JPH01213234A - Optically active reducing agent and production thereof - Google Patents

Optically active reducing agent and production thereof

Info

Publication number
JPH01213234A
JPH01213234A JP3885688A JP3885688A JPH01213234A JP H01213234 A JPH01213234 A JP H01213234A JP 3885688 A JP3885688 A JP 3885688A JP 3885688 A JP3885688 A JP 3885688A JP H01213234 A JPH01213234 A JP H01213234A
Authority
JP
Japan
Prior art keywords
reducing agent
cyclodextrin
optically active
complex
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3885688A
Other languages
Japanese (ja)
Other versions
JPH0259130B2 (en
Inventor
Yoshio Tanaka
芳雄 田中
Eigo Sakuraba
櫻庭 英剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3885688A priority Critical patent/JPH01213234A/en
Publication of JPH01213234A publication Critical patent/JPH01213234A/en
Publication of JPH0259130B2 publication Critical patent/JPH0259130B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the subject reducing agent of high optical purity, consisting of a clathrate complex of cyclodextrin and a reducing agent, capable of carrying out asymmetric reduction in high yield by using an inexpensive and readily available raw material and contriving increase in stability, etc., and useful as a synthetic intermediate for physiologically active substances, etc. CONSTITUTION:An optically active reducing agent consisting of a clathrate complex of cyclodextrin or a derivative thereof and a reducing agent. The reducing agent is included by a method for adding an aqueous solvent or organic solvent in an amount of normally 0.05-10 times based on the cyclodextrin or derivative thereof thereto, converting the resultant mixture into a pasty form, then adding the reducing agent to be included and thoroughly kneading the mixture. As an alternative method, a saturated aqueous solution of the cyclodextrin is prepared and the reducing agent to be included is added thereto and mixed to precipitate the resultant clathrate complex, which is then recovered to afford the aimed complex. Furthermore, ratio of the cyclodextrin and reducing agent used is preferably >=0.5mol. reducing agent based on 1mol. cyclodextrin.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な光学活性還元剤及びその製造方法に関す
るものである。さらに詳しくいえば、本発明は、生理活
性物質や強誘電物質などの合成中間体として重要な光学
活性物質を製造する際に有用な光学活性還元剤、及びこ
のものを効率よく製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel optically active reducing agent and a method for producing the same. More specifically, the present invention relates to an optically active reducing agent useful in producing optically active substances that are important as synthetic intermediates such as physiologically active substances and ferroelectric substances, and a method for efficiently producing the same. It is.

従来の技術 従来、不整還元により光学活性化合物を製造する最も簡
単な方法としては、通常の非光学活性還元剤を、光学活
性な触媒の共存下に用いて還元する方法が知られており
、例えば光学活性を有する触媒として、キニンやその誘
導体、光学活性第四級アンモニウム塩、あるいは牛血清
アルブミンなどを用いる方法が提案されている。また、
光学活性還元剤、例えば光学活性1.4−ジヒドロニコ
チナミド誘導体などの還元剤を用いて、不整還元する方
法も試みられている。
BACKGROUND ART Conventionally, the simplest method for producing optically active compounds by asymmetric reduction is known to be a method in which a normal non-optically active reducing agent is reduced in the coexistence of an optically active catalyst. Methods using quinine, its derivatives, optically active quaternary ammonium salts, bovine serum albumin, etc. as optically active catalysts have been proposed. Also,
A method of asymmetric reduction using an optically active reducing agent such as an optically active 1,4-dihydronicotinamide derivative has also been attempted.

しかしながら、これらの方法は、いずれも生成物の光学
収率が低かったり、触媒や還元剤そのものの入手が困難
であったり、高価な天然抽出物を使用したりするなどの
欠点を有し、経済性が低いことから、特殊な化合物の製
造以外は、はとんど用いられていないのが現状である。
However, all of these methods have drawbacks such as low optical yield of the product, difficulty in obtaining catalysts and reducing agents themselves, and the use of expensive natural extracts, making them uneconomical. Due to its low properties, it is currently rarely used except for the production of special compounds.

発明が解決しようとする課題 本発明は、このような事情のもとで、安価な入手しやす
い原料を用い、高収率で不整還元を行うことができ、か
つ光学純度の高い生成物を与えう目的としてなされIこ
ものである。
Problems to be Solved by the Invention Under these circumstances, the present invention is directed to an asymmetric reduction that can be carried out in high yield using inexpensive and easily available raw materials, and that provides a product with high optical purity. This is something that was done for that purpose.

課題を解決するための手段 本発明者らは、前記の好ましい性質を有する光学活性還
元剤を開発するために鋭意研究を重ねた結果、安価で入
手しやすいサイクロデキストリン類と通常の還元剤とか
ら、包接錯合体を形成させることにより、その目的を達
成しうろことを見い出し、この知見に基づいて本発明を
完成するに至った。
Means for Solving the Problems As a result of intensive research to develop an optically active reducing agent having the above-mentioned favorable properties, the present inventors have developed a method using inexpensive and easily available cyclodextrins and ordinary reducing agents. The inventors discovered that the objective could be achieved by forming an inclusion complex, and based on this knowledge, they completed the present invention.

すなわち、本発明は、サイクロデキストリン又はその誘
導体と還元剤との包接錯合体から成る光学活性還元剤を
提供するものである。
That is, the present invention provides an optically active reducing agent comprising an inclusion complex of cyclodextrin or a derivative thereof and a reducing agent.

本発明に従えば、前記光学活性還元剤は、水性溶媒又は
有機溶媒の存在下、サイクロデキストリン又はその誘導
体に還元剤を包接させることにより、製造することがで
きる。
According to the present invention, the optically active reducing agent can be produced by including the reducing agent in cyclodextrin or a derivative thereof in the presence of an aqueous or organic solvent.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いられるサイクロデキストリンは、デンプン
あるいはデキストリンに特殊な微生物あるいは酵素を作
用させて得られる環状デキストリンであり、その特徴は
ドーナツ状の分子構造を有し、その内部に直径約6〜1
0人の空洞を有することである。サイクロデキストリン
には、d−グルコースの構成単位の数の違いにより、a
−サイクロデキストリン、β−サイクロデキストリン及
びγ−サイクロデキストリンの3種が現在工業的に単離
されているが、本発明では、これら3種の中のいずれを
用いてもよいし、これらの混合物を用いてもよい。また
、これらのサイクロデキストリンの側鎖に、適当な化学
基を導入した修飾サイクロデキストリンや、サイクロデ
キストリンを、エピクロルヒドリンやメタクリルアミド
などで架橋した、あるいは架橋しないポリサイクロデキ
ストリンも、包接化を妨げず、かつ包接白化合物の還元
能を維持しうるかぎり用いることができる。
The cyclodextrin used in the present invention is a cyclic dextrin obtained by the action of special microorganisms or enzymes on starch or dextrin, and its characteristic is that it has a donut-shaped molecular structure, with a diameter of approximately 6 to 1 mm inside.
It is to have 0 cavities. Cyclodextrins have a
-Three types of cyclodextrin, β-cyclodextrin, and γ-cyclodextrin are currently isolated industrially, but in the present invention, any of these three types may be used, or a mixture of these may be used. May be used. In addition, modified cyclodextrins in which appropriate chemical groups are introduced into the side chains of these cyclodextrins, and polycyclodextrins in which cyclodextrins are cross-linked with epichlorohydrin or methacrylamide, or are not cross-linked, do not hinder inclusion. , and can be used as long as the reducing ability of the clathrate white compound can be maintained.

このようなサイクロデキストリン誘導体としては、例え
ば2,3.6−トリメチル−α−9β−及びγ−サイク
ロデキストリン;2,6−シメチルーσ−9β−及びγ
−サイクロデキストリン;2,6−ジカルボキシメチル
−トリカルボキシメチル−σ−1β−及びγ−サイクロ
デキストリン;6位同士を−o C−C>−CO−1+
OC% C0−1−+ozs−+こΣコ÷、+ 02 
S h O1+Ox S −Q−+−7CHβ−1−〇
 、 S +CH−CH+S Oβ−などの基で連結し
たff−、β−及びγ−サイクロデキストリンキャップ
化合物;アミノアルキル基、アミノアルキルアミノ基、
カルボキシルメチル基、アミノアルキルスルフィド基な
どを有するポリα−9β−及びγ−サイクロデキストリ
ンなどが挙げられる。 これらのサイクロデキストリン
やその誘導体は、そのグルコースから成るドーナツ状の
分子構造の特性として、種々の物質、例えば炭化水素な
どと包接物を作ることが知られている。
Such cyclodextrin derivatives include, for example, 2,3,6-trimethyl-α-9β- and γ-cyclodextrin; 2,6-dimethyl-σ-9β- and γ-cyclodextrin;
-Cyclodextrin; 2,6-dicarboxymethyl-tricarboxymethyl-σ-1β- and γ-cyclodextrin; between the 6-positions -o C-C>-CO-1+
OC% C0-1-+ozs-+koΣko÷, +02
ff-, β- and γ-cyclodextrin cap compounds linked by groups such as S h O1+Ox S -Q-+-7CHβ-1-0, S +CH-CH+S Oβ-; aminoalkyl group, aminoalkylamino group,
Examples include polyα-9β- and γ-cyclodextrins having carboxylmethyl groups, aminoalkyl sulfide groups, and the like. These cyclodextrins and their derivatives are known to form clathrates with various substances, such as hydrocarbons, due to their donut-shaped molecular structure composed of glucose.

一方、本発明で用いられる還元剤については、サイクロ
デキストリンやその誘導体と安定な包接錯合体を形成し
、かつ還元能を失わないものであればよく、特に制限は
ない。例えば公知の還元剤の中から、このような性質を
有するものを任意に選択して、1種用いてもよいし、2
種以上を組み合わせて用いてもよい。
On the other hand, the reducing agent used in the present invention is not particularly limited as long as it forms a stable inclusion complex with cyclodextrin or its derivatives and does not lose its reducing ability. For example, one type of reducing agent having such properties may be arbitrarily selected from known reducing agents, or two types may be used.
You may use combinations of more than one species.

前記の公知の還元剤の中で、水素化ホウ素ナトリウムや
水素化ホウ素カリウムなどの水素化ホウ素金属塩及びポ
ランのルイス塩基錯体が好ましく、特にポランのルイス
塩基錯体が好適である。このポランのルイス塩基錯体は
、例えばポランのテトラヒドロフラン溶液や水素化ホウ
素金属塩溶液に、種々のアミン類を加えることによって
製造することができる[「有機合成化学協会誌」第44
巻、第896〜906ページ(1986) ]。該ポラ
ンのルイス塩基錯体としては、例えばアンモニアポラン
や、t−ブチルアミン、ジエチルアミン、トリメチルア
ミン、メチルプロピルアミンなどのモノ、ジ、トリアル
キルアミン類のボラン錯体;シクロヘキシルアミンやビ
シクロ[3,3,1] ノニルアミンなどのシクロアル
キルアミン類のポラン錯体:ピリジン、キノリン、イン
キノリン、アミノピリジン、2.6−ルチジン、N−フ
ェニルモルホリンなどの複素環式化合物のボラン錯体;
アニリン、ジメチルアどの芳香族アミン類のポラン錯体
などが挙げられる。これらのポランのルイス塩基錯体は
、それぞれ単独で用いてもよいし、2種以上を組み合わ
せて用いてもよく、また光学活性アミン類との錯体であ
る必要は全くないが、もちろん、光学活性アミン類との
錯体であってもよい。
Among the above-mentioned known reducing agents, borohydride metal salts such as sodium borohydride and potassium borohydride and Lewis base complexes of poran are preferred, and Lewis base complexes of poran are particularly preferred. This Lewis base complex of poran can be produced, for example, by adding various amines to a solution of poran in tetrahydrofuran or a metal borohydride solution ["Journal of the Society of Organic Synthetic Chemistry" No. 44]
Vol., pp. 896-906 (1986)]. Examples of the Lewis base complexes of poran include ammonia porane, borane complexes of mono-, di-, and trialkylamines such as t-butylamine, diethylamine, trimethylamine, and methylpropylamine; cyclohexylamine and bicyclo[3,3,1] Poran complexes of cycloalkylamines such as nonylamine; borane complexes of heterocyclic compounds such as pyridine, quinoline, inquinoline, aminopyridine, 2,6-lutidine, and N-phenylmorpholine;
Examples include poran complexes of aromatic amines such as aniline and dimethylamine. These Lewis base complexes of poran may be used alone or in combination of two or more, and are not necessarily complexes with optically active amines. It may also be a complex with

本発明の光学活性還元剤は、これらの還元剤を前記サイ
クロデキストリン又はその誘導体に包接させることによ
って製造することができる。包接させる方法については
特に制限はないが、通常混練法や溶液法が用いられる。
The optically active reducing agent of the present invention can be produced by including these reducing agents in the cyclodextrin or its derivative. There is no particular restriction on the method of inclusion, but a kneading method or a solution method is usually used.

混線法においては、サイクロデキストリン又はその誘導
体に対して、水性溶媒又は有機溶媒を通常0.0S〜1
0重量倍加えて、ペースト状にしたのち、これに包接さ
せる還元剤を加え、十分に混練することによって光学活
性還元剤を製造することができる。前記有機溶媒として
は、例えば各種エーテル類や、ジメチルアセトアミド、
ヘキサメチルホスホリックトリアミド、ジメチルホルム
アミドなどを用いることができる。また混練時間は通常
0.5−12時間、好ましくは2〜8時間の範囲で選ば
れ、混練温度については特に制限はないが、通常は室温
で十分である。なお、サイクロデキストリン誘導体によ
っては混線時間により温度を変える場合もある。混練装
置としては、例えばらい潰機、ボールミル、デイスパー
ミル、乳化機などが用いられる。
In the crosstalk method, an aqueous solvent or an organic solvent is usually added to the cyclodextrin or its derivative at a concentration of 0.0S to 1S.
An optically active reducing agent can be produced by adding 0 times the amount by weight to form a paste, adding the reducing agent to be included therein, and thoroughly kneading the mixture. Examples of the organic solvent include various ethers, dimethylacetamide,
Hexamethylphosphoric triamide, dimethylformamide, etc. can be used. Further, the kneading time is usually selected in the range of 0.5 to 12 hours, preferably 2 to 8 hours, and the kneading temperature is not particularly limited, but room temperature is usually sufficient. Note that depending on the cyclodextrin derivative, the temperature may be changed depending on the crosstalk time. As the kneading device, for example, a crusher, a ball mill, a disper mill, an emulsifier, etc. are used.

一方、溶液法においては、まずサイクロデキストリン又
はその誘導体の飽和水性溶液を調製し、これに包接させ
る還元剤を加え、通常30分ないし12時間、好ましく
は1〜4時間かきまぜて包接錯合体を沈殿させたのち、
回収することにより光学活性還元剤を製造することがで
きる。
On the other hand, in the solution method, a saturated aqueous solution of cyclodextrin or its derivatives is first prepared, a reducing agent for inclusion is added thereto, and the mixture is stirred for usually 30 minutes to 12 hours, preferably 1 to 4 hours, to form an inclusion complex. After precipitating the
By recovering, an optically active reducing agent can be produced.

このようにして得られた包接錯合体は、公知の方法、例
えばスプレードライ法や真空乾燥法などによって乾燥さ
れる。得られた粉末は、還元剤それぞれの固有の臭気は
消失しているが、それを温湯に投入したり、ジエチルエ
ーテルで処理するとと、包接された化合物由来のシグナ
ルが観測されることから、粉末に還元剤が包接されてい
ることは明らかである。
The inclusion complex thus obtained is dried by a known method, such as a spray drying method or a vacuum drying method. The odor unique to each reducing agent has disappeared from the resulting powder, but when it is poured into hot water or treated with diethyl ether, signals originating from the clathrated compounds are observed. It is clear that the reducing agent is included in the powder.

サイクロデキストリン又はその誘導体と還元剤との使用
割合については、両者の組合せによって異なるが、目的
とする包接錯合体が、サイクロデキストリン又はその誘
導体1分子の空洞内に、還元剤分子0.5〜2個を包接
した化合物であることから、サイクロデキストリン又は
その誘導体1モルに対して、還元剤0.5モル以上を用
いることが望ましい。
The ratio of the cyclodextrin or its derivative and the reducing agent used varies depending on the combination of the two, but the intended inclusion complex contains 0.5 to 0.5 to 1 reducing agent molecules in the cavity of one molecule of the cyclodextrin or its derivative. Since it is a compound containing two molecules, it is desirable to use 0.5 mole or more of the reducing agent per mole of cyclodextrin or its derivative.

このようにして得られた包接錯合体から成る光学活性還
元剤の組成は、元素分析、NMR,IRなどによって確
認することができる。
The composition of the optically active reducing agent composed of the inclusion complex thus obtained can be confirmed by elemental analysis, NMR, IR, etc.

発明の効果 本発明の光学活性還元剤は、サイクロデキストリン又は
その誘導体と還元剤との包接錯合体であって、ブロキラ
ルな被還元物質を処理することにより、光学活性な還元
生成物を得ることができ、例えば生理活性物質や強誘電
性物質などの合成中間として重要な光学活性物質を製造
するのに、好適に用いられる。また、本発明の包接錯合
体は、還元剤の急速な酸化分解などに対する高い安定性
が要求される化学品などの分野において製品の製剤面、
使用面で安定性を増す目的で使用することもできる。
Effects of the Invention The optically active reducing agent of the present invention is an inclusion complex of a cyclodextrin or a derivative thereof and a reducing agent, and an optically active reduction product can be obtained by treating a brochiral substance to be reduced. For example, it can be suitably used to produce optically active substances that are important as intermediates in the synthesis of physiologically active substances and ferroelectric substances. In addition, the inclusion complex of the present invention can be used in the formulation aspect of products in the field of chemicals that require high stability against rapid oxidative decomposition of reducing agents, etc.
It can also be used to increase stability in use.

さらに、還元剤をサイクロデキストリン又はその誘導体
に包接することにより、還元剤の単離、精製を行い、安
定化することもできる。
Furthermore, by including the reducing agent in cyclodextrin or its derivative, the reducing agent can be isolated, purified, and stabilized.

なお、反応終了後は適当な溶媒を用いてサイクロデキス
トリン又はその誘導体を簡単に回収、精製し再使用する
ことも可能である。
Note that after the reaction is completed, the cyclodextrin or its derivatives can be easily recovered and purified using an appropriate solvent and reused.

実施例 次に、実施例により本発明をさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
Examples Next, the present invention will be explained in more detail with reference to examples.
The present invention is not limited in any way by these examples.

実施例1 α−サイクロデキストリン2109を、水1.511中
に錯体209を加え、約2時間かきまぜたのち、室温ま
で放冷し、生じた沈殿をろ過して包接錯合体を得た。冷
水で洗浄し、風乾した素数量は+909であり、l:o
、5体としての理論収量は2209であるので、収率は
約86%であった。
Example 1 Complex 209 was added to α-cyclodextrin 2109 in 1.51 l of water, stirred for about 2 hours, then allowed to cool to room temperature, and the resulting precipitate was filtered to obtain an inclusion complex. The prime quantity after washing with cold water and air drying is +909, l:o
, the theoretical yield as 5 bodies was 2209, so the yield was about 86%.

この包接錯合体のKBr法によるIRスペクトルを第1
図に示す。この図において、ピリジン・ポランの特性吸
収685cm−’、750cm−’、920(小)cm
−’、109109O’、+170 (δB−H) c
m−’、1455 (y II−N)cm−’、IN8
cm−’、23フO(V l−M) CrR−’は、最
後の吸収以外は、α−サイクロデキストリンと重なって
いる。
The IR spectrum of this inclusion complex by the KBr method is shown in the first
As shown in the figure. In this figure, the characteristic absorption of pyridine porane is 685 cm-', 750 cm-', 920 (small) cm
-', 109109O', +170 (δB-H) c
m-', 1455 (y II-N) cm-', IN8
cm-', 23FO(Vl-M) CrR-' overlaps with α-cyclodextrin except for the last absorption.

一方、友H−NMR(DMSO−ds中)スペクトルを
第2図に示す。この図において、σ−サイクロデキスト
リン由来の吸収はピリジン・ボラン起因の吸収とよく分
離しているので、その積分値の比較から、1:O,S錯
合体であることが分かる。なお、156”。
On the other hand, FIG. 2 shows the Tomo H-NMR spectrum (in DMSO-ds). In this figure, the absorption derived from σ-cyclodextrin is well separated from the absorption derived from pyridine-borane, and a comparison of the integral values reveals that it is a 1:O,S complex. In addition, 156".

8.6−”l’1BHsj:、?、6〜L4ppm(’
)吸収はピリジン核の■であり、他はa−サイクロデキ
ストリン由来のプロトンである。
8.6-"l'1BHsj:,?,6~L4ppm('
) The absorption is ■ of the pyridine nucleus, and the others are protons derived from a-cyclodextrin.

また、粉末X線回折スペクトルを第3図に示す。Moreover, the powder X-ray diffraction spectrum is shown in FIG.

この図からも、σ−サイクロデキストリンとは全く異な
るスペクトルを与えることは明らかである。
It is clear from this figure that it gives a spectrum completely different from that of σ-cyclodextrin.

これらの結果から、得られた錯合体は、a−サイクロデ
キストリン1分子とピリジン・ポラン0.5分子から成
る包接化合物であると確認できる。
From these results, it can be confirmed that the obtained complex is an inclusion compound consisting of one molecule of a-cyclodextrin and 0.5 molecules of pyridine poran.

実施例2 β−サイクロデキストリン1309を、水5aに入れて
かきまぜながら50〜60°Cに加熱して均一溶液を得
たのち、30℃まで冷却後、これにt−ブチルアミン・
ポラン109を加え、約2時間同温度でかきまぜ、次い
で室温まで冷却して生じた沈殿をろ過し、実施例1と同
様に精製して包接錯合体を得た。このものの元素分析値
を次に示す。
Example 2 β-Cyclodextrin 1309 was added to water 5a and heated to 50 to 60°C while stirring to obtain a homogeneous solution. After cooling to 30°C, t-butylamine/
Poran 109 was added, stirred at the same temperature for about 2 hours, then cooled to room temperature, the resulting precipitate was filtered, and purified in the same manner as in Example 1 to obtain an inclusion complex. The elemental analysis values of this material are shown below.

この結果から、該包接錯合体は1:lの包接化合物であ
り、かつ1分子中に、水分子2個程度を含むと考えられ
る。また、IRスペクトルでは、t−ブチル・ポランの
特性吸収440cm−’、860cm−’、10010
0O’、1120cm−’、1170 (δm−o) 
Cm−’、目00cm−’、目7G (v 1l−N)
 cm−’、2360 (11、−、I) cm−鬼は
、最後の吸収以外は、β−サイクロデキストリンの吸収
と重なっている。DMSO−d、中の’11−NMR吸
収スペクトルでは、3〜6ppmのβ−サイクロデキス
トリン起因の吸収と分離したメチル及びB11.による
吸収が2〜3ppmに現われ、両者の積分強度比から、
l:1錯合体であることが明らかとなった。
From this result, it is considered that the inclusion complex is a 1:l clathrate and contains about two water molecules in one molecule. In addition, in the IR spectrum, the characteristic absorptions of t-butyl porane are 440 cm-', 860 cm-', and 10010 cm-'.
0O', 1120cm-', 1170 (δm-o)
Cm-', eye 00cm-', eye 7G (v 1l-N)
cm-', 2360 (11,-,I) cm-Oni overlaps with the absorption of β-cyclodextrin except for the last absorption. In the '11-NMR absorption spectrum of DMSO-d, methyl and B11. absorption appears at 2 to 3 ppm, and from the integrated intensity ratio of the two,
It became clear that it was a 1:1 complex.

さらに、X線回折図もβ−サイクロデキストリンのそれ
とは異なるものであった。
Furthermore, the X-ray diffraction pattern was also different from that of β-cyclodextrin.

実施例3  − γ−サイクロデキストリン2709に、水500tlを
加えてスラリー状にし、これに1−ナフチルアミン・ポ
ラン錯体359を加えて、室温で5時間混練したのち、
これを冷エチルニー チルと冷水で洗浄後、風乾して包
接錯合体を得た。このものの元素分析値を次に示す。
Example 3 - 500 tl of water was added to γ-cyclodextrin 2709 to form a slurry, 1-naphthylamine-poran complex 359 was added thereto, and after kneading at room temperature for 5 hours,
This was washed with cold ethyl nityl and cold water, and then air-dried to obtain an inclusion complex. The elemental analysis values of this material are shown below.

この結果から、該包接錯合体は、1:1の包接化合物で
あり、1分子中に水分子2〜3個を含むと考えられる。
From this result, it is considered that the inclusion complex is a 1:1 clathrate compound and contains 2 to 3 water molecules in one molecule.

IRスペクトルもl−ナフチルアミン・ポランに起因す
る2365cII+−’ (ν81)が認められるが、
他の吸収はγ−サイクロデキストリン由来の吸収と重な
っている。また、DMSO−da中の’ H−NMR吸
収スペクトルでは、2.5〜6.5ppmのγ−サイク
ロデキストリン起因の吸収と分離して、7〜トリフ1分
子に対して、l−ナフチルアミン・ポラン1.08分子
を含む包接化合物であることが分がる。
The IR spectrum also shows 2365cII+-' (ν81), which is caused by l-naphthylamine poran.
Other absorptions overlap with those derived from γ-cyclodextrin. In addition, in the 'H-NMR absorption spectrum in DMSO-da, it is separated from the absorption due to γ-cyclodextrin at 2.5 to 6.5 ppm, and 7 to 1 molecule of truffle has 1 l-naphthylamine poran. It turns out that it is an inclusion compound containing .08 molecules.

実施例4 トリー〇−メチルβ−サイクロデキストリン3009を
、水10100Oに溶解し、これに5−メチルペンタヒ
ドロピリジル・ポラン錯体259を加え、室温で2時間
かきまぜたのち、50℃まで加熱し、生じた沈殿をろ別
後、熱水で洗浄し、風乾して錯合体を得た。素収量は2
809で、収率は86%であった。実施例1と同様に、
このものの元素分析、IR及び’ If−NMRスペク
トル分析、粉末X線回折を行い、これらの結果から、該
錯合体は1:1の包接化合物であることが確められた。
Example 4 Tri-0-methyl β-cyclodextrin 3009 was dissolved in 10100O of water, 5-methylpentahydropyridyl poran complex 259 was added thereto, stirred at room temperature for 2 hours, heated to 50°C, and the resulting The precipitate was filtered, washed with hot water, and air-dried to obtain a complex. The elementary yield is 2
809, yield was 86%. Similar to Example 1,
This product was subjected to elemental analysis, IR and 'If-NMR spectroscopy, and powder X-ray diffraction, and these results confirmed that the complex was a 1:1 clathrate.

実施例5 平均分子量5500のポリβ−サイクロデキストリン5
00gを水5aに入れ、50〜60℃に加熱しながらか
きまぜて得られた溶液を40℃まで冷却したのち、N−
メチルモルホリン・ポラン錯体509を加え、約4時間
かきまぜ、次いで室温以下に放冷し、生じた沈殿をろ過
後、冷水で洗浄し、風乾して錯合体を得た。素収量は5
209 (収率は95%)であった。実施例1と同様に
、元素分析、IR及び1■−NMRスペクトル分析、粉
末X線回折を行い、これらの結果から、該錯合体は1:
lの包接化合物であることが確かめられた。
Example 5 Polyβ-cyclodextrin 5 with an average molecular weight of 5500
00g in water 5a and stirred while heating to 50-60°C. After cooling the obtained solution to 40°C, N-
Methylmorpholine-poran complex 509 was added, stirred for about 4 hours, and then allowed to cool to room temperature or below. The resulting precipitate was filtered, washed with cold water, and air-dried to obtain a complex. The elementary yield is 5
209 (yield: 95%). Elemental analysis, IR and 1-NMR spectroscopy, and powder X-ray diffraction were conducted in the same manner as in Example 1, and from these results, it was found that the complex was 1:
It was confirmed that it is an inclusion compound of 1.

参考例 実施例1で得られたσ−サイクロデキストリンとピリジ
ン・ポランとの包接錯合体粉末+109を飽和食塩水溶
液に分散させたのち、これに、メチルn−へキシルケト
ン139を加え、20時間かきまぜた。次に、該包接錯
合体をろ別後、ジエチルエーテルで生成物を抽出した。
Reference Example After dispersing the inclusion complex powder +109 of σ-cyclodextrin and pyridine poran obtained in Example 1 in a saturated saline solution, methyl n-hexyl ketone 139 was added thereto and stirred for 20 hours. Ta. Next, after filtering off the inclusion complex, the product was extracted with diethyl ether.

分離した有機層を無水硫酸マグネシウムで乾燥後、減圧
濃縮し、次いでシリカゲルカラムとヘキサン20重量%
を含有する塩化メチレン溶液とで分離精製した。収率は
96%で、エタノール中濃度1.19/ 1oOdで測
定した[α]D2sは+5.51であり、光学純度56
%の[5]−2−オクタツールであった。また、このも
The separated organic layer was dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and then added to a silica gel column and 20% by weight hexane.
It was separated and purified using a methylene chloride solution containing . The yield was 96%, the [α]D2s measured at a concentration of 1.19/1oOd in ethanol was +5.51, and the optical purity was 56%.
% of [5]-2-octatool. Also, this one

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のa−サイクロデキストリン−ピリジ
ン・ポラン包接錯合体の1例及びピリジン・ポランのI
Rスペクトル図、第2図は該包接錯合体の’ H−NM
Rスペクトル図、第3図は該包接錯合体及びα−サイク
ロデキストリンのX線回折スペクトル図である。 特許出願人 工業技術院長 飯 塚 幸 三第1図 4000 3000 2000       1500
       1000        ”OCM″
FIG. 1 shows an example of the a-cyclodextrin-pyridine poran inclusion complex of the present invention and the I of pyridine poran.
R spectrum diagram, Figure 2 shows the 'H-NM of the inclusion complex.
R spectrum and FIG. 3 are X-ray diffraction spectra of the inclusion complex and α-cyclodextrin. Patent applicant: Director of the Agency of Industrial Science and Technology Kozo Iizuka Figure 1 4000 3000 2000 1500
1000 “OCM”

Claims (1)

【特許請求の範囲】 1 サイクロデキストリン又はその誘導体と還元剤との
包接錯合体から成る光学活性還元剤。 2 水性溶媒又は有機溶媒の存在下、サイクロデキスト
リン又はその誘導体に還元剤を包接させることを特徴と
する、サイクロデキストリン又はその誘導体と還元剤と
の包接錯合体から成る光学活性還元剤の製造方法。
[Scope of Claims] 1. An optically active reducing agent comprising an inclusion complex of cyclodextrin or a derivative thereof and a reducing agent. 2. Production of an optically active reducing agent comprising an inclusion complex of a cyclodextrin or a derivative thereof and a reducing agent, which is characterized by including the reducing agent in a cyclodextrin or a derivative thereof in the presence of an aqueous or organic solvent. Method.
JP3885688A 1988-02-22 1988-02-22 Optically active reducing agent and production thereof Granted JPH01213234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3885688A JPH01213234A (en) 1988-02-22 1988-02-22 Optically active reducing agent and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3885688A JPH01213234A (en) 1988-02-22 1988-02-22 Optically active reducing agent and production thereof

Publications (2)

Publication Number Publication Date
JPH01213234A true JPH01213234A (en) 1989-08-28
JPH0259130B2 JPH0259130B2 (en) 1990-12-11

Family

ID=12536846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3885688A Granted JPH01213234A (en) 1988-02-22 1988-02-22 Optically active reducing agent and production thereof

Country Status (1)

Country Link
JP (1) JPH01213234A (en)

Also Published As

Publication number Publication date
JPH0259130B2 (en) 1990-12-11

Similar Documents

Publication Publication Date Title
Yılmaz et al. Thermal decomposition of β-cyclodextrin inclusion complexes of ferrocene and their derivatives
JP2002544133A (en) Cucurbituril and method of synthesis
Chate et al. Ultrasound assisted multicomponent reactions: A green method for the synthesis of N-substituted 1, 8-dioxo-decahydroacridines using β-cyclodextrin as a supramolecular reusable catalyst in water
Toomari et al. Fabrication of biodendrimeric β-cyclodextrin via click reaction with potency of anticancer drug delivery agent
JP2634951B2 (en) Process for producing cyclodextrin used to produce a non-cloudy aqueous solution
Deng et al. Study on preparation and inclusion behavior of inclusion complexes between β-cyclodextrin derivatives with benzophenone
Periasamy et al. Host-guest inclusion complex of β-cyclodextrin and 4, 4′-(1, 4-phenylenediisopropylidene) bisaniline: Spectral, structural and molecular modeling studies
Shinde et al. Mono-6-deoxy-6-aminopropylamino-β-cyclodextrin as a supramolecular catalyst for the synthesis of indolyl 1H-pyrrole via one-pot four component reaction in water
Martins et al. Host–guest interactions between dapsone and β-cyclodextrin (Part II): thermal analysis, spectroscopic characterization, and solubility studies
Arabei et al. Spectral-luminescent properties and photoinduced transformations of bisanthene and bisanthenequinone
Kubik et al. Characterization and chemical modification of amylose complexes
JP2810264B2 (en) Method for producing inclusion compound of α-cyclodextrin having guest polymer end-capped and inclusion compound of cyclodextrin having guest polymer end-capped
JPH01213234A (en) Optically active reducing agent and production thereof
Ueno et al. Preparation and photoreaction of 6A, 6B-, 6A, 6C-, 6A, 6D-, and 6A, 6E-bis (anthracene-9-carbonyl)-. gamma.-cyclodextrins. A new method for regulation of product stereochemistry
JPH04505913A (en) Method for producing sucralfate and AAI-10001
JP3055565B2 (en) Cyclodextrin purification process
Tamagaki et al. Complexation and photodimerization of anthracene-2-sulfonate in the presence of per-6-aminocyclodextrins
JPS58210901A (en) Cyclodextrin derivative and its preparation
JPS61194059A (en) Tetracyanoquinodimethane having long-chain alkyl group
FR2550539A1 (en) NEW PROCESS FOR THE PRODUCTION OF CALCIUM GLYCOLATE CELLULOSE
Jiang et al. Studies on novel functional β-cyclodextrin and its metal complexes
FR2677030A1 (en) PROCESS FOR OBTAINING CYCLODEXTRINS OR OTHER COMPOUNDS LIKELY TO FORM CLATHRATES WITH GAS
CN110028601A (en) A kind of beta-cyclodextrin derivative, preparation method and the method for preparing supermolecule vesica
JPH01319502A (en) Cyclodextrin derivative and production thereof
KR100470867B1 (en) Water-soluble cyclodextrin-fullerene complex and preparation thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term