JPH01213998A - Neutral particle incidence device utilizing negative ion source - Google Patents

Neutral particle incidence device utilizing negative ion source

Info

Publication number
JPH01213998A
JPH01213998A JP63037627A JP3762788A JPH01213998A JP H01213998 A JPH01213998 A JP H01213998A JP 63037627 A JP63037627 A JP 63037627A JP 3762788 A JP3762788 A JP 3762788A JP H01213998 A JPH01213998 A JP H01213998A
Authority
JP
Japan
Prior art keywords
voltage
negative
negative ion
deuterium
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63037627A
Other languages
Japanese (ja)
Inventor
Mamoru Matsuoka
守 松岡
Masanori Araki
荒木 政則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP63037627A priority Critical patent/JPH01213998A/en
Publication of JPH01213998A publication Critical patent/JPH01213998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)

Abstract

PURPOSE:To overcome the technical difficulties in the manufacture of an inverter by combining intermittent outputs from a charged particle collector for positive and negative particles to form an AC voltage, wherein the outputs are produced by intermittently operating a negative ion source. CONSTITUTION:An output from an inverter 17, which is a high frequency square wave AC voltage, is brought into a square wave AC voltage with an amplitude of about 1MV by a step-up transformer 18, and this voltage is applied to the accelerating electrodes 6, 6' without any change. A negative ion source, having a kind or rectifying characteristic, output a negative heavy hydrogen ion beam D<-> only when a negative voltage is applied to the accelerating electrode 6 or a positive voltage is applied to the acceleration electrode 6'. The negative heavy hydrogen ion beam D<->, positive heavy hydrogen ion beam D<+>, and neutral heavy hydrogen beam D<0> are therefore all caused to be intermittent beams of about 1KHz. Output voltages produced by these beams are combined via reverse current preventing diodes 19, 20 after their phase are shifted by 180 deg. from each other, so that the resultant voltage becomes a high frequency square wave AC voltage of about 1KHz having an amplitude of about 1MV. Thus, th inverter 17, 22 can be manufactured easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は負イオン源を用いた中性粒子入射装置に関する
。詳しくは、本発明は、将来の核融合炉のプラズマ加熱
や電流駆動に使用が検討されている負イオン源を用いた
中性粒子入射装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a neutral particle injection device using a negative ion source. Specifically, the present invention relates to a neutral particle injection device using a negative ion source, which is being considered for use in plasma heating and current drive of future nuclear fusion reactors.

第1図は従来の案の負イオン源を用いた中性粒子入射装
置の例である。以下に図中の番号を用いて説明する。
FIG. 1 is an example of a neutral particle injection device using a conventional negative ion source. The explanation will be given below using the numbers in the figure.

重水素ガス導入装置1によりアーク容器2の中に重水素
ガスを導入し、フィラメント電源3でフィラメント4を
加熱し、アーク電源5でフィラメント4とアーク容器2
の間に電圧を印加するとアーク容器2の中に重水素アー
ク放電が生ずる。
Deuterium gas is introduced into the arc vessel 2 by the deuterium gas introduction device 1, the filament 4 is heated by the filament power supply 3, and the filament 4 and the arc vessel 2 are heated by the arc power supply 5.
When a voltage is applied during this period, deuterium arc discharge occurs in the arc vessel 2.

重水素アーク放電は重水素の正負イオン及び電子から成
り、図ではそれぞれ記号 d” 、d−1eで示しであ
る。 穴の開いた加速電極6.6′の間に加速電源7に
より約IMVの直流電圧を、加速電極6が負、加速電極
6゛が正なる極性で印加すると重水素負イオンd−及び
電子eのみが加速電極6の穴を通じて引き出される。こ
のうち、電子eは電子吸収装置8に吸収され、重水素負
イオンd−だけが加速されて重水素負イオンビームD−
となる。重水素負イオンビームD=は電流密度にして約
59mA/ csA、全体で約10OAを必要とする。
Deuterium arc discharge consists of positive and negative deuterium ions and electrons, which are indicated by symbols d" and d-1e, respectively in the figure. Approximately IMV is generated between accelerating electrodes 6 and 6' with holes by accelerating power source 7. When a DC voltage is applied with a negative polarity to the accelerating electrode 6 and a positive polarity to the accelerating electrode 6', only deuterium negative ions d- and electrons e are extracted through the hole of the accelerating electrode 6. Of these, the electron e is absorbed by the electron absorption device. 8, and only the deuterium negative ions d- are accelerated to form a deuterium negative ion beam D-
becomes. The deuterium negative ion beam D= requires a current density of about 59 mA/csA, and a total of about 10 OA.

なお、約IMVの直流電圧が印加される加速電極6.6
′の間では時折放電破壊が生じるので、その際、加速電
極6.6゛が加速電源7からの継続電流に依って損傷す
るのを防ぐために、約100ps以内に電流が遮断でき
る高速スイッチ9が設けである。
In addition, the accelerating electrode 6.6 to which a DC voltage of about IMV is applied
Since discharge breakdown occasionally occurs between '', in order to prevent the accelerating electrode 6.6' from being damaged by the continuous current from the accelerating power source 7, a high-speed switch 9 that can cut off the current within about 100 ps is installed. It is a provision.

以上の説明のうち、2.4.6.6′、8を総称して負
イオン源と呼ぶ。また、重水素負イオンd−は加速電極
6.6゛にて静電的に加速されることから、加速電極6
.6゛は静電型加速電極と呼ぶ。
Of the above explanations, 2.4.6.6' and 8 are collectively referred to as a negative ion source. In addition, since the deuterium negative ion d- is electrostatically accelerated at the accelerating electrode 6.6,
.. 6 is called an electrostatic accelerating electrode.

重水素負イオンビームD−は中性化セル10で中性化さ
れる。中性化セル10には重水素ガス導入装置1から重
水素ガスが導入される。中性化セル10は重水素負イオ
ンビームD−と重水素ガスとの荷電交換の素過程を利用
したもので、中性化セル10に入射された重水素負イオ
ンビームD−が全て中性化されるわけではなく、そのう
ちの約54%だけが中性化されて重水素中性ビーム1)
0となる一方、約23%は重水素負イオンビームD−と
して残り、残りの約23%は重水素正イオンビームD0
となる。これら重水素正イオンビームD0及び重水素負
イオンビームD−は中性粒子入射装置としては無用のも
のであるので、中性化セル10の出口側に磁場あるいは
電場をかけることにより、重水素中性ビームDoから分
離して、それぞれ重水素正イオンビーム回収電極1)及
び重水素負イオンビーム回収電極12にて回収される。
The deuterium negative ion beam D- is neutralized in a neutralization cell 10. Deuterium gas is introduced into the neutralization cell 10 from the deuterium gas introduction device 1 . The neutralization cell 10 utilizes the elementary process of charge exchange between the deuterium negative ion beam D- and deuterium gas, so that all of the deuterium negative ion beam D- incident on the neutralization cell 10 is neutral. Only about 54% of it is neutralized and becomes a deuterium neutral beam1)
0, while about 23% remains as the deuterium negative ion beam D-, and the remaining 23% remains as the deuterium positive ion beam D0.
becomes. These deuterium positive ion beam D0 and deuterium negative ion beam D- are useless as a neutral particle injection device, so by applying a magnetic field or electric field to the exit side of the neutralization cell 10, deuterium ion beam D0 and deuterium negative ion beam D- are used. It is separated from the positive deuterium ion beam Do and collected by the deuterium positive ion beam collection electrode 1) and the deuterium negative ion beam collection electrode 12, respectively.

回収された重水素正イオンビームD゛及び重水素負イオ
ンビームD−の電荷により、回収コンデンサー13及び
14は図中に示した極性にそれぞれIMV近くまで充電
される。この直流電圧はインバータ15にて交流に変換
され、次いで降圧トランス16で降圧し、商用の交流回
線にそのエネルギーを回生させる。
Due to the charges of the recovered deuterium positive ion beam D' and deuterium negative ion beam D-, the recovery capacitors 13 and 14 are charged to near IMV with the polarities shown in the figure. This DC voltage is converted into AC by an inverter 15, then stepped down by a step-down transformer 16, and the energy is regenerated into a commercial AC line.

(発明が解決しようとする問題点) 以上のような従来の案の負イオン源を用いた中性粒子入
射装置には次のような欠点があった。
(Problems to be Solved by the Invention) The conventional neutral particle injection device using a negative ion source as described above has the following drawbacks.

二つは約IMVの高圧の直流電圧を遮断する高速スイッ
チ9の製作が技術的に困難であることであること。
Second, it is technically difficult to manufacture the high-speed switch 9 that cuts off the high-voltage DC voltage of approximately IMV.

もう一つはプラスマイナスIMVの高圧の直流電圧を交
流電圧に変換するインバータ15の製作が技術的に困難
であることである。
Another problem is that it is technically difficult to manufacture the inverter 15 that converts a high DC voltage of plus or minus IMV into an AC voltage.

本発明の目的は以上のような従来基の欠点を克服した負
イオン源を用いた中性粒子入射装置を提供することであ
る。
An object of the present invention is to provide a neutral particle injection device using a negative ion source that overcomes the drawbacks of the conventional systems as described above.

(問題点を解決するための手段) 本願発明者等は、鋭意研究の結果、本発明の(1)静電
型加速電極に交流電圧を印加することを特徴とする負イ
オン源を用いた中性粒子入射装置、及び(2)正負2種
類の荷電粒子回収装置を有する負イオン源を用いた中性
粒子入射装置に於いて、負イオン源を間欠運転すること
に依り得られる正負2種類の荷電粒子回収装置の間欠出
力を合成することに依り交流電圧にすることを特徴とす
る負イオン源を用いた中性粒子入射装置によってこの目
的を達成するに到った。
(Means for Solving the Problems) As a result of intensive research, the inventors of the present invention have found that (1) a negative ion source characterized by applying an alternating current voltage to an electrostatic accelerating electrode; and (2) a neutral particle injection device using a negative ion source having two types of positive and negative charged particle collection devices, two types of positive and negative particles can be obtained by intermittent operation of the negative ion source. This objective has been achieved by a neutral particle injection device using a negative ion source, which is characterized in that the intermittent outputs of the charged particle collection device are combined to produce an alternating current voltage.

(実施例) 次に、実施例によって図面について本発明を具体的に説
明する。但し、本発明は実施例によって限定されるもの
ではない。
(Example) Next, the present invention will be specifically explained with reference to the drawings by way of an example. However, the present invention is not limited to the examples.

第2図は本発明の実施例を示したものである。FIG. 2 shows an embodiment of the invention.

第2図中、1〜6.6゛、8.10.1).12及び1
6は第1図と同じである。第2図中17は商用周波(5
0Hz又は60Hz )の電圧をI KHz程度の高周
波の短形波電圧に変換するインバータである。
In Figure 2, 1 to 6.6゛, 8.10.1). 12 and 1
6 is the same as in FIG. 17 in Figure 2 is the commercial frequency (5
This is an inverter that converts a voltage of 0 Hz or 60 Hz into a rectangular wave voltage with a high frequency of about I KHz.

インバータ17の出力である高周波の矩形波交流電圧は
昇圧トランス18でプラス マイナス約IMVの矩形波
交流電圧昇圧され、その電圧はそのまま加速電極6.6
゛に印加される。加速電極6.6゛には交流電圧が印加
されることとなるが、負イオン源は一種の整流特性を有
しており、加速電極6にマイナス、加速電極6”にプラ
スが印加されたときだけ重水素負イオンビームD−が出
力される。従って重水素負イオンビームD−、重水素正
イオンビームD゛及び重水素中性ビームDOは全てI 
KHz程度の間歇的なビームとなる。また、重水素正イ
オン回収電極1)及び重水素負イオン回収電極12の出
力電圧も約IMVでI KHz程度の間欠出力となる。
The high frequency rectangular wave AC voltage which is the output of the inverter 17 is boosted to a rectangular wave AC voltage of plus or minus approximately IMV by the step-up transformer 18, and the voltage remains unchanged at the accelerating electrode 6.6.
is applied to ゛. An alternating current voltage will be applied to the accelerating electrode 6.6'', but the negative ion source has a kind of rectifying property, so when a negative voltage is applied to the accelerating electrode 6 and a positive voltage is applied to the accelerating electrode 6'', Therefore, the deuterium negative ion beam D-, the deuterium positive ion beam D', and the deuterium neutral beam DO are all
It becomes an intermittent beam of about KHz. Further, the output voltage of the deuterium positive ion collection electrode 1) and the deuterium negative ion collection electrode 12 is also about IMV, and is an intermittent output of about I KHz.

これらの出力電圧は逆流防止用のダイオード19.20
を介して合成される。なお、これらの出力電圧は遅波回
路21で相互に位相が180°ずらされてから合成され
るので合成された電圧はプラスマイナス約I MV、 
I KHz程度の高周波の矩形波交流電圧となる。この
矩形波交流電圧はそのまま負イオン源に使用されるか、
又は、降圧トランス16で電圧が下げられインバータ2
2で商用周波に変換されてそのエネルギーが商用の交流
回線に回生される。
These output voltages are controlled by a diode 19.20 for backflow prevention.
synthesized via. Note that these output voltages are combined after being shifted in phase by 180° from each other in the slow wave circuit 21, so the combined voltage is approximately plus or minus I MV,
It becomes a rectangular wave alternating current voltage with a high frequency of about I KHz. Is this rectangular wave AC voltage used as it is in the negative ion source?
Alternatively, the voltage is lowered by the step-down transformer 16 and the voltage is lowered by the inverter 2.
2, it is converted to a commercial frequency and the energy is regenerated into a commercial AC line.

(効果) 以上のような本発明に依れば次のような利点が生じる。(effect) According to the present invention as described above, the following advantages arise.

一つは、第2図中のインバータ17.22は第1図中の
インバータ15と異なり、約IMVの高電圧でなくて良
いので製作が容易であること、また、第2図中のインバ
ータ17で出力の高速遮断ができるので、技術的に困難
な第1図中の約IMVの電圧を遮断する高速スイッチ9
が不要である。
One is that unlike the inverter 15 in FIG. 1, the inverter 17.22 in FIG. 2 is easy to manufacture because it does not require a high voltage of about IMV. The high-speed switch 9 that cuts off the voltage of about IMV in Figure 1, which is technically difficult, can cut off the output at high speed.
is not necessary.

本発明を適用した場合、重水素負イオンビームD−は間
欠的なビームとなるので、その時間平均の電流密度は最
大値の約半分となってしまう。
When the present invention is applied, the deuterium negative ion beam D- becomes an intermittent beam, so the time average current density becomes about half of the maximum value.

しかしながら、負イオン源の運転条件に依っては重水素
負イオンビームD−の電流密度は運転開始直後約2a+
sの間非常に大きくなることが実験的に知られている。
However, depending on the operating conditions of the negative ion source, the current density of the deuterium negative ion beam D- may be approximately 2a+ immediately after the start of operation.
It is experimentally known that it becomes extremely large during s.

従って本発明のように約I KH2で間欠運転を行うと
高電流密度の重水素負イオンビームD−が得られる可能
性がある。
Therefore, if intermittent operation is performed at about IKH2 as in the present invention, there is a possibility that a deuterium negative ion beam D- with a high current density can be obtained.

第2図中、重水素正イオン回収電極1)及び重水素負イ
オン回収電極12に回収される正負の電荷量は不均衡と
なる可能性がある。その場合、両者の平均で表される直
流成分は降圧トランス16及びインバータ22を介して
回生されず、損失となる。しかしながら、上記正負の電
荷量の比は重水素ガス導入装置1から中性化セル10に
導入する重水素ガスの多少に依り、調節できることが知
られている。従って、この重水素ガス導入量を適当に選
ぶことに依り、上記正負の電荷量を均衡させ、損失の少
ない装置とすることができる。
In FIG. 2, there is a possibility that the amount of positive and negative charges collected by the positive deuterium ion collection electrode 1) and the negative deuterium ion collection electrode 12 will be unbalanced. In that case, the DC component represented by the average of both is not regenerated through the step-down transformer 16 and the inverter 22, and becomes a loss. However, it is known that the ratio of the positive and negative charges can be adjusted depending on the amount of deuterium gas introduced from the deuterium gas introduction device 1 into the neutralization cell 10. Therefore, by appropriately selecting the amount of deuterium gas introduced, it is possible to balance the positive and negative charges and provide an apparatus with less loss.

第2図の例では重水素正イオン回収電極1)及び重水素
負イオン回収電極12の出力電圧の合成に遅波回路を用
いて交流電圧としたが、約I KHzの間欠的な同出力
電圧に共振する共振回路を用いることで交流電圧として
も良い。
In the example shown in Fig. 2, a slow wave circuit is used to synthesize the output voltages of the deuterium positive ion collection electrode 1) and the deuterium negative ion collection electrode 12 to create an alternating current voltage, but the same output voltage is generated intermittently at about I KHz. An alternating current voltage may be used by using a resonant circuit that resonates with the voltage.

以上のように本発明に依れば技術的な困難の少ない負イ
オン源を用いた中性粒子入射装置を作ることができる。
As described above, according to the present invention, it is possible to create a neutral particle injection device using a negative ion source with few technical difficulties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ従来の案及び本発明に係る
負イオン源を用いた中性粒子入射装置の例である。 1       重水素ガス導入装置 2       アーク容器 3       フィラメント電源 4        フィラメント 5       アーク電源 6.6゛    加速電極 7       加速電源 8       電子吸収装置 9       高速スイッチ 10       中性化セル 1)       重水素正イオン回収電極12   
    重水素負イオン回収電極13.14    回
収コンデンサー 15.17.22 インバータ 16      8s圧トランス 18       昇圧トランス 19.20    ダイオード 21       遅波回路 do      重水素正イオン d−重水素負イオン e       電子 Do      重水素正イオンビームD−重水素負イ
オンビーム D0      重水素中性イオンビーム奉f図 募2z
FIGS. 1 and 2 are examples of neutral particle injection devices using negative ion sources according to the conventional scheme and the present invention, respectively. 1 Deuterium gas introduction device 2 Arc vessel 3 Filament power source 4 Filament 5 Arc power source 6.6゛ Acceleration electrode 7 Acceleration power source 8 Electron absorption device 9 High speed switch 10 Neutralization cell 1) Deuterium positive ion recovery electrode 12
Deuterium negative ion recovery electrode 13.14 Recovery capacitor 15.17.22 Inverter 16 8s pressure transformer 18 Step-up transformer 19.20 Diode 21 Slow wave circuit DO Deuterium positive ion d - Deuterium negative ion e Electron Do Deuterium positive ion Beam D - Deuterium negative ion beam D0 Deuterium neutral ion beam support f drawing 2z

Claims (2)

【特許請求の範囲】[Claims] (1)静電型加速電極に交流電圧を印加することを特徴
とする負イオン源を用いた中性粒子入射装置。
(1) A neutral particle injection device using a negative ion source characterized by applying an alternating current voltage to an electrostatic accelerating electrode.
(2)正負2種類の荷電粒子回収装置を有する負イオン
源を用いた中性粒子入射装置に於いて、負イオン源を間
欠運転することに依り得られる正負2種類の荷電粒子回
収装置の間欠出力を合成することに依り交流電圧にする
ことを特徴とする負イオン源を用いた中性粒子入射装置
(2) In a neutral particle injection device using a negative ion source that has two types of positive and negative charged particle collection devices, intermittent operation of the two types of positive and negative charged particle collection devices is obtained by intermittent operation of the negative ion source. A neutral particle injection device using a negative ion source characterized by generating an alternating current voltage by synthesizing the output.
JP63037627A 1988-02-22 1988-02-22 Neutral particle incidence device utilizing negative ion source Pending JPH01213998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63037627A JPH01213998A (en) 1988-02-22 1988-02-22 Neutral particle incidence device utilizing negative ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63037627A JPH01213998A (en) 1988-02-22 1988-02-22 Neutral particle incidence device utilizing negative ion source

Publications (1)

Publication Number Publication Date
JPH01213998A true JPH01213998A (en) 1989-08-28

Family

ID=12502874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63037627A Pending JPH01213998A (en) 1988-02-22 1988-02-22 Neutral particle incidence device utilizing negative ion source

Country Status (1)

Country Link
JP (1) JPH01213998A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579662A (en) * 2017-10-25 2018-01-12 吉林大学 A kind of double-plasma ion source discharge power supply
JP2018022698A (en) * 2012-09-04 2018-02-08 トライ アルファ エナジー, インコーポレイテッド Negative ion-based neutral beam injector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018022698A (en) * 2012-09-04 2018-02-08 トライ アルファ エナジー, インコーポレイテッド Negative ion-based neutral beam injector
CN107579662A (en) * 2017-10-25 2018-01-12 吉林大学 A kind of double-plasma ion source discharge power supply
CN107579662B (en) * 2017-10-25 2024-04-09 吉林大学 Double-plasma ion source discharge power supply

Similar Documents

Publication Publication Date Title
US6362604B1 (en) Electrostatic precipitator slow pulse generating circuit
RU2569324C2 (en) Accelerator for two particle beams for producing collision
WO2006049566A1 (en) Method and apparatus for producing electric discharges
WO2002082873A3 (en) Controlled fusion in a field reversed configuration and direct energy conversion
ATE363358T1 (en) ARC WELDING APPARATUS AND METHOD USING A STACK UNIT OF FUEL CELLS
JPH07232102A (en) Electrostatic precipitator
JPH01213998A (en) Neutral particle incidence device utilizing negative ion source
JP2002263472A (en) Plasma processor and plasma processing method using inverter circuit
KR100191681B1 (en) Deodoring method and deodoring device by sawtooth wave corona discharge
CN100459399C (en) Power supply unit
CN114629368A (en) Nine level dc-to-ac converter of switched capacitor high gain
JPH0720379B2 (en) High frequency high voltage power supply
WO1989001713A1 (en) Metal vapor laser
CN215997403U (en) Seismic source device based on liquid electricity effect
KR20180095163A (en) Micro-Pulse type Power Supply and Electrostatic Precipitator
KR102249879B1 (en) Electrical dust precipitator using secondary battery power
EP0244842A3 (en) Apparatus for forming thin film
JP3342220B2 (en) Very low frequency power supply
CN215878340U (en) Novel high-efficient wet-type electrostatic precipitator based on pulse power supply
Jodzis et al. Ozone synthesis under pulse discharge conditions
JP2005158573A (en) Plasma generation device
Matsuoka et al. Beam direct converter with varying magnetic field
JP2611996B2 (en) Pulse laser equipment
SU1479109A1 (en) Method of cleaning air atmospheere from aerosoles
JPH0442789A (en) Charged particle beam energy recovery apparatus