in an underwater detection device that performs underwater detection in a wide range of directions.

広範囲方向を探知する水中探知装置は、一般に
は、広範囲方向に同時に超音波パルスを送波して
各々の方向から帰来する反射波をそれぞれの方向
に指向性を有する指向性受波ビームで受波するご
とくなされている。従つて、指向性受波ビームは
特定の一方向にのみ指向性を有することが望まし
い。指向性受波ビームは、周知のように、複数個
の振動子の受波信号を位相合成して生成される。
この場合、合成指向特性は所望方向に指向性を有
する主極と不要方向にも受波感度を有する副極と
が形成される。この副極は不要方向から到来する
反射波を受波するため、表示画面上に種々の弊害
を生じさせる。例えば、第1図に示すように、0゜
方向の反射信号を受波するとき、副極の−32゜方
向に物体Aがあると、この物体Aの反射波が表示
画面上で0゜方向に存在するかのように表示され
る。このような偽像効果は、船底から下方向に向
けて超音波パルスを送波する場合に特に著しく現
われる。例えば、第2図に示すように、海面Sか
ら海底Gの広範囲方向に超音波パルスを送波して
反射波が最も早く帰来する。この反射波は直下方
向に指向性を有する指向性受波ビームBr0によつ
て受波されると同時に、他方向の指向性受波ビー
ムBr1乃至Brnの副極によつても受波される。さ
らに、一般に、船底からの反射波はその強度が比
較的強いため、副極による受波信号であるにもか
かわらず、表示器上には極めて明瞭に表示され
る。従つて、表示器上には、送波位置S0から等距
離線上にあたかも海底が存在するかのような偽像
海底線G′が表示され、実際の海底G付近に存在
する底付魚Fからの反射波が偽像G′内に埋れて
しまつて識別することができない。
Underwater detection equipment that detects a wide range of directions generally transmits ultrasonic pulses simultaneously in a wide range of directions and receives the reflected waves returning from each direction as a directional receiving beam with directivity in each direction. It's being done very well. Therefore, it is desirable that the directional receiving beam has directivity only in one specific direction. As is well known, the directional receiving beam is generated by phase-combining the receiving signals of a plurality of transducers.
In this case, the composite directional characteristic has a main pole having directivity in the desired direction and a sub-pole having reception sensitivity also in unnecessary directions. Since this sub-pole receives reflected waves arriving from unnecessary directions, it causes various problems on the display screen. For example, as shown in Figure 1, when receiving a reflected signal in the 0° direction, if there is an object A in the -32° direction of the sub-pole, the reflected wave from this object A will appear in the 0° direction on the display screen. will be displayed as if it were present. Such a false image effect is particularly noticeable when ultrasonic pulses are transmitted downward from the bottom of the ship. For example, as shown in FIG. 2, ultrasonic pulses are transmitted in a wide range of directions from the sea surface S to the seabed G, and the reflected waves return the fastest. This reflected wave is received by the directional receiving beam Br 0 having directivity directly below, and at the same time, it is also received by the subpoles of the directional receiving beams Br 1 to Brn in the other direction. Ru. Furthermore, since the reflected wave from the bottom of the ship generally has a relatively strong intensity, it is displayed very clearly on the display even though the signal is received by the sub-pole. Therefore, a false bottom line G' is displayed on the display as if the seabed exists on a line equidistant from the wave transmission position S0 , and the bottom-based fish F existing near the actual seabed G is displayed. The reflected waves from the image are buried within the false image G' and cannot be identified.

この発明は、上記のような欠点を解消するもの
で、偽像G′を消去して真の探知像のみを表示す
る装置を実現する。
The present invention eliminates the above-mentioned drawbacks and realizes a device that erases the false image G' and displays only the true detected image.

以下この発明について説明する。 This invention will be explained below.

第3図において、T1乃至T15は振動子を示し、
第4図に示すように円周面上に10゜間隔で配列さ
れている。従つて、第4図から明きらかなよう
に、振動子T1乃至T15は140゜の範囲方向に超音波
パルスを送受波する。
In FIG. 3, T 1 to T 15 indicate oscillators,
As shown in Figure 4, they are arranged at 10° intervals on the circumferential surface. Therefore, as is clear from FIG. 4, the transducers T 1 to T 15 transmit and receive ultrasonic pulses in a direction within a range of 140°.

振動子T1乃至T15はそれぞれの切換回路TR1
至TR15によつて送受波信号の切換が行なわれ、
各々の受波信号はそれぞれの前置増巾器A1乃至
A15に導かれる。又、振動子T1乃至T15の送信は
送信器S1,S2,S3のいずれかによつて行なわれ
る。すなわち、振動子T1乃至T15のうち振動子
T1,T2,T3,T13,T14,T15は送信器S1によつ
て励振され、振動子T4,T5,T6,T10,T11
T12は送信器S2によつて励振され、振動子T7
T8,T9は送信器S3によつて励振される。従つて、
送信器S1から励振パルスが送出されたとき、振動
子T1,T2,T3は第4図に角度θ1で示す30゜の範囲
角方向に超音波パルスを送波すると同時に、振動
子T13,T14,T15がθ5で示す30゜の範囲角方向に超
音波パルスを送波する。又、送信器S2が動作した
ときは振動子T4,T5,T6によつてθ2方向の30゜の
範囲角方向に超音波パルスを送波すると同時に、
振動子T10,T11,T12によつてθ4方向の30゜の範囲
角方向に超音波パルスを送波する。さらに、送信
器S8が動作したときは振動子T7,T8,T9によつ
てθ3方向の30゜の範囲角方向に超音波パルスを送
波する。従つて、振動子T1乃至T15は送信器S1
S2,S3によつて第4図に示すようにθ1乃至θ5のそ
れぞれ30゜方向に超音波パルスを送波する。
Transducers T 1 to T 15 are switched between transmitting and receiving signals by respective switching circuits TR 1 to TR 15 ,
Each received signal is transmitted through a respective preamplifier A 1 to
Guided by A 15 . Further, the transmission of the transducers T 1 to T 15 is performed by one of the transmitters S 1 , S 2 , and S 3 . That is, among the transducers T 1 to T 15 , the transducers
T 1 , T 2 , T 3 , T 13 , T 14 , T 15 are excited by the transmitter S 1 and the oscillators T 4 , T 5 , T 6 , T 10 , T 11 ,
T 12 is excited by the transmitter S 2 and the oscillators T 7 ,
T 8 , T 9 are excited by transmitter S 3 . Therefore,
When the excitation pulse is sent from the transmitter S 1 , the transducers T 1 , T 2 , and T 3 transmit the ultrasonic pulse in the angular direction within a range of 30° as shown by angle θ 1 in FIG. The children T 13 , T 14 , and T 15 transmit ultrasonic pulses in a range angle direction of 30° indicated by θ 5 . Also, when the transmitter S 2 operates, the transducers T 4 , T 5 , and T 6 transmit ultrasonic pulses in a range angle direction of 30° in the θ 2 direction, and at the same time,
Transducers T 10 , T 11 , and T 12 transmit ultrasonic pulses in a range angle direction of 30° in the θ 4 direction. Further, when the transmitter S 8 is operated, the ultrasonic pulses are transmitted in a range angle direction of 30 degrees in the θ 3 direction by the transducers T 7 , T 8 , and T 9 . Therefore, the transducers T 1 to T 15 are the transmitters S 1 ,
As shown in FIG. 4, ultrasonic pulses are transmitted by S 2 and S 3 in directions of 30 degrees from θ 1 to θ 5 , respectively.

振動子T1乃至T15は超音波パルスを送波した後
それぞれの方向から帰来する反射波を受波する。
それぞれの受波信号は各々の切換回路TR1乃至
TR15を経てそれぞれの前置増巾器A1乃至A15
ら位相合成器M1乃至M13へ導かれる。
The transducers T 1 to T 15 receive reflected waves returning from respective directions after transmitting ultrasonic pulses.
Each received signal is transmitted through each switching circuit TR 1 to
Via TR 15 , each preamplifier A 1 to A 15 is led to a phase synthesizer M 1 to M 13 .

位相合成回路M1乃至M13は指向性受波ビーム
を形成するもので、各々の位相合成回路M1乃至
M13は振動子T1乃至T15のうち3個ずつの受波信
号を位相合成して主ビームの指向角が10゜の指向
性受波ビームを形成する。すなわち、位相合成回
路M1は振動子T1,T2,T3の受波信号を位相合成
して振動子T3方向に10゜の指向角の受波ビームを
形成する。同様にして、位相合成回路M3乃至
M18はそれぞれ3個の振動子の受波信号を合成し
て、振動子T4乃至T14方向に指向角がそれぞれ
10゜ずつの受波ビームを形成する。
The phase synthesis circuits M 1 to M 13 form directional reception beams, and the phase synthesis circuits M 1 to M 13 form directional reception beams.
M13 synthesizes the phases of the received signals of three of the transducers T1 to T15 to form a directional received beam with a main beam having a directivity angle of 10 degrees. That is, the phase synthesis circuit M 1 phase-synthesizes the reception signals of the transducers T 1 , T 2 , and T 3 to form a reception beam with a directivity angle of 10° in the direction of the transducer T 3 . Similarly, phase synthesis circuits M 3 to
M 18 synthesizes the received signals of three transducers, and has a directivity angle in the directions of transducers T 4 to T 14 , respectively.
Forms receiving beams of 10° each.

位相合成回路M1乃至M13の各々で形成された
指向性受波ビームのうち、位相合成回路M6
M7,M8を除いて他の指向性受波ビームは遅延回
路D1乃至D10を経て切換回路Swへ導かれる。切
換回路Swは位相合成回路M1乃至M10の各受波ビ
ームを時分割的に切換えて送出するもので、切換
波発生回路Scに基づいて切換動作を行なう。切
換回路Swから時分割的に送出される指向性受波
ビームはブラウン管CRTの輝度端子に導かれて
電子ビームを輝度変調する。ブラウン管CRTは
掃引回路SGによつて電子ビームがスパイラル状
に掃引される。同時に、掃引回路SGは切換波発
生回路Scを駆動して切換回路Swからブラウン管
CRTのスパイラル掃引位置に対応した方位の受
波ビームを送出させる。切換波発生回路Scはブ
ラウン管CRTのスパイラル掃引に連動して切換
回路Swにくり返し切換動作を行なわせる。従つ
て、ブラウン管CRTの表示画面上には探知物か
ら掃引する反射波がそれぞれの対応方位距離位置
上に表示される。なお、掃引回路SGはスパイラ
ル掃引の終了後、基準パルス源KPからパルス波
が送出されたとき上記と同様にしてスパイラル掃
引を行なう。第5図は掃引回路SGの具体例を示
すもので、基準パルス源KPからのパルス波が掃
引電圧発生器SVに導かれる。掃引電圧SVは基準
パルスに基づいて鋸歯状波を生成して振巾変調器
AM1,AM2へ送出する。振巾変調器AM1は正弦
波発生器SINから送出される正波の振巾を鋸歯状
に変調してブラウン管CRTのX軸編向回路Lxへ
送出する。又、振巾変調回路AM2は余弦波発生
器COSから送出される余弦波の振巾を鋸歯状に
変調してブラウン管CRTのY軸偏向コイルLyに
導かれる。従つて、ブラウン管CRTの電子ビー
ムがスパイラル状に偏向される。なお、余弦波発
生器COSは正弦波発生器SINに基づいて余弦波を
生成する。さらに、正弦波発生器SINの正弦波電
圧は輝度制御電圧生成器BCへも送出される。輝
度制御電圧BCは正弦波電圧に基づいて、スパイ
ラル状に掃引される電子ビームが振動子T1乃至
T15の配列方向に対応する方向を掃引している間
のみ輝度制御が行なわれるような制御電圧を送正
する。
Of the directional reception beams formed by each of the phase synthesis circuits M 1 to M 13 , the phase synthesis circuits M 6 ,
The directional reception beams other than M 7 and M 8 are guided to the switching circuit Sw via delay circuits D 1 to D 10 . The switching circuit Sw switches and transmits the received beams of the phase synthesis circuits M 1 to M 10 in a time-divisional manner, and performs the switching operation based on the switching wave generation circuit Sc. The directional reception beam sent out in a time-division manner from the switching circuit Sw is guided to the brightness terminal of the cathode ray tube CRT, and brightness-modulates the electron beam. In the cathode ray tube CRT, the electron beam is swept in a spiral manner by a sweep circuit SG. At the same time, the sweep circuit SG drives the switching wave generation circuit Sc to transfer the signal from the switching circuit Sw to the cathode ray tube.
A receiving beam is transmitted in the direction corresponding to the spiral sweep position of the CRT. The switching wave generating circuit Sc causes the switching circuit Sw to repeatedly perform switching operations in conjunction with the spiral sweep of the cathode ray tube CRT. Therefore, reflected waves sweeping from the object to be detected are displayed on the display screen of the cathode ray tube CRT at respective corresponding azimuth and distance positions. Note that after the spiral sweep is completed, the sweep circuit SG performs the spiral sweep in the same manner as described above when a pulse wave is sent out from the reference pulse source KP. FIG. 5 shows a specific example of the sweep circuit SG, in which a pulse wave from a reference pulse source KP is guided to a sweep voltage generator SV. The sweep voltage SV generates a sawtooth wave based on the reference pulse and amplitude modulator
Send to AM 1 and AM 2 . The amplitude modulator AM1 modulates the amplitude of the positive wave sent out from the sine wave generator SIN into a sawtooth shape and sends it out to the X-axis orientation circuit Lx of the cathode ray tube CRT. Further, the amplitude modulation circuit AM 2 modulates the amplitude of the cosine wave sent out from the cosine wave generator COS in a sawtooth shape and guides it to the Y-axis deflection coil Ly of the cathode ray tube CRT. Therefore, the electron beam of the cathode ray tube CRT is deflected in a spiral manner. Note that the cosine wave generator COS generates a cosine wave based on the sine wave generator SIN. Furthermore, the sine wave voltage of the sine wave generator SIN is also sent to the brightness control voltage generator BC. The brightness control voltage BC is based on a sine wave voltage, and the spirally swept electron beam is
A control voltage is sent such that brightness control is performed only while sweeping in the direction corresponding to the arrangement direction of T15 .

上記のようにして振動子T1乃至T15に帰来する
反射波がブラウン管CRTの対応方位方向に表示
される一方、振動子T1乃至T15は送信器S1,S2
S3によつて励振されるが、送信器S1,S2,S3はタ
イミング回路TCによつて送信動作が制御される。
すなわち、タイミング回路TCは送信器S1,S2
S3の送信動作の順序を規制するもので、基準パル
ス生成回路KPからパルス波が送出されたとき、
まず、送信器S1を動作させt1時間後に送信器S2
動作させ、さらに、t2時間後に送信器S3を動作さ
せる。従つて、送信器S1が動作すると、振動子
T1,T2,T3並びにT13,T14,T15が励振される
結果、第4図に示すθ1,θ5の30゜方向に超音波パ
ルスを送出する。そして、θ1,θ5方向に超音波パ
ルスが送波された後、t1時間後に送信器S2が基づ
いて振動子T4,T5,T6並びにT10,T11,T12
励振されて第4図にθ2,θ4で示す30゜方向に超音
波パルスを送出する。さらに、t2時間後に送信器
S3が動作すると振動子T7,T8,T9が励振されて
第4図にθ3で示す30゜方向に超音波パルスが送波
される。
As described above, the reflected waves returning to the transducers T 1 to T 15 are displayed in the corresponding azimuth directions of the cathode ray tube CRT, while the transducers T 1 to T 15 are connected to the transmitters S 1 , S 2 ,
The transmitters S 1 , S 2 , S 3 are excited by S 3 , and their transmitting operations are controlled by a timing circuit TC.
That is, the timing circuit TC connects the transmitters S 1 , S 2 ,
This regulates the order of S3 transmission operations, and when a pulse wave is sent out from the reference pulse generation circuit KP,
First, the transmitter S 1 is operated, and after t 1 hours, the transmitter S 2 is operated, and further, after t 2 hours, the transmitter S 3 is operated. Therefore, when transmitter S 1 operates, the oscillator
As a result of excitation of T 1 , T 2 , T 3 as well as T 13 , T 14 , and T 15 , ultrasonic pulses are sent out in the 30° direction of θ 1 and θ 5 shown in FIG. After the ultrasonic pulse is transmitted in the θ 1 and θ 5 directions, the transmitter S 2 transmits the transducers T 4 , T 5 , T 6 and T 10 , T 11 , T 12 after t 1 hour. It is excited and sends out ultrasonic pulses in the 30° direction shown by θ 2 and θ 4 in FIG. Furthermore, after t 2 hours the transmitter
When S 3 operates, transducers T 7 , T 8 , and T 9 are excited, and ultrasonic pulses are transmitted in the 30° direction indicated by θ 3 in FIG. 4.

上記において、送信器S1が動作してから送信器
S2が動作するまでの遅延時間t1、さらに送信器S2
が動作してから送信器S3が動作するまでの遅延時
間t2は次のようにして決定される。第6図におい
て、海面Sから海底Gまでの深度をDとして第4
図の振動子T1乃至T15を用いてθ1乃至θ5方向に超
音波パルスを送波するものとする。
In the above, after transmitter S 1 is activated, the transmitter
Delay time t 1 until S 2 operates, plus transmitter S 2
The delay time t 2 from when the transmitter S 3 operates to when the transmitter S 3 operates is determined as follows. In Figure 6, the depth from the sea surface S to the seabed G is D, and the fourth
It is assumed that ultrasonic pulses are transmitted in the θ 1 to θ 5 directions using the transducers T 1 to T 15 in the figure.

今、θ1方向とθ2方向のそれぞれに探知パルスを
送波して、海底P1からの反射波と海底P3からの
反射波が同時に帰来するように送信器S2の遅延時
間t1を決定する。さらに、θ2方向とθ3方向のそれ
ぞれに探知パルスを送波して、海底P2からの反
射波と海底P4からの反射波が同時に帰来するよ
うに送信器S3の遅延時間t2を決定する。従つて、
θ3方向の海底3 3′からの反射波は少なくともθ2
方向の海底2 3からの反射波の帰来後に帰来す
る。同様に、θ2方向の海底2 3からの反射波は少
なくともθ1方向の海底 ′1 2からの反射波の帰来
後に帰来する。従つて、θ2方向の海底反射波がθ1
方向の指向性受波ビームの副ビームによつて受波
されたとき、θ2方向の海底反射波はθ1方向の海底
反射波の受波後に出現するから、表示画面上に第
2図のような偽像G′が生じることはない。同様
に、θ3方向の海底反射波がθ2方向の指向性受波ビ
ームの副ビームによつて受波されたとき、θ3方向
の海底反射波はθ2方向の海底反射波の受波後に出
現するから、表示画面上ではθ3方向の海底反射波
による偽像はθ2方向の海底反射波の表示位置より
遠距離位置に出現する。
Now, a detection pulse is transmitted in each of the θ 1 and θ 2 directions, and the delay time t 1 of the transmitter S 2 is set so that the reflected wave from the sea floor P 1 and the reflected wave from the sea bed P 3 return at the same time. Determine. Furthermore, the delay time t 2 of the transmitter S 3 is set by transmitting a detection pulse in each of the θ 2 and θ 3 directions so that the reflected waves from the ocean floor P 2 and the reflected waves from the ocean floor P 4 return at the same time. Determine. Therefore,
The reflected wave from the seabed 3 3 ′ in the θ 3 direction is at least θ 2
It returns after the reflected waves from the seabed in the direction 2 3 return. Similarly, the reflected wave from the ocean floor 23 in the θ 2 direction returns at least after the reflected wave from the ocean floor ′ 1 2 in the θ 1 direction returns. Therefore, the seafloor reflected wave in the θ 2 direction is θ 1
When received by the sub-beam of the directional receiving beam in the θ 2 direction, the seabed reflected wave in the θ 2 direction appears after the seabed reflected wave in the θ 1 direction is received, so the display screen shows the seafloor reflection wave in Fig. 2. Such a false image G′ will never occur. Similarly, when the seabed reflected wave in the θ 3 direction is received by the sub beam of the directional reception beam in the θ 2 direction, the seabed reflected wave in the θ 3 direction is the received seafloor reflected wave in the θ 2 direction. Since it appears later, on the display screen, the false image due to the seabed reflected wave in the θ 3 direction appears at a position farther away than the display position of the seafloor reflected wave in the θ 2 direction.

上記において送信器S2,S3の遅延時間は次のよ
うにして決定される。
In the above, the delay times of transmitters S 2 and S 3 are determined as follows.

まず、送信器S2の遅延時間t1は送信源S0から海
底点P1,P3までの音波の往復時間差であるから、
音波の伝播速度を1500m/secとすると 同様にして、送信器S3の遅延時間t2は送信源S0
から海底点P2,P4までの音波の往復時間差であ
るから、 振動子T1乃至T15から送波される探知パルスは
それぞれの分割方向θ1乃至θ5に応じて送波タイミ
ングが上記のように決定される。従つて、等距離
線上の探知物体からの反射波もそれぞれの分割方
向θ1乃至θ5に応じて上記時間t1あるいはt2だけ遅
れて受波される。すなわち、θ2方向の受波信号は
θ1方向の受波信号に比してt1時間だけ遅れて受波
され、さらに、θ3方向の受波信号はθ1方向の受波
信号に比して(t1+t2)時間だけ遅れて受波され
る。
First, since the delay time t 1 of the transmitter S 2 is the round trip time difference of the sound waves from the transmission source S 0 to the seabed points P 1 and P 3 ,
If the propagation speed of sound waves is 1500m/sec Similarly, the delay time t 2 of transmitter S 3 is equal to the delay time t 2 of transmitter S 3
Since it is the round trip time difference of the sound waves from to the seafloor points P 2 and P 4 , The transmission timing of the detection pulses transmitted from the transducers T 1 to T 15 is determined as described above according to the respective division directions θ 1 to θ 5 . Therefore, the reflected waves from the detection object on the equidistant line are also received with a delay of the above-mentioned time t 1 or t 2 depending on the respective division directions θ 1 to θ 5 . In other words, the received signal in the θ 2 direction is received with a delay of t 1 time compared to the received signal in the θ 1 direction, and the received signal in the θ 3 direction is received with a delay of t 1 time compared to the received signal in the θ 1 direction. The signal is then received with a delay of (t 1 + t 2 ) time.

遅延時間D1乃至D10はこの遅れ時間を補正する
もので、分割区間θ1乃至θ5の指向性受波ビームに
応じてそれぞれの遅延時間が決定される。例え
ば、θ1とθ5方向の受波ビームは位相合成回路M1
M2並びにM12,M13によつて形成されるから、遅
延回路D1,D2,D9,D10はそれぞれの位相合成出
力を(t1+t2)時間だけ遅延させる。さらに、θ2
とθ4方向の受波ビームは位相合成回路M3,M4
M5,M9,M10,M11によつて形成されるから、
遅延回路D3,D4,D5並びにD6,D7,D8はそれぞ
れの位相合成出力をt2時間だけ遅延させる。
The delay times D 1 to D 10 are for correcting these delay times, and are determined according to the directional reception beams of the divided sections θ 1 to θ 5 . For example, the received beams in the θ 1 and θ 5 directions are transmitted through the phase synthesis circuit M 1 ,
Since the delay circuits D 1 , D 2 , D 9 , and D 10 are formed by M 2 as well as M 12 and M 13 , the delay circuits D 1 , D 2 , D 9 , and D 10 delay the respective phase synthesis outputs by the time (t 1 +t 2 ). Furthermore, θ 2
The received beam in the direction of
Since it is formed by M 5 , M 9 , M 10 , and M 11 ,
Delay circuits D 3 , D 4 , D 5 and D 6 , D 7 , D 8 delay their respective phase synthesis outputs by time t 2 .

このように、遅延回路D1乃至D10は、探知
範囲角方向θ1乃至θ5へ送出される超音波パル
スの発射時刻の差異によつて生ずる探知範囲角方
向θ1乃至θ5の各方向から帰来する反射波と他
の探知範囲角方向から帰来する反射波との距離差
を補償する補償回路を構成する。
In this way, the delay circuits D1 to D10 control the reflected waves returning from each direction of the detection range angular directions θ1 to θ5 caused by the difference in the emission time of the ultrasonic pulses sent in the detection range angular directions θ1 to θ5. A compensation circuit is configured to compensate for the distance difference with reflected waves returning from other detection range angular directions.

従つて、切換回路SWにはθ1乃至θ5の各方向の
等距離線上の探知物体からの反射波が同時に導か
れ、切換回路SWはこれをブラウン管CRTのスパ
イラル掃引に同期して高速度で切換えることによ
り、等距離線上の探知物をそれぞれの対応方位位
置に表示することができる。
Therefore, the reflected waves from the detection object on equidistant lines in each direction from θ 1 to θ 5 are simultaneously guided to the switching circuit SW, and the switching circuit SW transmits them at high speed in synchronization with the spiral sweep of the cathode ray tube CRT. By switching, objects to be detected on equidistant lines can be displayed at respective corresponding azimuth positions.

上記において、遅延回路D1乃至D10はθ1乃至θ5
の各方向の受波信号の時間遅れを補正するもので
あるが、記憶回路を用いて受波信号を表示する場
合は必ならずしも遅延回路を用いる必要はない。
例えばブラウン管CRTの各画素に対応した記憶
番地を有する記憶回路に各方向の受波信号を記憶
させて、その記憶信号をくり返し読出して表示す
るとブラウン管の残光特性を利用することなく安
定した画像表示を行なうことができる。従つて、
この場合は、受波信号を記憶回路に書込む書込み
番地を変化させることにより、ブラウン管CRT
の任意の表示位置に表示することができる。従つ
て、遅延回路D1乃至D10の各遅延時間に相当する
距離だけ異なる記憶番地に書込めばよい。
In the above, the delay circuits D 1 to D 10 are θ 1 to θ 5
Although the time delay of the received signal in each direction is corrected, it is not necessary to use a delay circuit when the received signal is displayed using a memory circuit.
For example, by storing received signals in each direction in a memory circuit that has a memory address corresponding to each pixel of a cathode ray tube (CRT), and repeatedly reading out and displaying the stored signals, stable image display can be achieved without using the afterglow characteristics of the cathode ray tube. can be done. Therefore,
In this case, by changing the write address at which the received signal is written to the memory circuit, it is possible to
can be displayed at any display position. Therefore, it is only necessary to write to different memory addresses by a distance corresponding to each delay time of delay circuits D1 to D10 .

このように、記憶回路を用いて、探知範囲角方
向θ1乃至θ5へ送出される超音波パルスの発射
時刻の差異によつて生ずる探知範囲角方向θ1乃
至θ5の各方向から帰来する反射波と他の探知範
囲角方向から帰来する反射波との距離差を補償す
る補償回路を構成することもできる。
In this way, using the memory circuit, the reflected waves returning from each direction of the detection range angular directions θ1 to θ5 and other It is also possible to configure a compensation circuit that compensates for the distance difference between the reflected wave and the reflected wave returning from the detection range angular direction.

以上説明のように、この発明は広範囲水中探知
装置の探知範囲を複数区間に分割して各区間毎に
探知パルスの送信時間を異ならせる。そして、こ
の送信時間の相異は、海底反射波が他の区間方向
の指向性受波ビームの副ビームによつて受波され
たとき、その指向性受波ビームの主ビームが受波
する海底反射波より遅れて副ビームの海底反射波
が受波されるように設定されている。従つて、従
来装置のように海底反射波によつて偽像が生じる
ことなく明確な水中探知を行なうことができる。
As described above, the present invention divides the detection range of a wide range underwater detection device into a plurality of sections, and makes the transmission time of the detection pulse different for each section. The difference in transmission time is that when the seabed reflected wave is received by the sub-beam of the directional reception beam in another section direction, the main beam of the directional reception beam receives the seabed. It is set so that the sub-beam's seabed reflected waves are received later than the reflected waves. Therefore, clear underwater detection can be performed without generating false images due to waves reflected from the ocean floor, unlike conventional devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は指向性受波ビームの主ビームと副ビー
ムを説明するための図、第2図は広範囲方向を指
向性受波ビームによつて探知する状態を説明する
ための図、第3図はこの発明の実施例を示すブロ
ツク図、第4図はその振動子の配置を説明するた
めの図、第5図はその掃引回路の具体例、第6図
は第4図の振動子により各方向の探知動作を説明
するための図を示す。
Figure 1 is a diagram for explaining the main beam and sub-beam of the directional reception beam, Figure 2 is a diagram for explaining the state in which a wide range of directions is detected by the directional reception beam, and Figure 3 4 is a diagram for explaining the arrangement of the vibrator, FIG. 5 is a specific example of the sweep circuit, and FIG. 6 is a block diagram showing an embodiment of the invention. A diagram for explaining a direction detection operation is shown.

Claims (1)

【特許請求の範囲】 1 広範囲方向に超音波パルス信号を送波し、こ
の超音波パルス信号に起因する到来信号をこの広
範囲方向において相異なる複数の方向に指向する
如く形成される指向性受波ビームで受波し該受波
信号を表示画面上の対応する距離及び方位に表示
する広範囲方向水中探知装置において、 上記広範囲方向のうちあらかじめ設定した第1
の範囲角方向に第1の超音波パルス信号を送波す
る第1の送波器と、 上記広範囲方向のうち上記第1の範囲角と異な
る第2の範囲角方向に第2の超音波パルス信号を
送波する第2の送波器と、 上記第1及び第2の超音波パルス信号に起因す
る反射信号を上記第1及び第2の範囲角方向内に
おいて相異なる複数の方向に指向する如く形成さ
れる指向性受波ビームで受波する受波器と、 上記第1の送波器から送波される第1の超音波
パルス信号を上記第2の送波器から送波される第
2の超音波パルス信号に比して特定時間だけ遅ら
せる送波制御回路と、 上記指向性受波ビームによつて受波される各方
向の反射波のうち上記第1の送波器からの第1の
超音波パルス信号の発射時間の遅れによつて生じ
る上記第1の範囲角方向から帰来する反射波と上
記第2の範囲角方向から帰来する反射波との距離
差を補償する補償回路と、 該補償回路による補償後の受波信号並びに上記
第1の範囲角方向からの受波信号とをそれぞれが
対応する距離、方位に表示する表示器とを具備し
てなる広範囲方向水中探知装置。
[Claims] 1. Directional reception in which an ultrasonic pulse signal is transmitted in a wide range of directions, and an incoming signal caused by this ultrasonic pulse signal is directed in a plurality of different directions in this wide range of directions. In a wide range underwater detection device that receives waves with a beam and displays the received signal at a corresponding distance and direction on a display screen, the first one of the wide range directions set in advance is used.
a first transmitter that transmits a first ultrasonic pulse signal in a range angle direction, and a second ultrasonic pulse signal in a second range angle direction that is different from the first range angle among the wide range directions; a second transmitter that transmits a signal; and a second transmitter that directs reflected signals caused by the first and second ultrasonic pulse signals in a plurality of different directions within the first and second range angle directions. a receiver that receives a directional reception beam formed as described above, and a first ultrasonic pulse signal transmitted from the first transmitter that is transmitted from the second transmitter. a wave transmission control circuit that delays the second ultrasonic pulse signal by a specific time; and a wave transmission control circuit that delays the second ultrasonic pulse signal by a specific time; A compensation circuit that compensates for the distance difference between the reflected wave returning from the first range angle direction and the reflected wave returning from the second range angle direction, which is caused by a delay in the emission time of the first ultrasonic pulse signal. and a display device that displays the received signal compensated by the compensation circuit and the received signal from the first range angle direction at corresponding distances and azimuths. .
JP9903682A 1982-06-08 1982-06-08 Wide range directional underwater detecting apparatus Granted JPS58214867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9903682A JPS58214867A (en) 1982-06-08 1982-06-08 Wide range directional underwater detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9903682A JPS58214867A (en) 1982-06-08 1982-06-08 Wide range directional underwater detecting apparatus

Publications (2)

Publication Number Publication Date
JPS58214867A JPS58214867A (en) 1983-12-14
JPH0121471B2 true JPH0121471B2 (en) 1989-04-21

Family

ID=14236182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9903682A Granted JPS58214867A (en) 1982-06-08 1982-06-08 Wide range directional underwater detecting apparatus

Country Status (1)

Country Link
JP (1) JPS58214867A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249182A (en) * 1988-08-10 1990-02-19 Furuno Electric Co Ltd Fish detector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129068A (en) * 1977-04-15 1978-11-10 Furuno Electric Co Detected signal transmission system for sonar
JPS576377A (en) * 1980-06-13 1982-01-13 Hitachi Ltd Multiplication array type ultrasonic wave searching device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129068A (en) * 1977-04-15 1978-11-10 Furuno Electric Co Detected signal transmission system for sonar
JPS576377A (en) * 1980-06-13 1982-01-13 Hitachi Ltd Multiplication array type ultrasonic wave searching device

Also Published As

Publication number Publication date
JPS58214867A (en) 1983-12-14

Similar Documents

Publication Publication Date Title
JP5550092B2 (en) Underwater image omnidirectional display processing apparatus and method
JPH11344566A (en) Fish finder
NO152577B (en) PROCEDURE AND APPARATUS FOR THE FORMATION AND INSTALLATION OF SMALL RAYS
NO140361B (en) SONAR DEVICE FOR IDENTIFICATION OF DIVIDED OBJECTS
US3961307A (en) Exploration of the boundaries of an underground coal seam
JP4787400B2 (en) Detecting device
JPH10186030A (en) Direction detectable fish finder
US5061935A (en) Three-dimensional display radar
JPS59107285A (en) Display device of submarine topography
JPH0121471B2 (en)
US3793619A (en) Navigation aid and display screen
WO2000040994A1 (en) Radar device
JP3046876B2 (en) Active sonar pseudo signal generator
JPS6326876B2 (en)
JPH0479583B2 (en)
JPH09243735A (en) Underwater sensor
JPH0479548B2 (en)
US4672589A (en) Underwater detection system
JP2846550B2 (en) Image position correction half-circle sonar device
JP3285216B2 (en) Fish finder
JP2572647B2 (en) Fish finder
JPH05273336A (en) Underwater object display device
JPH0316072Y2 (en)
JPH02114189A (en) Ultrasonic picture image device
JPH0311671B2 (en)