JPH01212766A - Hard polycrystalline diamond tool - Google Patents

Hard polycrystalline diamond tool

Info

Publication number
JPH01212766A
JPH01212766A JP3403388A JP3403388A JPH01212766A JP H01212766 A JPH01212766 A JP H01212766A JP 3403388 A JP3403388 A JP 3403388A JP 3403388 A JP3403388 A JP 3403388A JP H01212766 A JPH01212766 A JP H01212766A
Authority
JP
Japan
Prior art keywords
diamond
polycrystalline diamond
alloy
brazing
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3403388A
Other languages
Japanese (ja)
Other versions
JP2662692B2 (en
Inventor
Tsutomu Nakamura
勉 中村
Tetsuo Nakai
哲男 中井
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63034033A priority Critical patent/JP2662692B2/en
Publication of JPH01212766A publication Critical patent/JPH01212766A/en
Application granted granted Critical
Publication of JP2662692B2 publication Critical patent/JP2662692B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a diamond tool having superior strength and heat resistance by brazing polycrystalline diamond synthesized by a low pressure vapor phase method to a support member made of a metal with an alloy brazing filler metal having a specified m.p. CONSTITUTION:Polycrystalline diamond made practically of diamond and having 0.1-3.0mm thickness is synthesized by a low pressure vapor phase method and brazed to a support member with an alloy brazing filler metal having 700-1,300 deg.C m.p. An alloy for high temp. brazing contg. one or more among Au, Ag, Cu, Ti and Ta is used as the brazing filler metal, the thickness is regulated to 0.1-100mum and the support member is made of steel or a sintered carbide alloy. A diamond tool having superior heat resistance is obtd. without reducing strength.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は切削工具又は耐摩工具等として用うるに好適な
ダイヤモンド工具に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a diamond tool suitable for use as a cutting tool, a wear-resistant tool, or the like.

〔従来の技術] ダイヤモンド微粉末を超高圧下でg iMしてなるダイ
ヤモンド焼結体は、既に非鉄金属類の切削加工用工具、
ドリルビットあるいは線引ダイス等に広く使用されてい
る。
[Prior art] Diamond sintered bodies made by gimming fine diamond powder under ultra-high pressure have already been used as tools for cutting non-ferrous metals.
Widely used for drill bits and wire drawing dies.

例えば特公昭52−12126号公報にはこの種の焼結
体の製法が開示されており、そこではダイヤモンドの粉
末をWe−Co題硬合金の成型体または焼結体に接する
ように配置し、超硬合金の液相が生じる温度以上の温度
並びに超高圧下で焼結が行なわれる。このとき、超硬合
金中のCOの一部は、ダイヤモンド粉末層中に侵入し、
結合金属として作用する。この先行技術に開示された方
法で作られたダイヤモンド焼結体は、約10〜15体積
係のCOを含有する。
For example, Japanese Patent Publication No. 52-12126 discloses a method for producing this type of sintered body, in which diamond powder is placed in contact with a molded or sintered body of We-Co hard alloy, Sintering is carried out at a temperature above the temperature at which the liquid phase of the cemented carbide occurs and under ultra-high pressure. At this time, some of the CO in the cemented carbide penetrates into the diamond powder layer,
Acts as a binding metal. Diamond sintered bodies made by the method disclosed in this prior art contain about 10 to 15 parts by volume of CO.

上記した脱結体は、非鉄金属等の切削加工用工具として
は十分実用的な性能を有する。しかしながら、耐熱性に
おいて劣るとい9欠点があった。例えば、この焼結体を
750℃以上の温度に加熱すると、耐摩耗性及び強度の
低下が見られ、さらに900℃以上の温度では焼結体が
破壊することになる。これは、ダイヤモンド粒子と結合
材であるCOとの界面においてダイヤモンドの黒鉛化が
生じること、並びに両者の加熱時における熱膨張率の差
に基づく熱応力によるものと考えられる。
The deconsolidation described above has sufficient practical performance as a cutting tool for non-ferrous metals and the like. However, there were 9 drawbacks such as poor heat resistance. For example, when this sintered body is heated to a temperature of 750° C. or higher, a decrease in wear resistance and strength is observed, and furthermore, at a temperature of 900° C. or higher, the sintered body breaks. This is thought to be due to the graphitization of diamond occurring at the interface between the diamond particles and CO, which is a binder, and thermal stress due to the difference in thermal expansion coefficients during heating of the two.

また、Co  を結合材とした焼結体を酸処理して大部
分の結合金属層を除去したものでは、焼結体の耐熱性が
向上することが知られている。
Furthermore, it is known that when a sintered body using Co as a binder is treated with an acid to remove most of the binding metal layer, the heat resistance of the sintered body is improved.

例えば、特開昭53−1)4589号公報には、耐熱性
の改善されたダイヤモンド焼結体の製造方法が開示され
ている。しかしながら、この先行技術では、除去された
結合金属相の部分は空孔となるため、耐熱性こそ向上す
るが、強度が低下するという問題があった。
For example, JP-A-53-1) 4589 discloses a method for producing a diamond sintered body with improved heat resistance. However, in this prior art, the removed portions of the bonded metal phase become pores, so although the heat resistance is improved, there is a problem in that the strength is reduced.

他方、ダイヤモンドの粉末のみを超高圧下で焼結する試
みも行なわれているが、ダイヤモンド粒子自身が変形し
難いため、粒子の間隙には圧力が伝達されず、したがっ
て黒鉛化が生じ、ダイヤモンド−黒鉛の複合体しか得ら
れていない。
On the other hand, attempts have been made to sinter only diamond powder under ultra-high pressure, but since the diamond particles themselves are difficult to deform, pressure is not transmitted to the gaps between the particles, resulting in graphitization and diamond powder. Only graphite composites have been obtained.

さらに、ダイヤモンドのみからなる多結晶体を薄膜とし
てコーティングした工具は知られているが、この種の工
具は膜厚が薄く、かつ基板との密着強度が不十分である
ため、十分な性能が得られていない。
Furthermore, tools coated with a thin film of polycrystalline material consisting only of diamond are known, but this type of tool has a thin film and insufficient adhesion strength to the substrate, so it is difficult to obtain sufficient performance. It has not been done.

本発明は上記の従来工具の問題点を解決した強度、耐摩
耗性、耐熱性の高いダイヤモンド工具を提供することを
目的としてなされたものである。
The object of the present invention is to provide a diamond tool with high strength, wear resistance, and heat resistance, which solves the problems of the conventional tools described above.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は低圧気相法により合成された実質的にダイヤモ
ンドのみからなる多結晶ダイヤモンドが、融点700〜
1300℃の合金ろう材により金属および/または合金
からなる支持部材にろう付けされたものであることを特
徴とする硬質多結晶ダイヤモンド工具に関する。
In the present invention, polycrystalline diamond synthesized by a low-pressure gas phase method and consisting essentially of diamond has a melting point of 700 to 700.
The present invention relates to a hard polycrystalline diamond tool, characterized in that it is brazed to a support member made of metal and/or alloy using an alloy brazing filler metal at 1300°C.

本発明における該多結晶ダイヤモンドの厚さは1)〜五
〇−の範囲内が好ましい。またろう材厚さは0.1〜1
00μmの範囲内にあることが好ましい。本発明の合金
ろう材としてはAu。
The thickness of the polycrystalline diamond in the present invention is preferably within the range of 1) to 50-50. Also, the thickness of the brazing material is 0.1 to 1
It is preferable that it is within the range of 00 μm. The alloy brazing material of the present invention is Au.

Ag、Ou、TiおよびTaのうちの1M1以上を含有
する扁温ろう付合金が好ましく、支持部材としては鋼又
は焼結炭化物合金が好ましい。
A cryogenic brazing alloy containing 1M1 or more of Ag, Ou, Ti, and Ta is preferable, and steel or a sintered carbide alloy is preferable as the supporting member.

本発明の多結晶ダイヤモンド工具は従来の焼結ダイヤモ
ンド工具に比べて耐熱性が大幅に改善され、約1300
℃の温度での加熱に対しても耐え得ることがわかった。
The polycrystalline diamond tool of the present invention has significantly improved heat resistance compared to conventional sintered diamond tools, and has a heat resistance of about 1300
It has been found that it can withstand heating at temperatures of .

又強度、耐摩耗性も高い。It also has high strength and wear resistance.

〔作用〕[Effect]

以下に本発明の多結晶ダイヤモンド工具をその製造方法
を示して説明する。
The polycrystalline diamond tool of the present invention will be explained below by showing its manufacturing method.

本発明において、多結晶ダイヤモンドの合成は、ダイヤ
モンドが熱力学的に準安定な低圧条件下で気相から析出
させる方法による。この低圧気相法は1)化学蒸溜法(
avn法)、2)プラズマOVD法、3)イオンビーム
蒸着法に大別されるが、所望の方法を選択して実施する
ことができる。
In the present invention, polycrystalline diamond is synthesized by a method in which diamond is precipitated from a gas phase under low pressure conditions where diamond is thermodynamically metastable. This low-pressure gas phase method consists of 1) chemical distillation method (
avn method), 2) plasma OVD method, and 3) ion beam evaporation method, and a desired method can be selected and implemented.

これらの低圧気相法を用いて、基板上にCL1〜五〇■
の厚さの実質的にダイヤモンドのみからなる多結晶体を
作製する。ここで厚さtl−(L1■以上とするのは、
実際に切削工具として使用した場合、工具寿命時の逃げ
面摩耗幅が1)−以上となることが多いことによる。ま
た10m以下とするのは、一般的に使用される工具での
厚さを示すもので、特にこの直にその性能が左右される
など限定されるものではない。さらに耐摩耗性を特に要
求する場合には、その厚さをα5−〜五〇−とすればよ
い。これは、多結晶体の厚さが厚くなれば放熱特性が良
好となシ、工具使用時の刃先温度の上昇が防止されるた
めと考えられる。通常使用される多結晶体の厚さとして
は、α5〜i、Om程度が一般的である。
Using these low-pressure gas phase methods, CL1 to 50■
A polycrystalline body consisting essentially of diamond with a thickness of . Here, the thickness tl-(L1■ or more) is
This is because when actually used as a cutting tool, the flank wear width during the tool life is often 1)- or more. Moreover, the thickness of 10 m or less indicates the thickness of a commonly used tool, and is not particularly limited as it directly affects its performance. Furthermore, if wear resistance is particularly required, the thickness may be set to α5- to 50-. This is thought to be because the thicker the polycrystalline body, the better its heat dissipation properties, which prevents the temperature of the cutting edge from increasing during use of the tool. The thickness of a commonly used polycrystalline body is generally approximately α5~i, Om.

多結晶体を析出される基板の材質としては、多結晶体作
製中に生ずる内部応力の緩和を考慮して、その熱膨張率
がダイヤモンドのそれに近いものが好ましく、これに該
当するものとして例えばMo、W、Si、日10 、ム
tH、B、O等が挙げられる。
The material of the substrate on which the polycrystalline material is deposited is preferably one whose coefficient of thermal expansion is close to that of diamond, taking into consideration the relaxation of internal stress that occurs during the preparation of the polycrystalline material, such as Mo. , W, Si, H10, MutH, B, O, and the like.

次にこの多結晶ダイヤモンドが析出した基板から機械的
に又は化学処理により該基板を除去してダイヤモンドの
みの多結晶体とし、該多結晶体を支持部材にろう付けす
る。融点が700〜1300℃の合金ろう材を用いて、
ダイヤモンド多結晶体と金属および/または合金からな
る支持部材とを接合する。使用ろう材の融点を上記範囲
に限定する理由は、700℃未満の融点のろ9材を用い
ると多結晶体と支持部材の接合強度が低くな9、工具作
製の際の刃付は作業工程や、工具使用時にろう耐部分で
の剥離が生ずるため好ましくない。また、1300’C
を越える高融点ろう材の使用は、ろう付時での多結晶ダ
イヤモンドの黒鉛への変換が生じ、工具性能の低下を招
くため好ましくない。
Next, the substrate on which the polycrystalline diamond has been deposited is removed mechanically or chemically to form a polycrystalline body containing only diamond, and this polycrystalline body is brazed to a support member. Using an alloy brazing material with a melting point of 700 to 1300°C,
A diamond polycrystal and a support member made of metal and/or alloy are joined. The reason why the melting point of the brazing filler metal used is limited to the above range is that if a filler metal with a melting point of less than 700°C is used, the bonding strength between the polycrystalline body and the support member will be low9, and the cutting edge during tool manufacturing is a work process. It is also undesirable because peeling occurs at the braze-resistant part when using tools. Also, 1300'C
It is not preferable to use a brazing filler metal with a high melting point exceeding 100% because it converts polycrystalline diamond into graphite during brazing, resulting in a decrease in tool performance.

従って、上記のろう付温度範囲内でなるべく接合強度の
高いろう材を用いることが好ましく、これに・該当する
高温ろう材としては、例えばAu、Ag、Cu、Tiお
よびTa  から選ばれる1種以上を含有するものが挙
げられる。具体列は実施列に示す。また、これ等のろう
材を使用しても、ろう術後のろう材厚さを1)1〜10
0μm、好ましくは50μm8匿とすることが必要であ
る。0.1μm未満ではろう付が不均一となシやすく、
一方100μmを越えるとろう何部の強度低下を招くこ
とにな9好ましくない。ろう付の方法としては、非酸化
性雰囲気中での高周波加熱或は真空中での加熱による方
法等で実施することが可能である。
Therefore, it is preferable to use a brazing filler metal that has as high a bonding strength as possible within the above brazing temperature range, and suitable high-temperature brazing filler metals include, for example, one or more types selected from Au, Ag, Cu, Ti, and Ta. Examples include those containing. The specific columns are shown in the implementation column. In addition, even if these brazing fillers are used, the thickness of the filler filler after brazing surgery may be 1) 1 to 10%.
It is necessary to set the thickness to 0 μm, preferably 50 μm. If it is less than 0.1 μm, brazing tends to be uneven;
On the other hand, if it exceeds 100 .mu.m, this is not preferable as it may lead to a decrease in the strength of the wax section. Brazing can be carried out by high frequency heating in a non-oxidizing atmosphere, heating in vacuum, or the like.

支持部材としては通常焼入鋼が用いられるが、特に剛性
が要求される場合には焼結炭化物合金例えばwe金合金
TIC合金、Mono  合金等を用いることができる
。また、これら以外の金属および/または合金を支持部
材とすることは勿論可能である。なお、支持部材の厚さ
については特に限定するところはないが、ろう付時の熱
応力を緩和するには、多結晶体と支持部材との熱膨張率
の差によって、これ等の厚さの適切な比率を選定するこ
とが重要である。例えば熱膨張率の値がダイヤモンドの
それの5〜6倍であるw4を支持部材に用いる場合には
、支持部材の厚さは多結晶体のそれよりも薄くしないと
、剥離が生じやすい。
Hardened steel is usually used as the support member, but if particularly rigidity is required, a sintered carbide alloy such as a we gold alloy TIC alloy, a Mono alloy, etc. can be used. Furthermore, it is of course possible to use metals and/or alloys other than these as the supporting member. There is no particular limit to the thickness of the support member, but in order to alleviate thermal stress during brazing, the thickness of the polycrystalline body and the support member may be adjusted depending on the difference in thermal expansion coefficient. It is important to select the appropriate ratio. For example, when W4, which has a coefficient of thermal expansion 5 to 6 times that of diamond, is used as a support member, the thickness of the support member must be made thinner than that of a polycrystalline material, otherwise peeling will easily occur.

以上のように作製される本発明の多結晶ダイヤモンド工
具は、以下の実施例に示すように、1300℃の加熱に
も耐える著しく改善された耐熱性を持つがこの理由とし
ては、ダイヤモンドのみからなシ、熱劣化を促進させる
結合相が存在しないことが考えられる。またこのことは
、強度の点からも従来の焼結ダイヤモンドよりwれると
い9特徴を付与している。
The polycrystalline diamond tool of the present invention produced as described above has significantly improved heat resistance that can withstand heating to 1300°C, as shown in the following examples. It is conceivable that there is no binder phase that promotes thermal deterioration. This also gives it nine characteristics that make it superior to conventional sintered diamond in terms of strength.

〔実施例」 以下、実施列に基づき、本発明の詳細な説明する。〔Example" Hereinafter, the present invention will be described in detail based on the implementation series.

実施列1 マイクロ波プラズマOVD法により、基板にMOを使用
して、以下の条件で8時間で(18mmの厚さの多結晶
ダイヤモンドを合成した。
Example 1 Polycrystalline diamond with a thickness of 18 mm was synthesized by microwave plasma OVD method using MO as a substrate under the following conditions for 8 hours.

原料ガス(am ) : H,200CC/m1n−O
Ha 4 CC/ min %Ar 100 cc/ 
min圧カニ 500 torr マイクロ波発撮機出カニaaow 得られ九多結晶ダイヤモンドμ粒径3μm8度で、測定
の結果、比重は五51を示し、またうiン分光分析によ
る同定ではダイヤモンド単相からなることが明らかとな
った。
Raw material gas (am): H, 200CC/m1n-O
Ha 4 CC/ min %Ar 100 cc/
min pressure crab 500 torr microwave camera output crab aaow The obtained nine polycrystalline diamond μ grains had a diameter of 3 μm and 8 degrees, and as a result of measurement, the specific gravity was 551, and the identification by i spectroscopic analysis showed that it was from a diamond single phase. It became clear that this would happen.

次にこのダイヤモンドと基板の接合したものを王水処理
して、基板のみを除去した。これにより得られた実質的
にダイヤモンドのみからなる多結晶体を、厚さ1)−の
Ag−Ti合金69材を用いて、we−co合金製支持
体にろう付けした。
Next, this bonded diamond and substrate was treated with aqua regia to remove only the substrate. The thus obtained polycrystalline body consisting essentially of diamond was brazed to a WE-CO alloy support using an Ag-Ti alloy 69 material having a thickness of 1).

ろう付けは2 X 10−’ torr  の真空中で
、1000℃に20分間加熱することにより行なった。
Brazing was performed by heating to 1000°C for 20 minutes in a vacuum of 2 x 10-' torr.

工具におけるろ9材厚さは50μmであった。The thickness of the filter 9 material in the tool was 50 μm.

以上の方法により得られた工具素材を研削加工して切削
チップを作製した。比較として、■COを10容ffi
%含有する焼結ダイヤモンド並びに■これを酸処理して
Co  を抽出したもの、の■、■についても切削チッ
プを作製し、性能を評価した。尚、■の焼結ダイヤモン
ドのろう付けは、上記条件では黒鉛への変化が顕著であ
ったため、融点が700℃の銀ろうを使用し、大気中で
高周波加熱により行なった。
A cutting tip was produced by grinding the tool material obtained by the above method. For comparison, 10 volumes of CO
Cutting chips were also prepared for sintered diamond containing 1.2% and 2.2 and 4.2 for sintered diamond containing 2.0% of Co2 and 2.2 for extracting Co2 by acid treatment, respectively, and their performance was evaluated. Incidentally, in brazing the sintered diamond (2), since the change to graphite was remarkable under the above conditions, silver solder having a melting point of 700° C. was used and carried out by high-frequency heating in the atmosphere.

評価結果を表1に示す。尚、この評価は被剛材にグイツ
カース硬度2000のアルミナ焼結体を用い、切削速度
: 30 m / min及び80m/ min s切
シ込み:ユ2憇、送り:α025■/rθv1並びに切
削長:400m、湿式の条件で行なった。
The evaluation results are shown in Table 1. In this evaluation, an alumina sintered body with a Guitzkaas hardness of 2000 was used as the rigid material, cutting speed: 30 m/min and 80 m/min s, depth of cut: 2 mm, feed: α025■/rθv1, and cutting length: The test was conducted at a distance of 400 m under wet conditions.

表  1 この結果、■は■に比べて耐熱性が向上しているため、
80 m / minの切削速度条件で摩耗量が小さく
なっていると考えられるが、切削抵抗(特に背分力)が
増大する3 0 wl / !ninの切削速度条件で
は強度不足のため、すくい面が剥離状に欠損したと思わ
れる。本発明の多結晶ダイヤモンド工具は、比較品■、
■に比べ強度、耐摩耗性、耐熱性のいずれも向上してい
るため、切削速度に依存せず摩耗量がはるかに少ないも
のであることが明らかとなった。
Table 1 As a result, ■ has improved heat resistance compared to ■, so
It is thought that the amount of wear is reduced under the cutting speed condition of 80 m/min, but at 30 wl/min, the cutting resistance (especially thrust force) increases. It is thought that the rake face was chipped in the form of peeling due to insufficient strength under the cutting speed condition of nin. The polycrystalline diamond tool of the present invention is a comparative product ■,
Since the strength, wear resistance, and heat resistance are all improved compared to (2), it is clear that the amount of wear is much smaller regardless of the cutting speed.

実施列2 実施列1と同様のマイクロ波プラズマOVD法により、
表2に示した条件で、多結晶ダイヤモンドを合成し、研
削加工により基板を除去後、支持部材にろう付を行なっ
た後、切削チップを作製した。比較として、Co を含
有する市販の焼結ダイヤモンド(HN3)、超硬合金に
薄膜ダイヤモンドコーティングしたもの(K、L)も工
具作製を行なった。本発明による多結晶体(A−G)は
いずれもダイヤモンド単相からなシ、グイツカース硬度
10000〜12000ゆ/■2を示し、この特性はろ
う付は加熱後も変化が見られなかった。これらと、比較
材H〜−の9ち、ろう付温度が高く焼結体が劣化した比
較品Hを除いた工具について切削性能を比較した。
Implementation row 2 By the same microwave plasma OVD method as in implementation row 1,
Polycrystalline diamond was synthesized under the conditions shown in Table 2, the substrate was removed by grinding, and a cutting tip was produced after brazing to a support member. For comparison, tools were also fabricated using commercially available sintered diamond containing Co (HN3) and cemented carbide coated with a thin diamond film (K, L). All of the polycrystalline bodies (A-G) according to the present invention were composed of a single diamond phase and exhibited a Guitzkaas hardness of 10,000 to 12,000 Y/2, and this property did not change even after heating during brazing. The cutting performance was compared between these and the tools of Comparative Materials H to -, excluding Comparative Product H, which had a high brazing temperature and a deteriorated sintered body.

表3にその比較結果を示す。尚、切削条件は被剛材にA
4−20 % Bを用いて、切削速度:500 m/m
1nx切シ込み; (L4m1)、送シ:α1鱈/ r
ev 、切削時間:50m1n、乾式外周長手方向旋削
により行なった。
Table 3 shows the comparison results. The cutting conditions are A for the rigid material.
Using 4-20% B, cutting speed: 500 m/m
1nx cutting depth; (L4m1), feed: α1 cod/r
ev, cutting time: 50 m1n, and was carried out by dry turning in the longitudinal direction of the outer periphery.

表 3 従来の焼結ダイヤモンドは摩耗が大キく、また薄膜ダイ
ヤモンドコーティング工具はコーテイング膜の密着強度
が弱いため剥離が生じたのに対し、本発明による工具は
欠損、剥離等が生ずることなく、極めて高い耐摩耗特性
を有することが判明した。
Table 3 Conventional sintered diamonds suffer from severe wear, and thin-film diamond-coated tools suffer from peeling due to the weak adhesion of the coating film, whereas the tool according to the present invention does not suffer from chipping or peeling. It was found to have extremely high wear resistance properties.

実施列3 高周波プラズマCt’VD法及び熱フイラメント0’V
D法により多結晶ダイヤモンドを合成した。
Implementation row 3 High frequency plasma Ct'VD method and thermal filament 0'V
Polycrystalline diamond was synthesized by method D.

前者の方法では基板にMOを用い、真空排気した後、こ
れを900℃に加熱した。その後、モル比でOH,:H
,=1:300の混合ガスを40 cc/ minで流
し、バルブ調整を行なって反応室内の圧力を55 to
rr  にした。次に、高周波発振機により850Wの
出力を付与し、プラズマの誘起を行なって、厚さ(L8
−の多結晶ダイヤモンドを合成した。
In the former method, MO was used as the substrate, and after being evacuated, it was heated to 900°C. Then, the molar ratio is OH, :H
, = 1:300 was flowed at 40 cc/min, and the pressure inside the reaction chamber was adjusted to 55 to
I made it rr. Next, a high frequency oscillator applies an output of 850W to induce plasma, and the thickness (L8
− polycrystalline diamond was synthesized.

後者の方法では基板にWを使用して、真空排気後950
℃に加熱した。これに上記と同組成の混合ガスを70 
CC/ minで流した。尚、圧力は50 torr 
 一定となるように調整を行なった。
In the latter method, W is used for the substrate and 950°C is used after evacuation.
heated to ℃. Add 70% of the mixed gas with the same composition as above to this.
It was run at CC/min. In addition, the pressure is 50 torr
Adjustments were made to keep it constant.

次に、W製フィラメントにtiを流し、フィラメント温
度Q2100℃としてダイヤモンドを析出させ、厚さ1
81IIIの多結晶ダイヤモンドを合成した。
Next, ti was poured into a W filament, the filament temperature was set to 2100°C, and diamond was precipitated to a thickness of 1
81III polycrystalline diamond was synthesized.

以上のように基板に多結晶ダイヤモンドを析出させた後
、研削加工により、これらの基板を除去した。得られた
多結晶体をムg−Cu合金ろう材を用いて鋼のシャンク
に真空中850℃の条件でろう付けした。ろう材の厚さ
は50μmでおった。これを加工して工具を作製し、実
施列1と同じ評価法により切削性能を調べた。表4にそ
の結果を示す。これにより合成方法によらず浸れた工具
が得られることが明らかとなった。
After polycrystalline diamond was deposited on the substrates as described above, these substrates were removed by grinding. The obtained polycrystalline body was brazed to a steel shank in vacuum at 850° C. using a mug-Cu alloy brazing filler metal. The thickness of the brazing material was 50 μm. A tool was manufactured by processing this, and its cutting performance was examined using the same evaluation method as in Example 1. Table 4 shows the results. As a result, it became clear that a immersed tool could be obtained regardless of the synthesis method.

表  4 〔発明の効果〕 上述の如く、本発明の硬質多結晶ダイヤモンド工具は、
低圧気相法により合成された結合相がなく実質的にダイ
ヤモンドのみからなる多結晶ダイヤモンドが、融点70
0〜1300℃の合金ろう材により金属および/または
合金からなる支持部材にろう付されたものであって、切
削工具、掘削工具、ドレッサー等の各種工具に好適な、
強度、耐摩耗性、耐熱性に優れた工具であり、特に、従
来の焼結ダイヤモンドと異なり、強度を低下させること
なく、耐熱性が大幅に改善されているので、工具材とし
ての適用範囲を飛躍的に拡大できるものである。
Table 4 [Effects of the invention] As mentioned above, the hard polycrystalline diamond tool of the present invention has the following effects:
Polycrystalline diamond synthesized by a low-pressure gas phase method and consisting essentially of diamond without a binder phase has a melting point of 70.
Brazed to a support member made of metal and/or alloy with an alloy brazing material at 0 to 1300°C, suitable for various tools such as cutting tools, excavation tools, dressers, etc.
It is a tool with excellent strength, wear resistance, and heat resistance.In particular, unlike conventional sintered diamond, its heat resistance has been greatly improved without reducing strength, so it has a wide range of applications as a tool material. This is something that can be expanded dramatically.

Claims (5)

【特許請求の範囲】[Claims] (1)低圧気相法により合成された実質的にダイヤモン
ドのみからなる多結晶ダイヤモンドが、融点700〜1
300℃の合金ろう材により金属および/または合金か
らなる支持部材にろう付けされたものであることを特徴
とする硬質多結晶ダイヤモンド工具。
(1) Polycrystalline diamond synthesized by a low-pressure gas phase method and consisting essentially of diamond has a melting point of 700 to 1
A hard polycrystalline diamond tool, characterized in that it is brazed to a support member made of metal and/or alloy using an alloy brazing filler metal at 300°C.
(2)多結晶ダイヤモンドの厚さが0.1〜3.0mm
であることを特徴とする特許請求の範囲第(1)項記載
の硬質多結晶ダイヤモンド工具。
(2) Thickness of polycrystalline diamond is 0.1 to 3.0 mm
A hard polycrystalline diamond tool according to claim (1), characterized in that:
(3)合金ろう材の厚さが0.1〜100μmであるこ
とを特徴とする特許請求の範囲第(1)項又は第(2)
項記載の硬質多結晶ダイヤモンド工具。
(3) Claim (1) or (2) characterized in that the thickness of the alloy brazing material is 0.1 to 100 μm.
Hard polycrystalline diamond tools as described in Section 1.
(4)合金ろう材がAu、Ag、Cu、TiおよびTa
から選ばれる1種以上を含有する高温ろう付合金である
ことを特徴とする特許請求の範囲第(1)項ないし第(
3)項のいずれかに記載の硬質多結晶ダイヤモンド工具
(4) The alloy brazing filler metal is Au, Ag, Cu, Ti, and Ta.
Claims (1) to (1) are characterized in that they are high-temperature brazing alloys containing one or more selected from:
The hard polycrystalline diamond tool according to any of item 3).
(5)支持部材が鋼又は焼結炭化物合金であることを特
徴とする特許請求の範囲第(1)項ないし第(3)項の
いずれかに記載の硬質多結晶ダイヤモンド工具。
(5) The hard polycrystalline diamond tool according to any one of claims (1) to (3), wherein the support member is made of steel or a sintered carbide alloy.
JP63034033A 1988-02-18 1988-02-18 Hard polycrystalline diamond tool Expired - Lifetime JP2662692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63034033A JP2662692B2 (en) 1988-02-18 1988-02-18 Hard polycrystalline diamond tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63034033A JP2662692B2 (en) 1988-02-18 1988-02-18 Hard polycrystalline diamond tool

Publications (2)

Publication Number Publication Date
JPH01212766A true JPH01212766A (en) 1989-08-25
JP2662692B2 JP2662692B2 (en) 1997-10-15

Family

ID=12403029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63034033A Expired - Lifetime JP2662692B2 (en) 1988-02-18 1988-02-18 Hard polycrystalline diamond tool

Country Status (1)

Country Link
JP (1) JP2662692B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274271A (en) * 1990-03-26 1991-12-05 Semiconductor Energy Lab Co Ltd Thin diamond film-coated member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136605A (en) * 1984-12-07 1986-06-24 Keiichiro Shoji Joining method of sintered hard material and metallic material
JPH01153228A (en) * 1987-12-10 1989-06-15 Asahi Daiyamondo Kogyo Kk Vapor phase composite method for producing diamond tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136605A (en) * 1984-12-07 1986-06-24 Keiichiro Shoji Joining method of sintered hard material and metallic material
JPH01153228A (en) * 1987-12-10 1989-06-15 Asahi Daiyamondo Kogyo Kk Vapor phase composite method for producing diamond tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274271A (en) * 1990-03-26 1991-12-05 Semiconductor Energy Lab Co Ltd Thin diamond film-coated member

Also Published As

Publication number Publication date
JP2662692B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US5037704A (en) Hard sintered compact for a tool
EP0365218B1 (en) A polycrystal diamond fluted tool and a process for the production of the same
US5366522A (en) Polycrystalline diamond cutting tool and method of manufacturing the same
JP4842962B2 (en) Sintered cemented carbide using vanadium as gradient forming element
EP0503822B2 (en) A diamond- and/or diamond-like carbon-coated hard material
WO2000079022A1 (en) Coated hard alloy
JP2001504550A (en) Method for producing diamond-coated member
JPS6117909B2 (en)
JPH01246361A (en) Diamond-coated sintered alloy having excellent release resistance and its production
JP2607592B2 (en) High wear resistant polycrystalline diamond tool and method of manufacturing the same
JPH01212766A (en) Hard polycrystalline diamond tool
JPH10237650A (en) Wc base cemented carbide and its production
JPH01225774A (en) High-hardness polycrystalline diamond tool
EP0706850B1 (en) Brazable cobalt-containing CBN compacts
JP3353335B2 (en) Diamond coated hard material and method for producing the same
JP3422028B2 (en) Boron nitride coated hard material and method for producing the same
JPH0623602A (en) Vapor phase synthesis diamond tool
JPH0929508A (en) High tenacity surface-coated hard metal
JPS59166671A (en) Surface-coated tool member excellent in wear resistance
JPH0382767A (en) Cutting tool made of surface coated tungsten carbide-base sintered hard alloy excellent in adhesive strength of hard coating layer
JP3067259B2 (en) Diamond coated hard material and method for producing the same
JPS63157873A (en) Surface coated tungsten carbide-base sintered super hard alloy for milling
JPS62142769A (en) High hardness sintered body for tool
JPH04300105A (en) Ultra-high pressure-sintered-material cutting tool excellent in hard phase adhesion
JPH04146005A (en) Diamond coated extra hard material, throw away tip and their manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11