JPH01211769A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01211769A
JPH01211769A JP3723888A JP3723888A JPH01211769A JP H01211769 A JPH01211769 A JP H01211769A JP 3723888 A JP3723888 A JP 3723888A JP 3723888 A JP3723888 A JP 3723888A JP H01211769 A JPH01211769 A JP H01211769A
Authority
JP
Japan
Prior art keywords
photoreceptor
resin
layer
charge
photosensitive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3723888A
Other languages
Japanese (ja)
Inventor
Tatsuya Niimi
達也 新美
Minoru Umeda
実 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3723888A priority Critical patent/JPH01211769A/en
Publication of JPH01211769A publication Critical patent/JPH01211769A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/104Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0503Inert supplements
    • G03G5/0507Inorganic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve chargeability of an electrophotographic sensitive body, to reduce relative humidity at high temp. and under high humidity, and to prevent dewing of the photosensitive body at low temp. by imparting absorptivity for infrared rays to an electroconductive substrate and/or a photosensitive layer. CONSTITUTION:A compd. having absorptivity for infrared rays is incorporated into an electroconductive substrate 11 and/or a photosensitive layer 15 of a photosensitive layer. Suitable electroconductive substrate 11 having absorptivity for infrared rays is a metal such as Al coated with CuO, etc. by vapor deposition or sputtering, etc. Suitable absorbent for infrared rays to be incorporated into a photosensitive layer 15 is CuO, etc. Thus, chargeability of an org. photosensitive body is improved, relative humidity of atmosphere of a photosensitive body is reduced even at high temp. and under high humidity, and dewing of the photosensitive body at low temp. is prevented.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は電子写真感光体に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to an electrophotographic photoreceptor.

〔従来技術〕[Prior art]

電子写真複写機あるいはプリンター等に利用される感光
体の感光層は、例えば色素増感された酸化亜鉛、硫化カ
ドミウム、セレン、又セレンを含むセレンーヒ素、セレ
ン−テルル化合物等に代表される無機系の感光層と種々
多くの有機系の感光層に2分される。
The photosensitive layer of a photoreceptor used in electrophotographic copying machines, printers, etc. is made of inorganic materials such as dye-sensitized zinc oxide, cadmium sulfide, selenium, and selenium-arsenic and selenium-tellurium compounds containing selenium. It is divided into a photosensitive layer and a variety of organic photosensitive layers.

ところで、電子写真複写機に使用される感光体は、近年
、安価、生産性、無公害性を利点とす有有機系の感光材
料を用いたものが使用され始めている。
Incidentally, in recent years, photoreceptors used in electrophotographic copying machines have begun to be made of organic photosensitive materials, which have the advantages of being inexpensive, productive, and non-polluting.

有機系の電子写真感光体には、ポリビニルカルバゾール
(PVK)に代表される光導電性樹脂、PVK−TNF
(2,4,7トリニ1−ロフルオレノン)に代表される
電荷移動錯体型、フタロシアニンーノスインダーに代表
される顔料分散型、電荷発生物質と電荷輸送物質とを組
合せて用いる機能分離型の感光体などが知られており、
特に機能分離型の感光体が注目されている。
Organic electrophotographic photoreceptors include photoconductive resins such as polyvinylcarbazole (PVK), and PVK-TNF.
(2,4,7 trini-1-rofluorenone), pigment dispersion type as typified by phthalocyanine nosinder, and functionally separated type using a combination of a charge-generating substance and a charge-transporting substance. It is known that the body etc.
In particular, functionally separated photoreceptors are attracting attention.

この様な、有機系感光体を、カールソンプロセスに適用
した場合、帯電性が低く、電荷保持性が悪い(暗減衰が
大きい)上、繰返し使用による、これら特性の劣化が大
きく、画像上に、濃度ムラ、カブリ、また反転現像の場
合地汚れを生ずるといいう欠点を有している。
When such an organic photoreceptor is applied to the Carlson process, it has low chargeability and poor charge retention (high dark decay), and these characteristics deteriorate significantly with repeated use, causing problems such as It has the drawbacks of density unevenness, fog, and background smearing in the case of reverse development.

即ち、有機系感光体は、前露光疲労によって帯電性が低
下する。この前露光疲労は主に゛重荷発生材料が吸収す
る光によって起こることから、光吸収によって発生した
電荷が移動可能な状態で感光体内に残留している時間が
長い程、またその電荷の数が多い程、前露光疲労による
帯電性の低下が著しくなると考えられる。即ち、光吸収
によって発生した電荷が残留している状態で帯電操作を
しても、残留しているキャリアの移動で表面電荷が中和
される為、残留電荷が消費されるまで表面電位は上昇し
ない。従って、前露光疲労分だけ表面電位の上昇が遅れ
ることになり、見かけ上の帯電4位は低くなる。
That is, the chargeability of organic photoreceptors decreases due to pre-exposure fatigue. This pre-exposure fatigue is mainly caused by light absorbed by the heavy-generating material, so the longer the charges generated by light absorption remain in the photoreceptor in a mobile state, the more the number of charges increases. It is thought that the higher the amount, the more significant the deterioration in chargeability due to pre-exposure fatigue becomes. In other words, even if a charging operation is performed while the charge generated by light absorption remains, the surface charge will be neutralized by the movement of the remaining carriers, so the surface potential will increase until the residual charge is consumed. do not. Therefore, the increase in surface potential is delayed by the amount of pre-exposure fatigue, and the apparent charge level 4 becomes lower.

これらの欠点を改良する方法として、支持体と電荷発生
層との間しこ5iO5AΩ203等の無機材料を、蒸着
、スパッタリング、陽極酸化などの方法で設ける方法が
公知であり、電荷発生層中にAΩ203を含有させたり
(特開昭55−142354号公報)、同じく電荷発生
層中に金属粉末を含有させることも公知である(特開昭
60−214364号公報)。
As a method to improve these drawbacks, a method is known in which an inorganic material such as 5iO5AΩ203 is provided between the support and the charge generation layer by a method such as vapor deposition, sputtering, or anodization. (Japanese Unexamined Patent Publication No. 55-142354), and it is also known to include metal powder in the charge generation layer (Japanese Unexamined Patent Publication No. 60-214364).

また、下引層としてポリアミド樹脂(特開昭58−30
757号公報、特開昭58−987:39号公報)、ア
ルコール可溶性ナイロン樹脂(特開昭60−19676
6号公報)、水溶性ポリビニルブチラール樹脂(特開昭
60−232553号公報)、ポリビニルブチラール樹
脂(特開昭58−106549号公報)などの樹脂層が
提案されている。
In addition, polyamide resin (Japanese Unexamined Patent Publication No. 58-30
No. 757, JP-A-58-987:39), alcohol-soluble nylon resin (JP-A-60-19676)
Resin layers such as water-soluble polyvinyl butyral resin (Japanese Patent Application Laid-Open No. 60-232553), polyvinyl butyral resin (Japanese Patent Application Laid-Open No. 58-106549) have been proposed.

しかしながら、繰返し使用による帯電性、電荷保持性の
低下について、感光体側の改善手段では、充分な感光体
は得られていなかった。
However, with regard to the deterioration of chargeability and charge retention due to repeated use, improvement measures on the photoreceptor side have not been sufficient to provide a photoreceptor.

特開昭51−111338号公報には、As2Se3感
光体を、室温より10〜30%高く、40℃を超えない
温度に維持すると疲労(暗減衰)の速度が緩速化される
ことが開示されいてる。
JP-A No. 51-111338 discloses that when an As2Se3 photoreceptor is maintained at a temperature 10 to 30% higher than room temperature and not exceeding 40°C, the rate of fatigue (dark decay) is slowed down. I'm there.

他方、複写装置の使用環境においても、高温高湿度下で
は、画像ボケ、画像ウスなどを生じ、また、低温時にお
いては、感光体の結露、地汚れ等の問題を有しいている
On the other hand, in the operating environment of a copying apparatus, under high temperature and high humidity conditions, image blurring and image distortion occur, and at low temperatures, there are problems such as dew condensation on the photoreceptor and scumming.

この環境依存性に関して、特開昭61−7843号公報
には、感光層の支持体を面状発熱体として、比較的低温
で加熱すると、高温高湿下における感光体の相対湿度を
減少できることが、また特開昭62−121483号公
報には感光体に温風、冷風をふきつける方法が開示され
ており、低温時の感光体への結露防止、高温時の感光体
の劣化を防止できる方法が開示されているが、必ずしも
満足すべき方法ではなかった。
Regarding this environmental dependence, JP-A-61-7843 discloses that the relative humidity of the photoreceptor under high temperature and high humidity can be reduced by heating the support of the photoreceptor layer at a relatively low temperature using a planar heating element. , JP-A-62-121483 discloses a method of blowing hot or cold air onto a photoreceptor, which is a method that can prevent dew condensation on the photoreceptor at low temperatures and prevent deterioration of the photoreceptor at high temperatures. has been disclosed, but the method was not necessarily satisfactory.

〔目  的〕〔the purpose〕

本発明は、感光体の帯電性を改良することができるとと
もに、高温高湿度下での相対湿度を低下でき、かつ低温
時の感光体の結露を防止し得る電子写真感光体を提供す
ることを目的とし、更には赤外線照射により効率よく加
温できる電子写真感光体を提供することを目的とする。
An object of the present invention is to provide an electrophotographic photoreceptor that can improve the charging property of the photoreceptor, reduce relative humidity under high temperature and high humidity conditions, and prevent dew condensation on the photoreceptor at low temperatures. Another object of the present invention is to provide an electrophotographic photoreceptor that can be efficiently heated by infrared irradiation.

〔構  成〕〔composition〕

本発明によれば、導電性支持体上に少なくとも感光層を
形成した電子写真感光体において、該導電性支持体又は
/及び感光層が赤外線吸収性を有することを特徴とする
電子写真感光体が提供される。
According to the present invention, an electrophotographic photoreceptor comprising at least a photosensitive layer formed on a conductive support is characterized in that the conductive support and/or the photosensitive layer have infrared absorbing properties. provided.

本発明者らは、導電性支持体上に少なくとも感光層を設
けてなる電子写真感光体の高湿度下における表面電位の
低下による画像ボケや画像ウスを防止し、また低温時に
おける感光体の結露防止更には低温低湿下での画像の地
汚れを抑制する方法を鋭意検討した結果、該感光体の導
電性支持体又は/及び感光層に赤外線吸収性を有する化
合物を含有させた場合には、上記目的が達成できること
を見出し本発明を完成するに至った。
The present inventors have developed an electrophotographic photoreceptor having at least a photosensitive layer on a conductive support, which prevents image blurring and image distortion due to a decrease in surface potential under high humidity, and also prevents dew condensation on the photoreceptor at low temperatures. As a result of intensive studies on methods for preventing and suppressing background smearing of images under low temperature and low humidity conditions, we found that when a compound having infrared absorbing properties is contained in the conductive support and/or photosensitive layer of the photoreceptor, The inventors have found that the above object can be achieved and have completed the present invention.

次に図面によって本発明の電子写真感光体を説明する。Next, the electrophotographic photoreceptor of the present invention will be explained with reference to the drawings.

第1図は、本発明に係る感光体の構成例を示す断面図で
あり、導電性支持体11上に、感光層15を設けたもの
である。
FIG. 1 is a sectional view showing an example of the structure of a photoreceptor according to the present invention, in which a photoreceptor layer 15 is provided on a conductive support 11. As shown in FIG.

第2図a、第2図すは、別の構成例を示す断面図であり
感光層が電荷発生層21と、電荷輸送層23との積層で
構成されている。
FIGS. 2A and 2A are cross-sectional views showing another example of the structure, in which the photosensitive layer is composed of a stack of a charge generation layer 21 and a charge transport layer 23. FIG.

第3図および第4図は、更に別の構成例を示す断面図で
あり、第3図は、導電性支持体11と感光層15の間に
中間層13を設けたもの、また第4図は、感光層15の
上に保護層17を設けたものである。
3 and 4 are cross-sectional views showing still other structural examples, in which FIG. 3 has an intermediate layer 13 provided between the conductive support 11 and the photosensitive layer 15, and FIG. In this example, a protective layer 17 is provided on a photosensitive layer 15.

赤外線吸収性を有する導電性基体11としては、体積抵
抗1010Ωcm以下の導電性を示すもの、アルミニウ
ム、ニッケル、クロム、ニクロム、銅、銀、金、白金な
どの金属表面に酸化銅、二酸化マンガン、酸化コバルト
、酸化鉄、酸化クロム、硫化鉛、硫化ニッケルなどを蒸
着、スパッタリング等により被覆したもの、あるいは、
銅、鉄、クロム等の表面を酸化処理したもの、又、上記
金属酸化物あるいは硫化物を分散させたフィルム状ある
いは円筒状のプラスチック、紙にアルミニウム、ニッケ
ル、クロム、ニクロム、銅、銀、金、白金等の金属ある
いは酸化スズ、酸化インジウムなどの金属酸化物を被覆
したもの、あるいはカーボンブラック等を分散させたプ
ラスチック等を使用することができる。
The conductive substrate 11 having infrared absorbing properties may be one having conductivity with a volume resistance of 1010 Ωcm or less, or a metal surface such as aluminum, nickel, chromium, nichrome, copper, silver, gold, platinum, etc. with copper oxide, manganese dioxide, or oxide. Coated with cobalt, iron oxide, chromium oxide, lead sulfide, nickel sulfide, etc. by vapor deposition, sputtering, etc., or
Copper, iron, chromium, etc. whose surface has been oxidized, film-like or cylindrical plastic in which the above metal oxides or sulfides are dispersed, aluminum, nickel, chromium, nichrome, copper, silver, gold on paper. , a material coated with a metal such as platinum, a metal oxide such as tin oxide or indium oxide, or a plastic in which carbon black or the like is dispersed can be used.

また、体積抵抗1010Ω■以下の導電性を示すもの、
例えば、アルミニウム、ニッケル、クロム、ニクロム、
銅、銀、金、白金などの金属、酸化スズ、酸化インジウ
ムなどの金属酸化物を、蒸着又はスパッタリングにより
、フィルム状もしくは円筒状のプラスチック、紙に被覆
したもの、あるいは、アルミニウム、アルミニウム合金
、ニッケル、ステンレス等の板およびそれらをり、、1
.1.、押出し、引抜き等の工法で素管化後、切削、超
仕上げ、研摩等で表面処理した管等の内側に上記金属酸
化物、硫化物を分散した樹脂液等を塗工したものも使用
することができる。
In addition, those exhibiting conductivity with a volume resistance of 1010 Ω or less,
For example, aluminum, nickel, chromium, nichrome,
Film or cylindrical plastic or paper coated with metals such as copper, silver, gold, platinum, or metal oxides such as tin oxide or indium oxide by vapor deposition or sputtering, or aluminum, aluminum alloy, or nickel. , plates made of stainless steel, etc., and their adhesives, 1
.. 1. Also used are pipes that have been made into blank pipes using extrusion, drawing, etc., and then surface-treated by cutting, superfinishing, polishing, etc., and then coated with a resin solution containing the metal oxides and sulfides dispersed above. be able to.

本発明においては、感光層として、無機系、有機系のい
ずれも使用でき、無機系感光層としては無定形Se、 
5e−Te化合物、5e−As化合物、5e−Te−C
Q化合物、Cds、 ZnO等が用いられる。
In the present invention, both inorganic and organic types can be used as the photosensitive layer, and examples of the inorganic type photosensitive layer include amorphous Se,
5e-Te compound, 5e-As compound, 5e-Te-C
Q compounds, Cds, ZnO, etc. are used.

次に有機系感光層15について説明するが、先ず積層感
光層について述べる。
Next, the organic photosensitive layer 15 will be explained, but first, the laminated photosensitive layer will be described.

電荷発生層21は、電荷発生物質を主材料とした層で、
必要に応じてバインダー樹脂を用いることもある。
The charge generation layer 21 is a layer mainly made of a charge generation substance,
A binder resin may be used if necessary.

バインダー樹脂としては、ポリアミド、ポリウレタン、
ポリエステル、エポキシ樹脂、ポリケトン、ポリカーボ
ネート、シリコーン樹脂、アクリル樹脂、ポリビニルブ
チラール、ポリビニルホルマール、ポリビニルケトン、
ポリスチレン、ポリ−N−ビニルカルバゾール、ポリア
クリルアミドなどが用いられる。
Binder resins include polyamide, polyurethane,
Polyester, epoxy resin, polyketone, polycarbonate, silicone resin, acrylic resin, polyvinyl butyral, polyvinyl formal, polyvinyl ketone,
Polystyrene, poly-N-vinylcarbazole, polyacrylamide, etc. are used.

電荷発生物質としては、例えば、シーアイピグ−7= メンドブルー25〔カラーインデックス(CI)211
80]、シーアイピグメントレッド41(CI 212
00)、シーアイアシッドレッド52(CI 4510
0)、シーアイベーシックレッド3(CI 45210
)、さらに、ポルフィリン骨格を有するフタロシアニン
系顔料、カルバゾール骨格を有するアゾ顔料(特開昭5
3−95033号公報に記載)、ジスチリルベンゼン骨
格を有するアゾ顔料(特開昭53−133455号公報
に記載)、トリフェニルアミン骨格を有するアゾ顔料(
特開昭53−132547号公報に記載)、ジベンゾチ
オフェン骨格を有するアゾ顔料(特開昭54−2172
8号公報に記載)、オキサジアゾール骨格を有するアゾ
顔料(特開昭54−12742号公報に記載)、フルオ
レノン骨格を有するアゾ顔料(特開昭54−22834
号公報に記載)、ビススチルベン骨格を有するアゾ顔料
(特開昭54−17733号公報に記載)、ジスチリル
オキサジアゾール骨格を有するアゾ顔料(特開昭54−
2129号公報に記載)、ジスチリルカルバゾール骨格
を有するアゾ顔料(特開昭54−17734号公報に記
載)、さらに、シーアイピグメントブルー16(CI 
74100)等のフタロシアニン系顔料、シーアイバッ
トブラウン5(CI 73410)、シーアイバットダ
イ(CI 73030)等のインジゴ系顔料、アルゴス
カーレットB(バイオレット社製)、インダンスレンス
カーレットR(バイエル社製)等のペリレン系顔料など
が挙げられる。
Examples of charge-generating substances include C.I.Pig-7=Mend Blue 25 [Color Index (CI) 211]
80], CI Pigment Red 41 (CI 212
00), Sea Eye Acid Red 52 (CI 4510
0), CI Basic Red 3 (CI 45210
), furthermore, phthalocyanine pigments having a porphyrin skeleton, and azo pigments having a carbazole skeleton (Japanese Patent Laid-Open No. 5
3-95033), azo pigments having a distyrylbenzene skeleton (described in JP-A-53-133455), azo pigments having a triphenylamine skeleton (described in JP-A-53-133455),
(described in JP-A-53-132547), azo pigments having a dibenzothiophene skeleton (described in JP-A-54-2172)
8), an azo pigment having an oxadiazole skeleton (described in JP-A No. 54-12742), an azo pigment having a fluorenone skeleton (described in JP-A-54-22834)
Azo pigments having a bisstilbene skeleton (described in JP-A-54-17733), azo pigments having a distyryloxadiazole skeleton (described in JP-A-54-17733),
2129), an azo pigment having a distyrylcarbazole skeleton (described in JP-A-54-17734), and CI Pigment Blue 16 (CI
74100), indigo pigments such as C.I. Butt Brown 5 (CI 73410) and C.I. Butt Dye (CI 73030), Argo Scarlet B (manufactured by Violet), Indanthrene Scarlet R (manufactured by Bayer), etc. Examples include perylene pigments.

これら電荷発生物質の中でも、アゾ顔料が好適である。Among these charge generating substances, azo pigments are preferred.

これらの電荷発生物質は、単独で、あるいは2種以上併
用して用いられる。
These charge generating substances may be used alone or in combination of two or more.

バインダー樹脂は、電荷発生物質100重景部に対して
0〜100重量部用いるのが適当であり、好ましくは0
〜50重量部である。
The binder resin is suitably used in an amount of 0 to 100 parts by weight, preferably 0 to 100 parts by weight, based on 100 parts by weight of the charge generating substance.
~50 parts by weight.

電荷発生層は、電荷発生物質を必要ならばバインダー樹
脂とともに、テトラヒドロフラン、シクロヘキサン、ジ
オキサン、ジクロルエタン等の溶媒を用いてボールミル
、アトライター、サントミルなどにより分散し、分散液
を適度に希釈して塗布することにより形成できる。塗布
は、浸漬塗工法やスプレーコート、ビードコート法など
を用いて行なうことができる。
The charge generation layer is prepared by dispersing a charge generation substance together with a binder resin if necessary using a ball mill, attritor, santomill, etc. using a solvent such as tetrahydrofuran, cyclohexane, dioxane, dichloroethane, etc., diluting the dispersion liquid appropriately and applying it. It can be formed by Application can be performed using a dip coating method, a spray coating method, a bead coating method, or the like.

電荷発生層の膜厚は、0.01〜5μm程度が適当であ
り、好ましくは0.1〜2μmである。
The thickness of the charge generation layer is suitably about 0.01 to 5 .mu.m, preferably 0.1 to 2 .mu.m.

電荷輸送層23は、電荷輸送物質およびバインダー樹脂
を適当な溶剤に溶解ないし分散し、これを電荷発生層上
に塗布、乾燥することにより形成できる。また、必要に
より可塑剤やレベリング剤等を添加することもできる。
The charge transport layer 23 can be formed by dissolving or dispersing a charge transport substance and a binder resin in a suitable solvent, coating the solution on the charge generation layer, and drying the solution. Moreover, a plasticizer, a leveling agent, etc. can also be added if necessary.

電荷輸送物質には、正孔輸送物質と電子輸送物質とがあ
る。
Charge transport materials include hole transport materials and electron transport materials.

正孔輸送物質としては、ポリ−N−ビニルカルバゾール
およびその誘導体、ポリーγ−カルバゾリルエチルグル
タメー1〜およびその誘導体、ピレン−ホルムアルデヒ
ド縮合物およびその誘導体、ポリビニルピレン、ポリビ
ニルフェナントレン、ポリビニルピレン、オキサゾール
誘導体、オキサジアゾール誘導体、イミダゾール誘導体
、トリフェニルアミン誘導体、9−(P−ジエチルアミ
ノスチリル)アントラセン、1,1−ビス−(4−ジベ
ンジルアミノフェニル)プロパン、スチリルアントラセ
ン、スチリルピラゾリン、フェニルヒドラゾン類、α−
フェニルスチルベン誘導体、ベンジジン誘導体等の電子
供与性物質が挙げられる。
Examples of the hole transport substance include poly-N-vinylcarbazole and its derivatives, poly-γ-carbazolylethylglutamic acid 1 and its derivatives, pyrene-formaldehyde condensate and its derivatives, polyvinylpyrene, polyvinylphenanthrene, polyvinylpyrene, Oxazole derivatives, oxadiazole derivatives, imidazole derivatives, triphenylamine derivatives, 9-(P-diethylaminostyryl)anthracene, 1,1-bis-(4-dibenzylaminophenyl)propane, styrylanthracene, styrylpyrazoline, phenyl Hydrazones, α-
Examples include electron-donating substances such as phenylstilbene derivatives and benzidine derivatives.

電子輸送物質としては、たとえば、クロルアニル、ブロ
ムアニル、テトラシアノエチレン、テトラシアノキノン
ジメタン、2,4.7−ドリニトロー9−フルオレノン
、2,4,5.7−テトラニトロ−9−フルオレノン、
2,4,5.7−チトラニトロキサントン、2.4.8
−)−リニトロチオキサントン、2,6.8− トリニ
トロ−4H−インデノ(1,2−b)チオフェン−4−
オン、1.3.7−トリニトロジベンゾチオフエンー5
,5−ジオキサイドなどの電子受容性物質が挙げられる
Examples of the electron transport substance include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinone dimethane, 2,4,7-dolinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone,
2,4,5.7-titranitroxanthone, 2.4.8
-)-linitrothioxanthone, 2,6.8-trinitro-4H-indeno(1,2-b)thiophene-4-
1.3.7-trinitrodibenzothiophene-5
, 5-dioxide and other electron-accepting substances.

これらの電荷輸送物質は、単独又は2種以上混合して用
いられる。
These charge transport substances may be used alone or in a mixture of two or more.

バインダー樹脂としてはポリスチレン、スチレン−アク
リロニトリル共重合体、スチレン−ブタジェン共重合体
、スチレン−無水マレイン酸共重合体、ポリエステル、
ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポ
リ酢酸ビニル、ポリ塩化ビニリデン、ポリアクリレート
樹脂、フェノキシ樹脂、ポリカーボネート、酢酸セルロ
ース樹脂、エチルセルロース樹脂、ポリビニルブチラー
ル、ポリビニルホルマール、ポリビニルトルエン、ポリ
−N−ビニルカル)<ゾール、アクリル樹脂、シリコー
ン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、
フェノール樹脂、アルキッドW脂等の熱可塑性または熱
硬化性樹脂が挙げられる。
Binder resins include polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyester,
Polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, polyvinylidene chloride, polyacrylate resin, phenoxy resin, polycarbonate, cellulose acetate resin, ethyl cellulose resin, polyvinyl butyral, polyvinyl formal, polyvinyl toluene, poly-N- vinylcal) <sol, acrylic resin, silicone resin, epoxy resin, melamine resin, urethane resin,
Examples include thermoplastic or thermosetting resins such as phenol resins and alkyd W resins.

溶剤としては、テトラヒドロフラン、ジオキサン、トル
エン、モノクロルベンゼン、ジクロルエタン、塩化メチ
レンなどが用いられる。
As the solvent, tetrahydrofuran, dioxane, toluene, monochlorobenzene, dichloroethane, methylene chloride, etc. are used.

電荷輸送N23の厚さは、5〜50μm程度が適当であ
る。
The appropriate thickness of the charge transport N23 is about 5 to 50 μm.

次に感光M15が単層構成の場合について述べる。Next, the case where the photosensitive layer M15 has a single layer structure will be described.

この場合も多くは電荷発生物質と電荷輸送物質よりなる
機能分離型のものが挙げられる。
In this case as well, most of the materials are of a functionally separated type consisting of a charge generating substance and a charge transporting substance.

即ち、電荷発生物質および電荷輸送物質には先に示した
化合物を用いることができる。
That is, the compounds shown above can be used as the charge generating substance and the charge transporting substance.

単層感光層は、電荷発生物質および電荷輸送物質および
バインダー樹脂を適当な溶剤に溶解ないし分散し、これ
を塗布、乾燥することによって形成できる。また、必要
により可塑剤やレベリング剤等を添加することもできる
A single-layer photosensitive layer can be formed by dissolving or dispersing a charge generating substance, a charge transporting substance and a binder resin in a suitable solvent, coating the solution and drying the solution. Moreover, a plasticizer, a leveling agent, etc. can also be added if necessary.

バインダー樹脂としては、先に電荷輸送N23で挙げた
バインダー樹脂をそのまま用いるほかに、電荷発生N2
1で挙げたバインダー樹脂を混合して用いてもよい。
As the binder resin, in addition to using the binder resin mentioned above for charge transport N23 as is, charge generation N2
The binder resins listed in 1 may be used in combination.

単層感光層は、電荷発生物質、電荷輸送物質およびバイ
ンダー樹脂をテトラヒドロフラン、ジオキサン、ジクロ
ルエタン、シクロヘキサノン等の溶媒を用いて分散機等
で分散した塗工液を浸漬塗工法やスプレーコート、ビー
ドコートなどで塗工して形成できる。
The single-layer photosensitive layer is formed by dipping coating, spray coating, bead coating, etc. using a coating solution in which a charge generating substance, a charge transporting substance, and a binder resin are dispersed using a dispersion machine using a solvent such as tetrahydrofuran, dioxane, dichloroethane, or cyclohexanone. Can be formed by coating.

単層感光層の膜厚は、5〜50声程度が適当である。The thickness of the single photosensitive layer is suitably about 5 to 50 tones.

なお、本発明において感光層15の上にさらに絶縁層を
設けることも可能である。
Note that in the present invention, it is also possible to further provide an insulating layer on the photosensitive layer 15.

また、本発明において第3図に示されるように、導電性
支持体と、感光層との間に中間層13を設けることによ
り、本発明の第1の効果をいっ羊う向上させることが可
能であり、また接着性を改良することもできる。
Further, in the present invention, as shown in FIG. 3, by providing an intermediate layer 13 between the conductive support and the photosensitive layer, the first effect of the present invention can be further improved. and can also improve adhesion.

中間層13には、5iO1A犯203等の無機材料を蒸
着、スパッタリング、陽極酸化などの方法で設けたもの
や、ポリアミド樹脂(特開昭58−30757号公報、
特開昭58−98739号公報)、アルコール可溶性ナ
イロン樹脂(特開昭60−196766号公報)、水溶
性ポリビニルブチラール樹脂(特開昭60−23255
3号公報)、ポリビニルブチラール樹脂(特開昭58−
106549号公報)、ポリビニルアルコールなどの樹
脂層を用いることができる。
For the intermediate layer 13, an inorganic material such as 5iO1A 203 is formed by vapor deposition, sputtering, anodization, etc., or a polyamide resin (Japanese Unexamined Patent Publication No. 58-30757,
JP-A-58-98739), alcohol-soluble nylon resin (JP-A-60-196766), water-soluble polyvinyl butyral resin (JP-A-60-23255)
3), polyvinyl butyral resin (JP-A-58-
106549), a resin layer made of polyvinyl alcohol, etc. can be used.

また、上記樹脂中間層にZnO1Tie2、ZnS等の
顔料粒子を分散したものも、中間層として用いることが
できる。
Furthermore, a resin intermediate layer in which pigment particles such as ZnO1Tie2 and ZnS are dispersed can also be used as the intermediate layer.

更に本発明の中間層13として、シランカップリング剤
、チタンカップリング剤、クロムカップリング剤等を使
用することもできる。
Furthermore, as the intermediate layer 13 of the present invention, a silane coupling agent, a titanium coupling agent, a chromium coupling agent, etc. can also be used.

中間N13の膜厚は0〜5μmが適当である。The thickness of the intermediate layer N13 is suitably 0 to 5 μm.

保護層17に使用される樹脂としては、ABS樹脂、A
C3樹脂、オレフィンビニル共重合体樹脂、塩素化ポリ
エーテル、アリル樹脂、フェノール樹脂、ポリアセター
ル、ポリアミド、ポリアミドイミド、ボリアリレート、
ポリアリルスルホン、ポリブチレン、ポリブチレンテレ
フタレート、ポリカーボネート、ポリエーテルスルホン
、ポリエチレン、ポリエチレンテレフタレート、ポリイ
ミド、メタクリル樹脂、ポリメチルペンテン、ポリプロ
ピレン、ポリフェニレンオキシド、ポリスルホン、ポリ
スチレン、AS樹脂、ブタジェン−スチレン樹脂、ポリ
ウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、エポ
キシ樹脂等が挙げられる。
As the resin used for the protective layer 17, ABS resin, A
C3 resin, olefin vinyl copolymer resin, chlorinated polyether, allyl resin, phenol resin, polyacetal, polyamide, polyamideimide, polyarylate,
Polyaryl sulfone, polybutylene, polybutylene terephthalate, polycarbonate, polyether sulfone, polyethylene, polyethylene terephthalate, polyimide, methacrylic resin, polymethylpentene, polypropylene, polyphenylene oxide, polysulfone, polystyrene, AS resin, butadiene-styrene resin, polyurethane, poly Examples include vinyl chloride, polyvinylidene chloride, and epoxy resin.

また、耐摩耗性の観点から添加剤としてポリテトラフロ
ロエチレン樹脂、フッ素系樹脂、シリコーン系樹脂を添
加し、摩耗係数を下げ、耐摩耗性並びに耐傷化性の向上
を図ることでき、また酸化チタン、酸化錫、チタン酸カ
リウムの無機化合物を前記樹脂中に分散しても耐摩耗性
が向上する。
In addition, from the viewpoint of wear resistance, polytetrafluoroethylene resin, fluorine resin, and silicone resin can be added as additives to lower the wear coefficient and improve wear resistance and scratch resistance. The wear resistance can also be improved by dispersing inorganic compounds such as , tin oxide, and potassium titanate into the resin.

この表面保護層の膜厚は0.5〜10R1好ましくは1
〜5μmである。
The thickness of this surface protective layer is 0.5 to 10R1, preferably 1
~5 μm.

前記感光層に含有させる赤外線吸収剤としては、酸化銅
、二酸化マンガン、酸化コバルト、酸化鉄、酸化クロム
、硫化鉛、硫化ニッケル等が挙げられる。
Examples of the infrared absorbing agent to be contained in the photosensitive layer include copper oxide, manganese dioxide, cobalt oxide, iron oxide, chromium oxide, lead sulfide, and nickel sulfide.

以上挙げた様な赤外線吸収剤を前記感光体の感光層中に
含有する事により本発明は構成されるが、一般的に赤外
線吸収剤は黒色あるいは緑青色が多い為、感光層中の電
荷発生物質に光が当たらなくなる恐れがあるので、通常
、第3図13の中間層の様な所に含有させるのが普通で
ある。
The present invention is constructed by containing the above-mentioned infrared absorbers in the photosensitive layer of the photoreceptor, but since infrared absorbers are generally black or green-blue in color, charges are generated in the photosensitive layer. Since there is a risk that the substance will not be exposed to light, it is usually contained in a place such as the intermediate layer shown in FIG. 3, 13.

尚、本発明の感光体を加温する方法として、赤外線を照
射する方法が好ましく使用されるが、光源としては赤外
線ランプ(通常のタングステンランプ、ハロゲンランプ
等にフィルターをつけて赤外線のみを取り出す場合も含
む)及び半導体レーザー等が挙げられるが、その概略図
を第5図、第6図a、bに記す。
Incidentally, as a method of heating the photoreceptor of the present invention, a method of irradiating infrared rays is preferably used, but as a light source, an infrared lamp (an ordinary tungsten lamp, halogen lamp, etc. with a filter attached to extract only infrared rays) is used. ) and semiconductor lasers, the schematic diagrams of which are shown in FIG. 5 and FIGS. 6a and 6b.

第5図は、光源を感光体の内側より照射する方法であり
、導電性支持体の内側に赤外線吸収処理を施したものの
場合あるいは、支持体そのものが赤外線吸収体である場
合に使用する。
FIG. 5 shows a method in which a light source is irradiated from the inside of the photoreceptor, and is used when the inside of the conductive support is subjected to infrared absorption treatment or when the support itself is an infrared absorber.

第6図aは感光体の外側(感光層側)から照射する図で
あり、第6図すは、光源部を詳しく描いたものである。
FIG. 6a is a diagram showing irradiation from the outside (photosensitive layer side) of the photoreceptor, and FIG. 6b is a detailed depiction of the light source section.

一16= 第6図においては、感光体の外側より赤外線を照射する
訳であるが、この場合、感光層の吸収が可視光領域のみ
の場合にはさほど問題はないが、例えばレーザープリン
ター用の感光体のように、近赤外近くまで吸収能がある
場合には、感光体の疲労を早めてしまうために、6図中
33の様にフィルターを設ける必要がある。また赤外線
は感光体にのみ照射すればよいので、ランプの回りには
カバー等を取り付けるのが良い。
-16= In Figure 6, infrared rays are irradiated from the outside of the photoreceptor, but in this case, there is not much of a problem if the photosensitive layer absorbs only visible light, but for example, for laser printers, When a photoreceptor has the ability to absorb near infrared rays, it is necessary to provide a filter as shown at 33 in Figure 6 in order to accelerate fatigue of the photoreceptor. Furthermore, since infrared rays only need to be irradiated onto the photoreceptor, it is advisable to attach a cover or the like around the lamp.

又、図中におけるミラーは、光を集光する為のものであ
り、使用した方が好ましい。又、半導体レーザーを使用
する場合には、セルフォックスレンズアレイ等を使用し
、該感光体の全長に亘って線状に集光すれば良い。
Moreover, the mirror in the figure is for condensing light, and it is preferable to use it. When using a semiconductor laser, a Selfox lens array or the like may be used to condense the light linearly over the entire length of the photoreceptor.

又、赤外線を照射する時期についてであるが、感光体使
用時に常に照射しつづけてもあるいは感光体を使用して
いない時のみ使用しても差しつかえない。
Regarding the timing of irradiation with infrared rays, it is possible to continue irradiating the infrared rays when the photoreceptor is in use, or to use it only when the photoreceptor is not in use.

更に加温する温度については、感光体雰囲気以上、好ま
しくは40℃以上更に好ましくは50℃以上にする事に
よりそれ以下の温度より著しく良い感光体特性が得られ
る様になる。
Furthermore, by heating the photoreceptor at a temperature higher than the atmosphere of the photoreceptor, preferably 40° C. or higher, and more preferably 50° C. or higher, significantly better characteristics of the photoreceptor can be obtained than at lower temperatures.

又、温度の上限については、特に限定されるものではな
いが、感光体を構成する物質の融点、ガラス転移点、分
解点などにより、おのずから限定されるものである。
Further, the upper limit of the temperature is not particularly limited, but is naturally limited by the melting point, glass transition point, decomposition point, etc. of the substance constituting the photoreceptor.

又、この様に限定される上限に対してoverheat
を防ぐ為に冷却装置を用いることも有効であり、用いて
も良い。
Also, for the upper limit limited in this way, overheat
It is also effective to use a cooling device to prevent this.

〔実施例〕〔Example〕

次に実施例によって本発明を更に詳しく説明するが、本
発明は以下の実施例に限定されるものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples.

実施例1 外径40mm、長さ250mmのアルミニウムドラムの
内側にカーボンブラックをポリカーボネート中に分散し
たものを塗布した素管の外側表面に下記組成の電荷発生
層塗工液、電荷輸送層塗工液を塗布、乾燥し電荷発生層
(0,3Izm)、電荷輸送層(18ρ)を形成した。
Example 1 A charge generation layer coating liquid and a charge transport layer coating liquid having the following compositions were applied to the outer surface of an aluminum drum with an outer diameter of 40 mm and a length of 250 mm coated with carbon black dispersed in polycarbonate. was coated and dried to form a charge generation layer (0.3Izm) and a charge transport layer (18ρ).

〔電荷発生層塗工液〕[Charge generation layer coating liquid]

下記構造式のトリスアゾ顔料    1重址部シクロヘ
キサノン         150#2−ブタノン  
           50ノ!〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質     5重量部テトラヒ
ドロフラン        40〃モノクロロベンゼン
        40〃以上の様に作成した有機感光体
を、レーザープリンター(リコーpcレーザー6000
)に塔載し、帯電直後の感光体の表面電位が測定できる
位置番こ表面電位計のプローブをセットした。また第5
図tこ示す様な方法で感光体内部にタングステンランプ
をセットし、感光体の温度が50±5℃になる様tこド
ラム内側に温度センサーをセットし、ランプのオン−オ
フにより調節し、連続3000枚のプリントで行なった
Trisazo pigment with the following structural formula: 1-layer cyclohexanone 150#2-butanone
50 no! [Charge transport layer coating liquid] Charge transport substance having the following structural formula 5 parts by weight Tetrahydrofuran 40 Monochlorobenzene 40 The organic photoreceptor prepared as above was coated with a laser printer (Ricoh PC Laser 6000).
), and a surface electrometer probe was set at a position where the surface potential of the photoreceptor could be measured immediately after charging. Also the fifth
A tungsten lamp was set inside the photoreceptor as shown in Figure 2, and a temperature sensor was set inside the drum so that the temperature of the photoreceptor was 50±5°C, and the temperature was adjusted by turning the lamp on and off. This was done with 3000 consecutive prints.

この時の環境条件は以下の通りである。The environmental conditions at this time are as follows.

15℃−75% 25℃−60% 30℃−90% 比較例1 実施例1において、導電性支持体をAflのみ番こした
以外は実施例1と同様にして感光体を作成し、ついでラ
ンプを実施例1と同じ様なタイミングでオン−オフした
15°C-75% 25°C-60% 30°C-90% Comparative Example 1 A photoreceptor was prepared in the same manner as in Example 1 except that the conductive support was made of Afl, and then a lamp was prepared. was turned on and off at the same timing as in Example 1.

表−1に実施例1及び比較例1の結果を記す。Table 1 shows the results of Example 1 and Comparative Example 1.

表−1 実施例2 酸化網の粉末を分散させたポリエステルフィルムにアル
ミニウムを蒸着させた支持体に、下記組成からなる電荷
発生層を0.2μm、電荷輸送層を25鴻塗布した。
Table 1 Example 2 A 0.2 μm thick charge generation layer and a 25 μm thick charge transport layer having the following composition were coated on a support made of a polyester film in which oxidized network powder was dispersed and aluminum was vapor-deposited.

〔電荷発生層塗工液〕[Charge generation layer coating liquid]

X型無金属フタロシアニン     10重量部ポリビ
ニルブチラール       5重量部(電気化学工業
:デンカブチラール#4000−1)シクロへキサノン
        100重量部シクロヘキサン    
      85重量部〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質     10重量部塩化メ
チレン           80重量部rl−1− しrも 次に、この電子写真感光体に導電層塗工およびベルト接
合を行ない実装用の感光体とした。
X-type metal-free phthalocyanine 10 parts by weight Polyvinyl butyral 5 parts by weight (Denka Kagaku Kogyo: Denka Butyral #4000-1) Cyclohexanone 100 parts by weight Cyclohexane
85 parts by weight [Charge transport layer coating liquid] Charge transport material having the following structural formula 10 parts by weight Methylene chloride 80 parts by weight This was used as a photoreceptor for mounting.

これを実施例1と同様な加温装置と表面電位計を組み込
んだレーザープリンター(リコーLP4080)に塔載
した。レーザープリンターの始動時に80℃まで加温し
、80℃に達した所で別に設けたファンで35℃まで冷
却し、35℃になった所でプリントを開始した。プリン
ト連続500枚行なった所で再び前記と同じ様に80℃
まで加温、35℃まで冷却のサイクルを行ない再びプリ
ント500枚を行なった。
This was placed on a laser printer (Ricoh LP4080) equipped with the same heating device and surface electrometer as in Example 1. When the laser printer was started, it was heated to 80°C, and when it reached 80°C, it was cooled down to 35°C using a separately provided fan, and when the temperature reached 35°C, printing was started. After printing 500 sheets in a row, heat the temperature at 80℃ again as above.
A cycle of heating to 35° C. and cooling to 35° C. was repeated, and 500 prints were made again.

この操作を6回連続行ない: 3000枚のプリントを
行なった。
This operation was repeated 6 times in succession: 3000 sheets were printed.

比較例2 実施例2において、酸化銅の粉末を分散させていないポ
リエステルフィルムを使用した以外はすべて同じ操作を
行った。但し、ランプ照射は実施例1にて80℃になる
のに必要な時間と同じ時間照射した。
Comparative Example 2 The same operations as in Example 2 were performed except that a polyester film in which copper oxide powder was not dispersed was used. However, lamp irradiation was performed for the same time as the time required to reach 80° C. in Example 1.

第7図に実施例2および比較例2において測定した表面
電位のプロフィールを示す。
FIG. 7 shows profiles of surface potentials measured in Example 2 and Comparative Example 2.

実施例3 φ80mmのアルミニウムドラムの外側表面に酸化鉄を
蒸着した基体に下記組成からなる中間層(o、3虐)、
電荷発生層(0,3μs)、電化輸送層(22μm)を
順次塗工した。
Example 3 An intermediate layer (o, 3rd grade) consisting of the following composition was formed on a substrate in which iron oxide was vapor-deposited on the outer surface of an aluminum drum with a diameter of 80 mm.
A charge generation layer (0.3 μs) and a charge transport layer (22 μm) were sequentially applied.

〔中間J傍塗工液〕[Intermediate J side coating liquid]

メタノール            96重量部〔電荷
発生層塗工液〕 下記構造式の電荷発生物質     2型皿部シクロヘ
キサノン        100重量部〔電荷輸送層塗
工液〕 下記構造式の電荷輸送物質     10重量部テトラ
ヒドロフラン        80重量部以上の様に作
成した感光体を複写機(リコピーFT5510)を負帯
電になる様に改造したものに塔載し現像直前の感光体の
表面電位が測定できる様に表面電位計のプローブをセッ
トした。フィルターは、シャープカットフィルターを使
用し760nm以下の光はカットした。
Methanol 96 parts by weight [Charge generation layer coating liquid] Charge generating substance with the following structural formula Type 2 dish part Cyclohexanone 100 parts by weight [Charge transport layer coating liquid] Charge transporting substance having the following structural formula 10 parts by weight Tetrahydrofuran 80 parts by weight or more The photoreceptor prepared as described above was mounted on a copying machine (Recopy FT5510) modified to be negatively charged, and a surface electrometer probe was set so that the surface potential of the photoreceptor could be measured immediately before development. A sharp cut filter was used to cut out light of 760 nm or less.

尚、ドラム温度が25℃(室温)、40℃、50℃、6
0℃。
In addition, the drum temperature is 25℃ (room temperature), 40℃, 50℃, 6
0℃.

80’C,100℃となる様にランプのon−offで
調節しながら、コントロールした。各条件をセットした
後、複写機を繰り返し使用し、現像直前の非露光部の表
面電位を測定した。
The temperature was controlled by turning the lamp on and off so that the temperature was 80'C and 100C. After setting each condition, the copying machine was used repeatedly, and the surface potential of the unexposed area immediately before development was measured.

=24− 第8図に5000枚時の表面電位と感光体温度の関係を
示す。尚、各条件ともランニングテストを行なう前の一
枚目時の電位は約−900Vであった。
=24- Figure 8 shows the relationship between the surface potential and the photoreceptor temperature when 5000 sheets were printed. Incidentally, under each condition, the potential at the time of the first sheet before the running test was about -900V.

実施例4 外径40mm、長さ250mmのアルミニウムシリンダ
ー上に酸化銅をポリアミド中に分散した塗工液を5声塗
工したドラム上に下記組成からなる中間層塗工液、電荷
発生層塗工液、電荷輸送層塗工液を順次塗布、乾燥を行
ない中間層(3癖)、電荷発生7m(0,2鴻)、電荷
輸送N(21牌)を形成した。
Example 4 An intermediate layer coating solution having the following composition and a charge generation layer coating were applied to an aluminum cylinder having an outer diameter of 40 mm and a length of 250 mm, on which a coating solution in which copper oxide was dispersed in polyamide was coated in 5 tones. A coating liquid and a charge transport layer coating liquid were sequentially applied and dried to form an intermediate layer (3 patterns), charge generation 7m (0,2 tiles), and charge transport N (21 tiles).

〔中間層塗工液〕[Intermediate layer coating liquid]

二酸化チタン           10重量部トルイ
レン−2,4−ジイソシアネート 0.2重量部2−ブ
タノン            100重量部4−メチ
ル−2−ペンタノン       60重量部〔電荷発
生層塗工液〕 下記構造式のトリスアゾ顔料    2重量部ポリビニ
ルブチラール (電気化学工業■製、デンヵブチラ0.5重量部−ル#
4000−1) シクロへキサノン        150重量部2−ブ
タノン 〔電荷輸送層塗工液〕 下記構造式の電荷輸送物質    100重量部テトラ
ヒドロフラン       800重量部以上の様に作
成した感光体をレーザープリンター(リコーPCレーザ
ー6000)に塔載し、帯電直後の感光体の表面電位が
測定できる様に表面電位計のプローブをセットした。ま
た第5図に示す様な方法で感光体外部にタングステンラ
ンプをセットし、感光体の温度が40±5℃になる様な
ドラム内側に温度センサーをセットし、ランプのオン−
オフにより調節し、連続3,000枚のプリントを行な
った。
Titanium dioxide 10 parts by weight Toluylene-2,4-diisocyanate 0.2 parts by weight 2-butanone 100 parts by weight 4-methyl-2-pentanone 60 parts by weight [Charge generation layer coating liquid] Trisazo pigment having the following structural formula 2 parts by weight Polyvinyl butyral (manufactured by Denki Kagaku Kogyo ■, Denka Butyra 0.5 parts by weight)
4000-1) Cyclohexanone 150 parts by weight 2-butanone [Charge transport layer coating liquid] Charge transport substance with the following structural formula 100 parts by weight Tetrahydrofuran 800 parts by weight or more 6000), and a surface electrometer probe was set so that the surface potential of the photoreceptor could be measured immediately after charging. Also, set a tungsten lamp outside the photoreceptor as shown in Figure 5, set a temperature sensor inside the drum so that the temperature of the photoreceptor is 40±5℃, and turn on the lamp.
Adjustment was made by turning off the printer, and 3,000 sheets were printed continuously.

フィルターは富士写真製IR−90を使用した。この時
の環境条件は下記の通りである。
The filter used was IR-90 manufactured by Fuji Photo. The environmental conditions at this time are as follows.

25℃−50% 10℃−70% 30℃−90% 比較例3 実施例1における酸化銅を分散した塗工液を塗布しない
以外は全く同じ評価をした。
25°C-50% 10°C-70% 30°C-90% Comparative Example 3 The same evaluation as in Example 1 was performed except that the coating liquid in which copper oxide was dispersed was not applied.

但し、ランプ照射は実施例1と同じタイミングで行なっ
たので40℃には達しなかった。実施例1及び比較例1
の結果を表−2に記す。
However, since lamp irradiation was performed at the same timing as in Example 1, the temperature did not reach 40°C. Example 1 and comparative example 1
The results are shown in Table-2.

表−2 実施例5 酸化鉄/ポリアミド−1/2となる様に表面コートした
外径40mm、長さ250mmのアルミニウムトラム上
に下記組成からなる電荷発生層(0,1μII+)、電
荷輸送層(20μm)を塗工した。
Table 2 Example 5 A charge generation layer (0,1 μII+) having the following composition and a charge transport layer ( 20 μm) was applied.

〔電荷発生)〜塗工液〕[Charge generation) ~ Coating liquid]

実施例4と同じ 〔電荷発生層塗工液〕 下記構造式の電荷輸送物質     90重量部塩化メ
チレン          800重量部比較例4 実施例5におけるアルミニウムドラムの表面コートを行
なわない以外はすべて同様におこなった。
Same as Example 4 [Charge generation layer coating liquid] Charge transport material having the following structural formula: 90 parts by weight Methylene chloride 800 parts by weight Comparative Example 4 Everything was carried out in the same manner as in Example 5 except that the surface coating of the aluminum drum was not performed. .

実施例5及び比較例4で作成した感光体をレーザープリ
ンター(リコピーpcレーザー6000)に塔載し、ド
ラム表面温度が測定できる様tこセットし、加温ランプ
照射後の感光体表面温度の昇温カーブ及び降温カーブを
測定した。結果は第9図に記す。
The photoreceptors prepared in Example 5 and Comparative Example 4 were mounted on a laser printer (Recopy PC Laser 6000), set so that the drum surface temperature could be measured, and the increase in the photoreceptor surface temperature after irradiation with a heating lamp was performed. A temperature curve and a temperature drop curve were measured. The results are shown in Figure 9.

実施例6 カーボンブラックを含むポリアミド樹脂層を表面にコー
ティングした(10μm)ポリエステルフィルム上に下
記組成からなる電荷発生層(0,:bs+)、電荷輸送
N(17μm)を順次塗布、乾燥し感光体を作成した。
Example 6 A charge generation layer (0,:bs+) and a charge transport N (17 μm) having the following composition were sequentially coated on a polyester film whose surface was coated with a polyamide resin layer containing carbon black (10 μm), and dried to form a photoreceptor. It was created.

〔電荷発生層塗工液〕[Charge generation layer coating liquid]

下記構造式の電荷発生物質     5重量部シクロヘ
キサノン        200重量部メチルイソブチ
ルケトン      100重量部〔電荷輸送層塗工液
〕 下記構造式の電荷輸送物質     10重量部テトラ
ヒドロフラン        80重量部以上の様に作
成した感光体に導電性塗工およびベルト接合を行ない、
実装用の感光体とした。これを第5図の様に感光体の内
側からハロゲンランプにシャープカットフィルター(富
士写真:5C−72)を取り付けたものをセットし−た
複写機(リコピーFT2070)にセットした。
Charge generating substance having the following structural formula: 5 parts by weight Cyclohexanone 200 parts by weight Methyl isobutyl ketone 100 parts by weight [Charge transport layer coating liquid] Charge transporting substance having the following structural formula: 10 parts by weight Tetrahydrofuran 80 parts by weight or more Photoreceptor prepared as follows conductive coating and belt joining,
It was used as a photoreceptor for mounting. This was set in a copying machine (Recopy FT2070) equipped with a sharp cut filter (Fuji Photo: 5C-72) attached to a halogen lamp from the inside of the photoreceptor as shown in FIG.

これを始動時に75℃まで加温し、他に設けたファンを
使用し室温まで冷却し、室温になった所でコピーをスタ
ートし、500枚になった所で再び75℃に加温→室温
まで冷却のサイクルを8回行ない、連続4000枚のコ
ピーをした。この時に実施例1と同様な方法で表面電位
を測定した。
This is heated to 75℃ at startup, cooled down to room temperature using another fan, starts copying when it reaches room temperature, and heated to 75℃ again when it reaches 500 sheets → room temperature. The cooling cycle was repeated 8 times and 4000 copies were made continuously. At this time, the surface potential was measured in the same manner as in Example 1.

比較例5 実施例6におけるカーボンブランクを含むポリアミド樹
脂層をコーティングしない以外は同様の評価をした。
Comparative Example 5 The same evaluation as in Example 6 was performed except that the polyamide resin layer containing the carbon blank was not coated.

但し、ランプ照射時間を実施例6の感光体で75℃にな
る時間だけにした為、75℃には到達していない。
However, since the lamp irradiation time was set only for the time when the photoreceptor of Example 6 reached 75°C, the temperature did not reach 75°C.

実施例6及び比較例5のランニングテストにおける感光
体の表面電位のプロフィールを第10図に示す。
FIG. 10 shows the profile of the surface potential of the photoreceptor in the running test of Example 6 and Comparative Example 5.

〔効  果〕〔effect〕

本発明の電子写真感光体は前記構成からなるので、次の
ような顕著な作用を奏する。
Since the electrophotographic photoreceptor of the present invention has the above structure, it exhibits the following remarkable effects.

(1)赤外線照射により感光体を効率よく加温すること
ができる。
(1) The photoreceptor can be efficiently heated by infrared irradiation.

3l− (2)高温湿度下で感光体雰囲気の相対湿度を下げ、画
像ボケや画像ウスを防止できる。
3l- (2) It is possible to lower the relative humidity of the photoreceptor atmosphere under high temperature and humidity conditions, and prevent image blurring and image distortion.

(3)低温時の感光体の結露及び低温湿度下での画像地
汚れを防止できる。
(3) It is possible to prevent dew condensation on the photoreceptor at low temperatures and background smearing of images at low temperatures and humidity.

(4)有機系感光体において、感光体の帯電性を改良す
ることができる。
(4) In organic photoreceptors, the charging properties of the photoreceptors can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図a、第2図b、第3図及び第4図は本発
明に係る電子写真感光体の模式断面図であり、第5図、
第6図a及び第6図すは本発明の電子写真感光体の加温
方法の説明図であり、第7図、第9図及び第10図は本
発明方法及び比較例で得られた電子写真感光体を用いて
プリントした際のプリント枚数と表面電位の関係を表わ
すグラフである。 第8図は本発明の電子写真感光体を用いて5000枚コ
ピーした際の表面電位と感光体温度の関係を表わすグラ
フである。 11・導電性支持体、13・中間層、15−・・感光層
、17−保護層、21  電荷発生層、23・−・電荷
輸送層、31・・感光体、32・・ランプあるいはレン
ズアレイ、=32− 33・・フィルター、34・・・カバー、35・・・ミ
ラー。
FIG. 1, FIG. 2a, FIG. 2b, FIG. 3, and FIG. 4 are schematic cross-sectional views of the electrophotographic photoreceptor according to the present invention, and FIG.
FIGS. 6a and 6 are explanatory diagrams of the method of heating an electrophotographic photoreceptor of the present invention, and FIGS. 7, 9, and 10 are diagrams showing the electron 2 is a graph showing the relationship between the number of prints and the surface potential when printing using a photographic photoreceptor. FIG. 8 is a graph showing the relationship between surface potential and photoreceptor temperature when 5,000 copies were made using the electrophotographic photoreceptor of the present invention. 11. Conductive support, 13. Intermediate layer, 15.. Photosensitive layer, 17. Protective layer, 21. Charge generation layer, 23.. Charge transport layer, 31.. Photoreceptor, 32.. Lamp or lens array. , =32-33...filter, 34...cover, 35...mirror.

Claims (1)

【特許請求の範囲】[Claims] (1)導電性支持体上に少なくとも感光層を形成した電
子写真感光体において、該導電性支持体又は/及び感光
層が赤外線吸収性を有することを特徴とする電子写真感
光体。
(1) An electrophotographic photoreceptor comprising at least a photosensitive layer formed on a conductive support, characterized in that the conductive support and/or the photosensitive layer have infrared absorbing properties.
JP3723888A 1988-02-19 1988-02-19 Electrophotographic sensitive body Pending JPH01211769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3723888A JPH01211769A (en) 1988-02-19 1988-02-19 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3723888A JPH01211769A (en) 1988-02-19 1988-02-19 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01211769A true JPH01211769A (en) 1989-08-24

Family

ID=12492032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3723888A Pending JPH01211769A (en) 1988-02-19 1988-02-19 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01211769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114902A (en) * 2014-12-18 2016-06-23 コニカミノルタ株式会社 Organic photoreceptor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114902A (en) * 2014-12-18 2016-06-23 コニカミノルタ株式会社 Organic photoreceptor

Similar Documents

Publication Publication Date Title
US4555463A (en) Photoresponsive imaging members with chloroindium phthalocyanine compositions
US4477549A (en) Photoreceptor for electrophotography, method of forming an electrostatic latent image, and electrophotographic process
JP2010145506A (en) Electrophotographic photoreceptor, and image forming apparatus using the same
JP4898411B2 (en) Image forming member
JPH01211769A (en) Electrophotographic sensitive body
JPH0738077B2 (en) Electrophotographic positively charged photoreceptor and its image forming process
JP3020501B2 (en) Electrophotographic equipment
JPH10228121A (en) Electrophotographic photoreceptor
JPH11109666A (en) Electrophotographic photoreceptor
JPH0644156B2 (en) Electrophotographic photoreceptor for positive charging
JPS63159859A (en) Electrophotographic sensitive body
JPH01233474A (en) Electrophotographic process
JPH06118668A (en) Photosensitive body
JP2883920B2 (en) Electrophotographic photoreceptor
JPH10115945A (en) Electrophotographic photoreceptor and electrophotographic device
JP2001305762A (en) Electrophotographic photoreceptor
JPH0534956A (en) Production of electrophotographic sensitive body
JPH01191887A (en) Method for recovering electrophotographic sensitive body from fatigue
JPH01191883A (en) Electrophotographic process
JPH0560858B2 (en)
JPH01204087A (en) Fatigue recovering method for electrophotographic sensitive body
JP2002148835A (en) Electrophotographic photoreceptor and image forming device which uses the same
JPH01191888A (en) Method for recovering electrophotographic sensitive body from fatigue
JPH01191889A (en) Method for recovering electrophotographic sensitive body from fatigue
JPH0675396A (en) Electrophotographic sensitive body and electrophotographic device using the same