JPH01214446A - Ink jet head - Google Patents

Ink jet head

Info

Publication number
JPH01214446A
JPH01214446A JP63039853A JP3985388A JPH01214446A JP H01214446 A JPH01214446 A JP H01214446A JP 63039853 A JP63039853 A JP 63039853A JP 3985388 A JP3985388 A JP 3985388A JP H01214446 A JPH01214446 A JP H01214446A
Authority
JP
Japan
Prior art keywords
ink
chamber
pressure chamber
pressure
expanse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63039853A
Other languages
Japanese (ja)
Inventor
Toyoji Shioda
潮田 豊司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63039853A priority Critical patent/JPH01214446A/en
Publication of JPH01214446A publication Critical patent/JPH01214446A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm

Landscapes

  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PURPOSE:To reduce the flow passage resistance loss of the ink to an ink chamber, by providing a supply passage successively expanding toward the ink chamber between a pressure chamber and the ink chamber and specifying the angle thetaof expanse thereof. CONSTITUTION:Between a pressure chamber 22 generating pressure in ink and an ink chamber 24 for temporarily storing the ink in a head from the outside, a supply passage 23 having a conical expanse toward the pressure chamber 22 at an angle of expanse of 5-30 deg. is provided. The loss factor xsiin the flow passage resistance when the ink flows from the ink chamber and the supply passage to the pressure chamber at the times of the introduction and injection of the ink is min. at an angle theta of expanse of 5-6 deg. and the ink can be smoothly injected in the pressure chamber at an angle theta of expanse up to 30 deg. without leaving air bubbles and an ink filling time is shortened and a repeated frequency characteristic is also enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はドロップオンデマンド型インクジェットプリン
タに用いられるインクジェットヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an inkjet head used in a drop-on-demand type inkjet printer.

〔従来の技術〕[Conventional technology]

第3図(a)はドロップオンデマンド型インクジェット
プリンタに用いられるヘラ1くの基本的構成を示す平面
図で、第3図(b)は第3図(a)の断面図である。こ
のドロップオンデマンド型インクジェットプリンタに用
いられるヘッドは第3図(a)および(b)に示すよう
に、インク粒子27を噴射するノズル21とインク室2
4との間に圧力室22と供給路23とを有する噴射チャ
ンネル系統が形成された基板20に、ガラスセラミック
ないしステンレスなどの材質からなる可撓性の薄平板状
の弾性板25を拡散溶接等の手段により接合し、ジルコ
ンチタン酸塩、チタン酸バリウムなどの材質からなる電
気機械変換器、すなわち圧電素子26を弾性板25上の
圧力室22に対応した位置に接着した構成からなってい
る。
FIG. 3(a) is a plan view showing the basic configuration of a spatula 1 used in a drop-on-demand type inkjet printer, and FIG. 3(b) is a sectional view of FIG. 3(a). As shown in FIGS. 3(a) and 3(b), the head used in this drop-on-demand type inkjet printer includes a nozzle 21 for ejecting ink particles 27 and an ink chamber 2.
A flexible thin flat elastic plate 25 made of a material such as glass ceramic or stainless steel is bonded to the substrate 20 on which an injection channel system having a pressure chamber 22 and a supply path 23 is formed between the substrate 4 and the substrate 20 by diffusion welding or the like. An electromechanical transducer, that is, a piezoelectric element 26 made of a material such as zircon titanate or barium titanate is bonded to an elastic plate 25 at a position corresponding to the pressure chamber 22.

さて、以上の構成では記録信号に従って圧電素子26に
電気信号を印加すると、弾性板25の圧力室22に対応
した位置にある部分が瞬時に曲げ変形され、圧力室22
の容積が瞬間的に減少し、圧力室22内のインクに圧力
波が発生する。その圧力波の伝搬により、ノズル21内
のインクがインク粒子27となって飛翔するという原理
に基づいている。
Now, in the above configuration, when an electric signal is applied to the piezoelectric element 26 in accordance with a recording signal, the portion of the elastic plate 25 at a position corresponding to the pressure chamber 22 is instantly bent and deformed, and the pressure chamber 22
The volume of the ink decreases instantaneously, and a pressure wave is generated in the ink within the pressure chamber 22. This method is based on the principle that the ink inside the nozzle 21 becomes ink particles 27 and flies due to the propagation of the pressure waves.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上述べた従来のインクジェットヘッドをプリンタに搭
載し、インク粒子を噴射して印字する場合、インク粒子
を噴射するために発生ずる圧力室22内のインクの圧力
波がノズル21へ伝搬されると同時に、この圧力波はノ
ズル21とほぼ同し断面積を持つ供給路23にも伝搬さ
れる。そこでこの圧力波は供給路23で反射され、ノズ
ル21に至る。圧力室22からノズル21へ向かった第
1の圧力波と供給路23で反射してノズル21に向かっ
た第2の圧力波との時間差と、第1の圧力波の周期時間
とのバランスを最適な条件になるように設計すればより
効率的なヘッドが得られる(特願昭60−218377
>。また、インクが噴射された分だけ失われたインクを
供給路23を介して圧力室22へ充填される。噴射行程
において、もし圧力室22内に気泡が存在するとインク
の圧縮変形を気泡が吸収するために、ノズル21よりイ
ンク粒子27を噴射するに必要なインク圧力上昇が妨け
られ、インク粒子噴射か不可能となる。
When the conventional inkjet head described above is installed in a printer and prints by jetting ink particles, the pressure waves of the ink in the pressure chamber 22 that are generated to jet the ink particles are propagated to the nozzle 21 and at the same time. , this pressure wave is also propagated to a supply path 23 having approximately the same cross-sectional area as the nozzle 21. This pressure wave is then reflected by the supply path 23 and reaches the nozzle 21. Optimize the balance between the time difference between the first pressure wave heading from the pressure chamber 22 to the nozzle 21 and the second pressure wave reflecting off the supply path 23 and heading towards the nozzle 21, and the cycle time of the first pressure wave. A more efficient head can be obtained if the head is designed to satisfy the following conditions (Patent Application No. 60-218377)
>. Further, the ink lost by the amount of ink ejected is filled into the pressure chamber 22 via the supply path 23. During the ejection stroke, if air bubbles exist in the pressure chamber 22, the air bubbles will absorb the compressive deformation of the ink, which will prevent the ink pressure from increasing which is necessary to eject the ink droplets 27 from the nozzle 21, and the ink droplets will not be ejected. It becomes impossible.

従って、圧力室22内のインクに気泡があってはならな
い。そのため、製作したヘッドに初めてインクを注入す
るときに、インク室24からノズル21に至るまでに気
泡を残すことなくインクを注入する必要かある。ここて
問題になるのは、供給路23から圧力室22への流路断
面積の変化である。第4図は供給路23部分の一例を示
す拡大断面図で、図に示すように供給F1%23と圧力
室22との断面積の変化が急拡大であれば、インクの流
れが壁からはがれて図中の31の流速分布に示すように
下流の流れに衝突し渦流30を作るため流体(インク)
内の内部摩擦が大きくなって、大きな流路抵抗を生ずる
。その問題を解決する方法として、供給路23を廃止し
圧力室22とインク室24を直接つなく手段をとった。
Therefore, the ink within the pressure chamber 22 must be free of air bubbles. Therefore, when ink is injected into the manufactured head for the first time, it is necessary to inject the ink without leaving any air bubbles from the ink chamber 24 to the nozzle 21. The problem here is the change in the cross-sectional area of the flow path from the supply path 23 to the pressure chamber 22. FIG. 4 is an enlarged sectional view showing an example of the supply path 23. If the change in the cross-sectional area between the supply F1% 23 and the pressure chamber 22 suddenly increases as shown in the figure, the flow of ink may peel off from the wall. As shown in the flow velocity distribution 31 in the figure, the fluid (ink) collides with the downstream flow to create a vortex 30.
The internal friction within the tube increases, creating a large flow path resistance. In order to solve this problem, the supply path 23 was abolished and the pressure chamber 22 and the ink chamber 24 were directly connected.

その結果、気泡を残すことなくインクをヘッド内に注入
することができた。しかし、前述のように供給路23を
圧力室22の断面積より小さくすることによってインク
噴射効率をあげるという効果がなくなるので、圧力室内
のインクに与える衝撃を大きくしなければならず、その
ぶんインクがインク室24へ流出する量もふえるのでイ
ンク噴射行程における充填時間が長くなり、インク繰り
返し周波数特性が悪化するという別な問題が生じた。ま
た第2の問題として、ヘッドが複数個の噴射チャンネル
系統をもつマルチノズルヘッドの場合に、その圧力波が
インク室24を介して、他の噴射チャンネル系統へ伝搬
される。そのため、他の噴射チャンネル系統のノズル2
1のメニスカス(液面の凹凸)33が激しく振動する。
As a result, ink could be injected into the head without leaving any bubbles. However, as mentioned above, by making the supply path 23 smaller than the cross-sectional area of the pressure chamber 22, the effect of increasing ink ejection efficiency is lost, so the impact given to the ink in the pressure chamber must be increased, and the ink Since the amount of ink flowing out into the ink chamber 24 also increases, the filling time in the ink ejection process becomes longer, causing another problem in that the ink repetition frequency characteristics deteriorate. A second problem is that when the head is a multi-nozzle head having a plurality of ejection channel systems, the pressure waves are propagated to other ejection channel systems via the ink chamber 24. Therefore, nozzle 2 of other injection channel system
The meniscus (unevenness on the liquid surface) 33 of No. 1 vibrates violently.

その結果、各噴射チャンネル系統間の相互干渉が起こり
、不安定なインク粒子噴射が生じる。すなわち、ある1
本の噴射チャンネル系統のみを駆動させた時のインク粒
子噴射速度に対して、2本以上の噴射チャンネル系統を
駆動させた時にインク粒子噴射速度が低下、または増大
したりする現象が生ずる。そのため、印字品質に悪影響
を与えるという問題が生じた。また、発生する圧力波が
強い場合、その圧力変動は前記メニスカス33の表面張
力に打ち勝ってノズル21からインクが垂れるという現
象がおこる。インクの垂れたノズル21は、インク粒子
を正常に噴射することが不可能となり、インクジェット
ヘッドにとっては致命的なものとなるという問題が生じ
ていた。
As a result, mutual interference between each ejection channel system occurs, resulting in unstable ink drop ejection. In other words, a certain 1
A phenomenon occurs in which the ink droplet ejection speed decreases or increases when two or more ejection channel systems are driven compared to the ink droplet ejection speed when only the book's ejection channel system is driven. Therefore, a problem arose in that printing quality was adversely affected. Furthermore, if the generated pressure waves are strong, the pressure fluctuations overcome the surface tension of the meniscus 33, causing ink to drip from the nozzle 21. A nozzle 21 with dripping ink cannot properly eject ink particles, which is a fatal problem for the inkjet head.

本発明の目的は上記問題点を解決し、印字品質が良く、
高速記録が可能な信頼性の高いインクジェット印字ヘッ
ドを提供することにある。
The purpose of the present invention is to solve the above problems, provide good printing quality,
An object of the present invention is to provide a highly reliable inkjet print head capable of high-speed recording.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のインクジェットヘッドは、インク粒子を噴射す
るノズルと、インクに圧力を発生する圧力室と、インク
を外部から一時的にヘッド内に蓄えるインク室と、イン
ク室から圧力室へインクを供給する供給路とで構成され
た噴射チャンネル系統からなるインクジェットヘッドに
おいて、前記圧力室とインク室との間に圧力室に向かっ
て、広6一 がり角が5゜〜30°の錘形広がりをもった供給路を設
けることにより構成される。
The inkjet head of the present invention includes a nozzle that ejects ink particles, a pressure chamber that generates pressure on the ink, an ink chamber that temporarily stores ink in the head from the outside, and supplies ink from the ink chamber to the pressure chamber. In an inkjet head consisting of an ejection channel system consisting of a supply path, a cone-shaped spread with a radius 6 and an angle of 5° to 30° toward the pressure chamber is provided between the pressure chamber and the ink chamber. It is constructed by providing a supply path.

〔作用〕[Effect]

インクの注入、インク噴射時のインク充填において、イ
ンク室、供給路から圧力室へインクが流れるときに断面
積の変化部分で渦流が発生しないので、気泡か残りに<
<、流路抵抗も小さいので、インク充填時間が短くなり
繰り返し周波数特性も向上する。
During ink filling during ink injection and ink jetting, when ink flows from the ink chamber and supply path to the pressure chamber, no vortex is generated at the part where the cross-sectional area changes, so there are no air bubbles or residual <<
Since the flow path resistance is also small, the ink filling time is shortened and the repetition frequency characteristics are also improved.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例のインク供給路まわりの部分
拡大図である。図に示すようにインクの供給路23と圧
力室22との間を広がり角θで鐘状に拡げた流路が設け
である。その広がり角θが適切な値であれば、図中の流
速分布32に示すように壁からはがれない、すなわち渦
の無い流れとなる。その広がり角θについて説明する。
FIG. 1 is a partially enlarged view of the ink supply path and its surroundings in one embodiment of the present invention. As shown in the figure, a bell-shaped channel is provided between the ink supply channel 23 and the pressure chamber 22 at an angle θ. If the spread angle θ is an appropriate value, the flow will not separate from the wall, as shown in the flow velocity distribution 32 in the figure, that is, the flow will be free of eddies. The spread angle θ will be explained.

第2図は流体力学で知られている円形断面の広がり管の
広がり角θとその流路抵抗との関係図で、θは広がり管
の広がり角、ξは流体抵抗による損失係数である。図か
られかるように広がり角θが5゜〜6°において損失係
数ξが最も小さく、θ−60゜〜70°において損失係
数ξが最大となり、θ=180° (急拡大の場合)に
おいてξ岬1に落ちつく。また長方形断面においても、
θ−10゜〜12゜のときにξが最小となる実験結果が
ある。これらの流体力学的な事実に基づき、インクジェ
ットヘットを再設計、試作を行い実験を行った。その結
果、広がり角θが30°まで支障なく圧力室内部へ気泡
を残さすにインクを注入てき、かつ、インク噴射繰り返
し周波数特性も開き角θが180°の場合(第4図)と
同様な特性結果か得られた。また、マルチノズルヘッド
の場合ても、各ノズル間の相互干渉も少なかった。
FIG. 2 is a diagram of the relationship between the divergence angle θ of a flared tube with a circular cross section and its flow path resistance, which is known from fluid mechanics, where θ is the flare angle of the flared tube and ξ is the loss coefficient due to fluid resistance. As can be seen from the figure, the loss coefficient ξ is the smallest when the spread angle θ is 5° to 6°, the loss coefficient ξ is maximum at θ -60° to 70°, and when θ = 180° (in the case of rapid expansion), the loss coefficient ξ is the smallest. I settled down at Cape 1. Also, in a rectangular cross section,
There is an experimental result in which ξ is minimum when θ-10° to 12°. Based on these hydrodynamic facts, we redesigned the inkjet head, produced a prototype, and conducted experiments. As a result, ink can be injected without any problem and leaving no bubbles inside the pressure chamber up to the spread angle θ of 30°, and the ink ejection repetition frequency characteristics are similar to those when the spread angle θ is 180° (Figure 4). Characteristic results were obtained. Furthermore, even in the case of a multi-nozzle head, there was little mutual interference between the nozzles.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、圧力室とインク室との間にインク
室に向かって順次広かる供給路を設け、広がり角θを5
〜30°にすることによって、インク室内へのインクの
流路抵抗損失を少なくすることができて、従来のヘッド
に比べて、印字品質が良く、かつ信頼性の高いインクジ
ェットヘッドか得られ、従来のヘッドの問題点を解決す
ることができる効果がある。
As explained above, a supply path that gradually widens toward the ink chamber is provided between the pressure chamber and the ink chamber, and the spread angle θ is set to 5.
By setting the angle to ~30°, it is possible to reduce the resistance loss of the ink flow path into the ink chamber, resulting in an inkjet head with better printing quality and higher reliability than conventional heads. This has the effect of solving the problems of the head.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のインク供給路まわりの部分
拡大図、第2図は広がり管の開き角θとその流体抵抗損
失係数ξとの関係図、第3図はインクジェットヘッドの
原理図、第4図は従来のインクジェットヘッドの供給路
の部分拡大図である。 21・・・ノズル、22・・・圧力室、23・・・供給
路、24・・・インク室、θ・・・広がり角。
Fig. 1 is a partially enlarged view of the ink supply path and its surroundings in an embodiment of the present invention, Fig. 2 is a diagram of the relationship between the opening angle θ of the expanding tube and its fluid resistance loss coefficient ξ, and Fig. 3 is the principle of the inkjet head. 4 are partially enlarged views of the supply path of a conventional inkjet head. 21... Nozzle, 22... Pressure chamber, 23... Supply path, 24... Ink chamber, θ... Spread angle.

Claims (1)

【特許請求の範囲】[Claims] インク粒子を噴射するノズルと、インクに圧力を発生す
る圧力室と、インクを外部から一時的にヘッド内に蓄え
るインク室と、インク室から圧力室へインクを供給する
供給路とで構成された噴射チャンネル系統からなるイン
クジェットヘッドにおいて、前記圧力室とインク室との
間に圧力室に向かって、広がり角が5゜〜30゜の錘形
広がりをもった供給路を設けることを特徴とするインク
ジェットヘッド。
It consists of a nozzle that ejects ink particles, a pressure chamber that generates pressure on the ink, an ink chamber that temporarily stores ink from the outside in the head, and a supply path that supplies ink from the ink chamber to the pressure chamber. An inkjet head consisting of an ejection channel system, characterized in that a supply path having a cone-shaped spread with a spread angle of 5° to 30° is provided between the pressure chamber and the ink chamber toward the pressure chamber. head.
JP63039853A 1988-02-22 1988-02-22 Ink jet head Pending JPH01214446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63039853A JPH01214446A (en) 1988-02-22 1988-02-22 Ink jet head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039853A JPH01214446A (en) 1988-02-22 1988-02-22 Ink jet head

Publications (1)

Publication Number Publication Date
JPH01214446A true JPH01214446A (en) 1989-08-28

Family

ID=12564526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039853A Pending JPH01214446A (en) 1988-02-22 1988-02-22 Ink jet head

Country Status (1)

Country Link
JP (1) JPH01214446A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106523U (en) * 1985-12-23 1987-07-07
JPS62106524U (en) * 1986-05-01 1987-07-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106523U (en) * 1985-12-23 1987-07-07
JPS62106524U (en) * 1986-05-01 1987-07-07

Similar Documents

Publication Publication Date Title
US5164740A (en) High frequency printing mechanism
US5170177A (en) Method of operating an ink jet to achieve high print quality and high print rate
JP4971379B2 (en) High performance impulse ink ejection method and impulse ink ejection apparatus
JPS61206662A (en) Method of driving ink jet head
JPS62152860A (en) Liquid jet recording head
US8317284B2 (en) Method and apparatus to provide variable drop size ejection by dampening pressure inside a pumping chamber
JP5125004B2 (en) Method for discharging minute ink droplets
JPS61169254A (en) Drop on-demand type ink jet head
JP2002144570A (en) Method of ejecting liquid drop, method of forming image, liquid jet apparatus and head
Morita et al. Inkjet printheads
JP2001038903A (en) Liquid emitting method, liquid emitting head and recording apparatus using liquid emitting head
JPH01214446A (en) Ink jet head
JPH02184449A (en) Driver for ink jet head
JP2936358B2 (en) Driving method of inkjet print head
JP3296391B2 (en) Ink jet recording head
JP2002046271A (en) Liquid ejection head and liquid ejector
JP2620230B2 (en) Inkjet recording head
JPS59179357A (en) Ink jet recording apparatus
JPS62135378A (en) Ink jet printing head
JP3529226B2 (en) Inkjet printer
JPH11123821A (en) Ink jet recording head
JPS59106973A (en) Ink jet recording apparatus
JP3141809B2 (en) Droplet ejector
JPS61233545A (en) Drop-on-demand type ink jet head
JP4662664B2 (en) Droplet discharge head and inkjet recording apparatus