JPH0121369B2 - - Google Patents

Info

Publication number
JPH0121369B2
JPH0121369B2 JP13727684A JP13727684A JPH0121369B2 JP H0121369 B2 JPH0121369 B2 JP H0121369B2 JP 13727684 A JP13727684 A JP 13727684A JP 13727684 A JP13727684 A JP 13727684A JP H0121369 B2 JPH0121369 B2 JP H0121369B2
Authority
JP
Japan
Prior art keywords
housing
concave
roller
cylindrical
cylindrical roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13727684A
Other languages
Japanese (ja)
Other versions
JPS6117719A (en
Inventor
Yasumasa Mizukoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP13727684A priority Critical patent/JPS6117719A/en
Priority to IT21341/85A priority patent/IT1185136B/en
Priority to DE19853523838 priority patent/DE3523838A1/en
Priority to FR858510140A priority patent/FR2567222B1/en
Publication of JPS6117719A publication Critical patent/JPS6117719A/en
Priority to US07/115,985 priority patent/US4775355A/en
Priority to US07/115,986 priority patent/US4808145A/en
Publication of JPH0121369B2 publication Critical patent/JPH0121369B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はスライド式トリポツト形等速ジヨイ
ントの改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to an improvement of a sliding tripod type constant velocity joint.

〔従来技術〕[Prior art]

まず、従来のスライド式トリポツト形等速ジヨ
イントを第5〜7図によつて説明する。
First, a conventional sliding tripod type constant velocity joint will be explained with reference to FIGS. 5 to 7.

第5図はそのジヨイントの要部断面図、第6図
はジヨイントにおけるハウジングの斜視図、第7
図はジヨイントの回転角と軸力の関係を示すグラ
フである。
Fig. 5 is a sectional view of the main part of the joint, Fig. 6 is a perspective view of the housing in the joint, and Fig. 7 is a sectional view of the main part of the joint.
The figure is a graph showing the relationship between the rotation angle of the joint and the axial force.

図において、Hはカツプ状のハウジング、Sは
軸、1はこの軸Sに突設したトラニオン、Rはこ
のトラニオン1に、ニードル2を介して遊嵌させ
た球面ローラ、3は抜け止めである。ハウジング
Hには、その内面に軸方向へ延びる3本の凹軌道
4が形成されており、前記球面ローラRはこの凹
軌道4の円筒面4a上をすべりを伴いながら転動
して移動するようになつている。なお、図示しな
いが、ハウジングHと軸Sとの間にはブーツが装
着されている。
In the figure, H is a cup-shaped housing, S is a shaft, 1 is a trunnion protruding from this shaft S, R is a spherical roller loosely fitted to this trunnion 1 via a needle 2, and 3 is a retainer. . The housing H has three concave raceways 4 extending in the axial direction formed on its inner surface, and the spherical roller R rolls and moves on the cylindrical surface 4a of the concave raceways 4 while sliding. It's getting old. Although not shown, a boot is attached between the housing H and the shaft S.

このような構成となつているので、ハウジング
Hと軸Sの軸方向および角方向の相対的な動き
は、球面ローラRが凹軌道4の円筒面4a上をす
べりを伴いながら転動および旋回運動をすること
によつて可能となり、回転方向へのトルクの伝達
は球面ローラRと凹軌道4との間で可能となる。
With this configuration, the relative movement of the housing H and the shaft S in the axial and angular directions is caused by the rolling and turning movements of the spherical roller R while sliding on the cylindrical surface 4a of the concave track 4. This makes it possible to transmit torque in the rotational direction between the spherical roller R and the concave raceway 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、この種の等速ジヨイントにおいて
は、ジヨイントにジヨイント角が付いた状態でト
ルクを受けて回転する際に、ジヨイントの構造
上、第7図に示すように、その1回転につき3回
の軸力がシヤフトS上に発生することが知られて
いる。この軸力は、ジヨイントのジヨイント角、
伝達トルク等の影響により増減するため、特に最
近の高出力車では大きなものとなる。また、この
軸力の発生サイクルと車体、サスペンシヨン等の
固有振動数とが合致し、かつ車体の共振を誘発す
るに足る大きな軸力が発生する場合には、乗員に
横方向のゆらゆら振動を感じさせ不快感を与え
る、という問題があつた。このため、ジヨイント
角を比較的小さく限定しなければならないという
車の設計上の不自由さがあつた。
However, in this type of constant velocity joint, when the joint rotates under torque with a joint angle attached, due to the structure of the joint, as shown in Figure 7, the axis is rotated three times per rotation. It is known that a force is generated on the shaft S. This axial force is the joint angle of the joint,
Since it increases or decreases depending on the effects of transmission torque, etc., it becomes large, especially in recent high-output vehicles. In addition, if the generation cycle of this axial force matches the natural frequency of the vehicle body, suspension, etc., and an axial force large enough to induce resonance in the vehicle body is generated, it will cause lateral swaying vibrations to the occupants. There was a problem that it caused people to feel uncomfortable. For this reason, there was an inconvenience in the design of the vehicle that the joint angle had to be limited to a relatively small value.

この問題を解決するために特開昭58−42832号
公報において1つの提案がなされている。
In order to solve this problem, a proposal has been made in Japanese Patent Laid-Open No. 58-42832.

この特開昭58−42832号公報においては、実施
例の一部に、これから詳述するこの発明の構成部
材(U字形の調心部材)と類似形状のもの(スト
リツプ状部材)が開示されているが、明細書によ
ると、このストリツプ状部材は、内側機素に対し
て軸方向に固定されており、外側機素に対しては
移動(摺動)自在とした構成になつている。さら
に、周期的におこる軸方向への負荷変動はストリ
ツプ状部材により吸収し継手内での均衡を保つよ
うにしている。
In this Japanese Patent Application Laid-Open No. 58-42832, a component (a strip-shaped member) similar in shape to the structural member (U-shaped centering member) of the present invention, which will be described in detail, is disclosed as part of the embodiments. However, according to the specification, this strip-like member is fixed in the axial direction with respect to the inner element, and is configured to be movable (slidable) with respect to the outer element. Furthermore, periodic axial load fluctuations are absorbed by the strip-like member to maintain balance within the joint.

以上より明らかなように、この提案において
は、スライド式トリポツト形等速ジヨイントの最
大の利点であるスライド方向の摩擦抵抗が小さい
(球面ローラが外側機素のガイド溝を「転がる」
ので)という特長が、ストリツプ状部材と外側機
素の軸方向の相対変位が「滑り」になるため、失
われ、摩擦係数は著しく増大し、スライド抵抗が
非常に大きくなり、かつ発熱を伴うという欠点を
有している。
As is clear from the above, this proposal has low frictional resistance in the sliding direction, which is the greatest advantage of the sliding tripod type constant velocity joint (the spherical roller "rolls" in the guide groove of the outer element).
This feature is lost because the relative displacement in the axial direction between the strip member and the outer element becomes ``sliding'', and the coefficient of friction increases significantly, sliding resistance becomes extremely large, and heat is generated. It has its drawbacks.

この発明は、このような従来の問題点を解決し
ようとするもので、以下に述べるように、軸力を
発生させる因子の解析と、それが軸力に与える影
響度を分析することによつて、軸力を低減し、そ
の軸力による車体の共振を防止できるようにした
ものである。
This invention attempts to solve these conventional problems by analyzing the factors that generate axial force and the degree of influence they have on axial force, as described below. , it is possible to reduce the axial force and prevent resonance of the vehicle body due to the axial force.

第9図について説明すれば、まず、軸力を発生
させる因子であるが、これはつぎの3の摩擦抵抗
力である。すなわち、球面ローラRが転り運動す
るときのトラニオン1に働く摩擦抵抗力f1と、球
面ローラRがトラニオン1の軸方向に摺動すると
きの凹軌道4との摩擦抵抗力f2と、球面ローラR
がトラニオン1の軸方向に摺動するときのトラニ
オン1(ニードル2)との摩擦抵抗力f3とであ
る。特に、後の2者f2,f3に起因する軸力が大き
いことが判つた。第8図のf1,f2,f3は軸力発生
の影響度を示す割合を図示したものである。
Explaining FIG. 9, first, there is a factor that generates the axial force, which is the following three frictional resistance forces. That is, a frictional resistance force f 1 acting on the trunnion 1 when the spherical roller R rolls, a frictional resistance force f 2 between the spherical roller R and the concave raceway 4 when it slides in the axial direction of the trunnion 1, Spherical roller R
is the frictional resistance force f 3 with respect to the trunnion 1 (needle 2) when the trunnion 1 slides in the axial direction. In particular, it was found that the axial force caused by the latter two forces f 2 and f 3 was large. f 1 , f 2 , and f 3 in FIG. 8 are graphs showing ratios indicating the degree of influence of axial force generation.

さらに、この軸力発生のメカニズムを第8〜1
1図によつて説明すると以下のとおりである。第
9図はジヨイントが回転しているときの球面ロー
ラRと凹軌道4との相対的な変位の状況を示すも
ので、図において、球面ローラRが、凹軌道4の
円筒面4aにそつて〔〕の領域から〔〕の領
域に移動する場合、そのローラRは〔〕の領域
では摩擦抵抗力f2,f3により凹軌道4の外側へ外
れる方向へ転がろうとし、〔〕の領域に入ると
逆に摩擦抵抗力f2,f3により凹軌道4の内側へ外
れる方向へ転がろうとする。しかし、球面ローラ
Rは凹軌道4の円筒面4aにガイドされて、これ
に沿つた動きをするので、摩擦抵抗力f2,f3とバ
ランスする外力がこの球面ローラRに作用するこ
とになる。なお、第9図において、θはジヨイン
ト角、kはトラニオン1の回転面である。
Furthermore, the mechanism of this axial force generation is explained in Sections 8 to 1.
The explanation using Figure 1 is as follows. Figure 9 shows the relative displacement between the spherical roller R and the concave raceway 4 when the joint is rotating. When moving from the area [] to the area [], the roller R tends to roll away from the concave raceway 4 due to the frictional resistance forces f 2 and f 3 in the area [], and moves to the area []. When it enters the concave raceway 4, it tries to roll away from the inside of the concave track 4 due to the frictional resistance forces f 2 and f 3 . However, since the spherical roller R is guided by the cylindrical surface 4a of the concave track 4 and moves along it, an external force that balances the frictional resistance forces f 2 and f 3 acts on the spherical roller R. . In addition, in FIG. 9, θ is the joint angle, and k is the rotation surface of the trunnion 1.

この外力は、凹軌道4と球面ローラRの接点の
移動により発生すると考えられる。すなわち、第
9図のように、球面ローラRが〔〕の領域にあ
る場合についてみれば、第10図に示すように当
初の接点AからBに移動することにより、負荷
FAの分力Ftが生ずる。この分力Ftは、第11図
のように、摩擦抵抗力f2と摩擦抵抗力f3の和とバ
ランスする分力Ftsinθと軸S方向の分力Ftsinθと
に分けられ、この軸S方向の分力Ftsinθに前記の
f1を加えたものが軸力として現われることにな
る。なお、〔〕と〔〕の領域の境界上に球面
ローラRが来たときにはsinθ=0となり、従つて
軸方向の分力Ftsinθも零になり、f1のみが軸力と
して表われる。
This external force is thought to be generated by movement of the contact point between the concave raceway 4 and the spherical roller R. In other words, if we consider the case where the spherical roller R is in the area [ ] as shown in Figure 9, the load will be reduced by moving from the original contact point A to B as shown in Figure 10.
A component force Ft of FA is generated. As shown in Fig. 11, this component force Ft is divided into a component force Ftsinθ that balances the sum of frictional resistance force f 2 and frictional resistance force f 3 and a component force Ftsinθ in the axis S direction. The component force Ftsinθ is
The addition of f 1 will appear as the axial force. Note that when the spherical roller R comes to the boundary between the regions [] and [], sin θ=0, and therefore the axial component force Ftsin θ also becomes zero, and only f 1 appears as the axial force.

上述したところから明らかなように、従来の等
速ジヨイントの問題点を解決するには、摩擦抵抗
力f1,f2,f3の低減を計ればよい。つまり、f1
「転り」により十分摩擦抵抗力は小さくなるので、
あとはf2,f3の低減、言い換えれば分力Ftsinθの
低減を計ればよいことになる。
As is clear from the above, the problems of the conventional constant velocity joint can be solved by reducing the frictional resistance forces f 1 , f 2 , and f 3 . In other words, f 1 has a sufficiently small frictional resistance due to "rolling", so
All that is left to do is to reduce f 2 and f 3 , in other words, reduce the component force Ftsinθ.

この発明は、このような観点から、軸力による
車体の共振を防止しようとするものである。
From this viewpoint, the present invention attempts to prevent resonance of the vehicle body due to axial force.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のトリポツト形等速ジヨイントは、ハ
ウジングの3本の凹軌道と、軸の3本のトラニオ
ンに遊嵌して前記3本の凹軌道にそれぞれ嵌合す
る円筒ローラとの間に、この円筒ローラを挾むよ
うに、前記軸と独立して設けられるU字形の調心
部材を介装して成り、かつ、この調心部材は、前
記凹軌道との摺接面を円筒面とすることによつ
て、ハウジングに前記凹軌道と相対回動可能で、
かつ軸方向に摺動不能に取り付けるとともに、前
記円筒ローラとの接触面を平面とすることによつ
て、その平面を円筒ローラの転動面としたことを
特徴とするものである。
The tripod type constant velocity joint of the present invention is arranged between three concave raceways of the housing and a cylindrical roller that loosely fits into the three trunnions of the shaft and fits into the three concave raceways respectively. A U-shaped centering member is provided independently of the shaft so as to sandwich the roller, and the centering member has a cylindrical surface for sliding contact with the concave raceway. the housing is rotatable relative to the concave raceway;
The roller is attached so as not to be slidable in the axial direction, and the contact surface with the cylindrical roller is a flat surface, so that the flat surface is used as the rolling surface of the cylindrical roller.

〔実施例〕〔Example〕

以下、この考案の実施例を第1〜4図によつて
説明する。第1図はその断面図、第2図は要部正
面図、第3図は調心部材の拡大図、第4図は実施
例の作用を説明するための図である。
Embodiments of this invention will be described below with reference to FIGS. 1 to 4. FIG. 1 is a sectional view thereof, FIG. 2 is a front view of the main part, FIG. 3 is an enlarged view of the alignment member, and FIG. 4 is a diagram for explaining the operation of the embodiment.

図において、H2はカツプ状のハウジングでそ
の内面には軸方向へ延びる3本の凹軌道11が形
成されている。S2は軸、12はこの軸S2に突設し
たトラニオン、R2はこのトラニオン12にニー
ドル13を介して遊嵌させた円筒ローラ、14は
抜け止めで、円筒ローラR2のトラニオン12軸
方向にわずかの遊びを設けて取り付けてある。U
はU字形の調心部材で、上記凹軌道11の両側壁
にまたがつて形成された円筒面r1と円筒ローラR2
との間に、その円筒ローラR2を挾むように、介
装したものである。
In the figure, H2 is a cup-shaped housing, and three concave raceways 11 extending in the axial direction are formed on the inner surface of the housing. S 2 is a shaft, 12 is a trunnion protruding from this shaft S 2 , R 2 is a cylindrical roller loosely fitted to this trunnion 12 via a needle 13, 14 is a retainer, and the trunnion 12 shaft of the cylindrical roller R 2 It is installed with a slight play in the direction. U
is a U-shaped centering member, which has a cylindrical surface r 1 and a cylindrical roller R 2 formed astride both side walls of the concave track 11.
The cylindrical roller R2 is interposed between the roller and the roller R2.

調心部材Uの凹軌道11側の面は、その凹軌道
11の円筒面r1と摺接する円筒面r2とし、円筒ロ
ーラR2側の面はトラニオン12の回動によつて
円弧運動するローラR2が転動可能な平面pとし
てある。そして、この部材Uは、加締15によつ
て凹軌道11から軸方向に外れないようにしてあ
つて、この凹軌道11内において、矢符で示すよ
うに、ハウジングH2に対し相対回動するように
なつている。なお、調心部材Uは、凹軌道11内
において、ハウジングH2に対し相対回動可能で
あり、かつハウジングH2から脱落しなければよ
いから、ハウジングH2への取り付け方法は、そ
のような回動と脱落の防止が可能であれば、その
手段は問わない。なお、k1はトラニオン12の回
転面である。
The surface of the alignment member U on the concave raceway 11 side is a cylindrical surface r2 that slides in contact with the cylindrical surface r1 of the concave raceway 11 , and the surface on the cylindrical roller R2 side moves in an arc due to the rotation of the trunnion 12. There is a plane p on which the roller R 2 can roll. This member U is prevented from coming off the concave raceway 11 in the axial direction by caulking 15, and rotates relative to the housing H2 within the concave raceway 11 as shown by the arrow. I'm starting to do that. Note that the alignment member U can rotate relative to the housing H 2 within the concave track 11 and does not fall off from the housing H 2 , so the method for attaching it to the housing H 2 is as follows. Any means may be used as long as it is possible to prevent rotation and falling off. Note that k 1 is the rotation surface of the trunnion 12.

このような構成となつているので、ハウジング
H2と軸S2の軸方向および角方向の相対的な動き
は、円筒ローラR2が調心部材Uの平面p上を転
動することによつて可能となり、回転時のトルク
の伝達は円筒ローラR2と凹軌道11との間で、
調心部材Uを介して可能となる。
With this configuration, the housing
The relative movement of H 2 and axis S 2 in the axial and angular directions is made possible by the cylindrical roller R 2 rolling on the plane p of the alignment member U, and the transmission of torque during rotation is Between the cylindrical roller R2 and the concave raceway 11,
This is possible via the centering member U.

すなわち、いま、ジヨイントが第4図のよう
に、ジヨイント角θをもつて回転すると、円筒ロ
ーラR2は、トラニオン12の回動によつて円弧
運動をし、〔〕の領域から〔〕の領域に移動
するが、これと接触する調心部材Uの内面は平面
pとなつているから、この平面上を弧状に旋回し
ながら転動する。このとき、円筒ローラR2はト
ラニオン12軸方向へ積極的に滑つて移動するこ
とはなく、ジヨイント回転時の僅かな偏心運動お
よび転動に支障を与えないための遊びの範囲だけ
滑る程度である。したがつて、円筒ローラR2
調心部材Uとの接触線は常に円筒ローラR2の母
線と一致するため、この接触線上に生ずる力の方
向は常に3本のトラニオン12の軸心を含む平面
内に存在することになり、軸方向の力が発生しな
いので軸力に影響する摩擦抵抗は殆んどなくな
る。
That is , when the joint rotates with a joint angle θ as shown in FIG. However, since the inner surface of the centering member U that comes into contact with the centering member U forms a plane p, the centering member U rolls while turning in an arc on this plane. At this time, the cylindrical roller R 2 does not actively slide in the axial direction of the trunnion 12, but only slides within a range of play to prevent slight eccentric movement and rolling during joint rotation. . Therefore, since the line of contact between the cylindrical roller R2 and the alignment member U always coincides with the generatrix of the cylindrical roller R2 , the direction of the force generated on this line of contact always includes the axes of the three trunnions 12. Since it exists within a plane and no axial force is generated, there is almost no frictional resistance that affects the axial force.

また、ハウジングH2に対する軸S2の軸方向へ
の移動は、円筒ローラR2が調心部材Uの平面p
上を転動することによつて可能となるから、両者
R2,U間に滑り摩擦を生ずるおそれは殆んどな
くなり、したがつて発熱のおそれもなくなる。
Further, the movement of the shaft S 2 in the axial direction with respect to the housing H 2 is caused by the movement of the cylindrical roller R 2 in the plane p of the alignment member U.
This is possible by rolling on the top, so both
There is almost no risk of sliding friction occurring between R 2 and U, and therefore there is no risk of heat generation.

なお、円筒ローラの転動面と調心部材の接触面
の少くとも一方に軸方向に直角な方向にクラウニ
ングを設ければ、エツジロードも避けられる。
Note that edge loads can also be avoided by providing crowning in a direction perpendicular to the axial direction on at least one of the rolling surface of the cylindrical roller and the contact surface of the alignment member.

〔考案の効果〕[Effect of idea]

以上説明したように、この発明によれば、円筒
ローラとハウジングの凹軌道との間に、U字形の
調心部材を介装し、かつ、これをハウジングに相
対回動可能に取り付けるとともに、この調心部材
の円筒ローラとの接触面を、その円筒ローラの転
動面としたから、調心部材にジヨイント角に対す
る調心機能を持たせることができ、軸力発生の原
因であるジヨイントの軸方向の分力の発生を低減
できる。したがつて、この発明によれば、軸力の
発生による車体の共振を防止することができる。
As explained above, according to the present invention, a U-shaped alignment member is interposed between the cylindrical roller and the concave track of the housing, and this is attached to the housing so as to be relatively rotatable. Since the contact surface of the alignment member with the cylindrical roller is the rolling surface of the cylindrical roller, the alignment member can have an alignment function for the joint angle, and the axis of the joint, which is the cause of axial force, can be The generation of directional force can be reduced. Therefore, according to the present invention, resonance of the vehicle body due to the generation of axial force can be prevented.

また、ハウジングに対して軸を軸方向に相対的
に移動しても、調心部材が軌道を軸方向にすべる
ことはないので、大幅な摩擦の低減になる。
Furthermore, even if the shaft is moved axially relative to the housing, the alignment member will not slide along the track in the axial direction, resulting in a significant reduction in friction.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図はこの発明の実施例を示し、第1図
はその要部断面図、第2図はその要部正面図、第
3図は実施例における調心部材の側面図、第4図
は作用を説明するための図、第5〜11図は従来
のトリポツト形等速ジヨイントを示し、第5図は
その要部断面図、第6図は第5図におけるハウジ
ングの斜視図、第7図は各トラニオンの合成軸力
を示すグラフ、第8図は第5図におけるトラニオ
ン一軸当りの軸力を示すグラフ、第9図、第10
図および第11図は作用を説明するための図であ
る。 H2……ハウジング、11……凹軌道、S2……
軸、R2……円筒ローラ、U……調心部材、r2……
円筒面、p……平面。
1 to 4 show an embodiment of the present invention, FIG. 1 is a sectional view of the main part thereof, FIG. 2 is a front view of the main part, FIG. 3 is a side view of the alignment member in the embodiment, and FIG. 5 to 11 show a conventional tripod type constant velocity joint, FIG. 5 is a sectional view of the main part thereof, and FIG. 6 is a perspective view of the housing in FIG. Figure 7 is a graph showing the combined axial force of each trunnion, Figure 8 is a graph showing the axial force per trunnion axis in Figure 5, Figures 9 and 10.
The figure and FIG. 11 are diagrams for explaining the operation. H 2 ... Housing, 11 ... Concave raceway, S 2 ...
Shaft, R 2 ... Cylindrical roller, U ... Aligning member, r 2 ...
Cylindrical surface, p...plane.

Claims (1)

【特許請求の範囲】[Claims] 1 ハウジングの3本の凹軌道と、軸の3本のト
ラニオンに遊嵌して前記3本の凹軌道にそれぞれ
嵌合する円筒ローラとの間に、この円筒ローラを
挟むように、前記軸と独立して設けられるU字形
の調心部材を介装して成り、かつ、この調心部材
は、前記凹軌道との摺接面を円筒面とすることに
よつて、ハウジングに前記凹軌道と相対回動可能
で、かつ軸方向に摺動不能に取り付けるととも
に、前記円筒ローラとの接触面を平面とすること
によつて、その平面を円筒ローラの転動面とした
ことを特徴とするトリポツト形等速ジヨイント。
1 The shaft and the cylindrical roller are fitted loosely into the three concave raceways of the housing and the three trunnions of the shaft so as to sandwich the cylindrical rollers, respectively. A U-shaped centering member provided independently is interposed therebetween, and the centering member has a cylindrical surface for sliding contact with the concave raceway, so that the housing is connected to the concave raceway. A tripod which is relatively rotatable and non-slidable in the axial direction, and whose contact surface with the cylindrical roller is a flat surface, so that the flat surface serves as the rolling surface of the cylindrical roller. Constant velocity joint.
JP13727684A 1984-07-04 1984-07-04 Equal speed joint of tripod type Granted JPS6117719A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13727684A JPS6117719A (en) 1984-07-04 1984-07-04 Equal speed joint of tripod type
IT21341/85A IT1185136B (en) 1984-07-04 1985-06-28 TRIPOIDAL CONSTANT SPEED JOINT
DE19853523838 DE3523838A1 (en) 1984-07-04 1985-07-03 TRIPODED COUPLING CONNECTION
FR858510140A FR2567222B1 (en) 1984-07-04 1985-07-03 TRIPOD TYPE HOMOCINETIC JOINT
US07/115,985 US4775355A (en) 1984-07-04 1987-11-02 Tripod type constant velocity joint
US07/115,986 US4808145A (en) 1984-07-04 1987-11-02 Tripod type constant velocity joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13727684A JPS6117719A (en) 1984-07-04 1984-07-04 Equal speed joint of tripod type

Publications (2)

Publication Number Publication Date
JPS6117719A JPS6117719A (en) 1986-01-25
JPH0121369B2 true JPH0121369B2 (en) 1989-04-20

Family

ID=15194888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13727684A Granted JPS6117719A (en) 1984-07-04 1984-07-04 Equal speed joint of tripod type

Country Status (1)

Country Link
JP (1) JPS6117719A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104727U (en) * 1986-12-26 1988-07-07
US5035530A (en) * 1988-10-17 1991-07-30 Nippon Oil Co., Ltd. Actuator utilizing shape memory alloy and articulated arm comprising this actuator

Also Published As

Publication number Publication date
JPS6117719A (en) 1986-01-25

Similar Documents

Publication Publication Date Title
US5989124A (en) Tripod type constant velocity universal joint
US5069653A (en) Tripot type constant velocity universal joint
KR101024883B1 (en) Tripod type constant velocity joint
KR20020084104A (en) Tripode Constant Velocity Joint
JPH05215143A (en) Tripod joint
US20020055389A1 (en) Constant velocity joint of tripod type
US7121950B2 (en) Tripod type constant velocity universal joint
JPH0113850Y2 (en)
US6264565B1 (en) Tripod type constant velocity universal joint
JPH0121369B2 (en)
US6837794B1 (en) Tripod type constant velocity universal joint
US4778434A (en) Slide-type constant velocity universal joint
JPS6114365B2 (en)
JP4218162B2 (en) Tripod type constant velocity joint
KR200256418Y1 (en) Tripford type constant velocity joint
JPH064103Y2 (en) Constant velocity universal joint
JP3905943B2 (en) Tripod type constant velocity universal joint
JPH0212287B2 (en)
JPH10246241A (en) Tripod type constant velocity universal
KR0179475B1 (en) Tripod constant joint
KR910001893Y1 (en) Pivot
KR0117269Y1 (en) Tripoid joint
KR200256413Y1 (en) Tripford type constant velocity joint
KR200256412Y1 (en) Tripford type constant velocity joint
JP2000192984A (en) Constant velocity joint and installing method therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term