JPH0121101B2 - - Google Patents
Info
- Publication number
- JPH0121101B2 JPH0121101B2 JP14832583A JP14832583A JPH0121101B2 JP H0121101 B2 JPH0121101 B2 JP H0121101B2 JP 14832583 A JP14832583 A JP 14832583A JP 14832583 A JP14832583 A JP 14832583A JP H0121101 B2 JPH0121101 B2 JP H0121101B2
- Authority
- JP
- Japan
- Prior art keywords
- frit
- enamel
- weight
- amount
- hot water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 3
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 claims description 3
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims 2
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 210000003298 dental enamel Anatomy 0.000 description 78
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 60
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 34
- 239000011521 glass Substances 0.000 description 30
- 238000007598 dipping method Methods 0.000 description 19
- 229910052742 iron Inorganic materials 0.000 description 17
- 239000011734 sodium Substances 0.000 description 16
- 238000002844 melting Methods 0.000 description 15
- 239000010953 base metal Substances 0.000 description 13
- 230000007423 decrease Effects 0.000 description 13
- 238000010304 firing Methods 0.000 description 13
- 230000008018 melting Effects 0.000 description 13
- 238000003860 storage Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 230000007774 longterm Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 229910010413 TiO 2 Inorganic materials 0.000 description 6
- 239000004927 clay Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 241000951471 Citrus junos Species 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910000680 Aluminized steel Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002320 enamel (paints) Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 229910052845 zircon Inorganic materials 0.000 description 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 3
- 229910018084 Al-Fe Inorganic materials 0.000 description 2
- 229910018192 Al—Fe Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 229910001610 cryolite Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000010433 feldspar Substances 0.000 description 2
- 239000010436 fluorite Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 230000009974 thixotropic effect Effects 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminium flouride Chemical compound F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 240000004307 Citrus medica Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 1
- 229940012189 methyl orange Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Inorganic materials [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Glass Compositions (AREA)
Description
産業上の利用分野
本発明は低温焼成可能なホーローフリツトに関
するものであり、ホーロー加工の省資源、省エネ
ルギーをもたらすものである。
従来例の構成とその問題点
一般に、鉄ホーローの焼付温度は800〜870℃と
鉄のA1変態点(723℃)より高いので、焼付けに
際して鉄の結晶型がa鉄からγ鉄に変態し、鉄板
が熱歪みにより変形し易く、焼成加工後の寸法精
度が悪く不良率が大きくなる。従つて板厚を厚く
しなければならない。また鉄板を高温で加熱する
と、鉄板に吸着あるいは吸蔵されている水素ガス
等の発生が著しくなる。またスリツプ中の水分や
鉄板上の水分は、焼成温度域では鉄板中の炭素と
反応して炭酸ガスを発生し、ホーロー表面に泡、
ピンホール等の欠陥が生じやすくなる。
例えば、オーブン庫内壁を板厚0.6mmの鋼板に
800〜870℃で鉄ホーローを焼付けた場合、成形物
の変形が大きく、泡、ピンホール等の発生も多い
ので、不良率が大きい。一方、A1変態点以下の
低温でホーローを焼成できれば、熱歪みによる変
形が少なく、ガス発生による泡、ピンホールの欠
陥も少なくなるので、板厚が0.4mm程度の薄板の
使用が可能になり、さらに複雑な形状のものにも
ホーロー加工がしやすい。
近年、省資源、省エネルギーが重要な問題点と
なつている。ホーローの焼成温度を下げることに
より燃料費の節減が図れ、薄板の使用が可能にな
ることにより、基材の材料費の節減が図れる。
このように低温で焼成する低融ホーロー加工技
術はすぐれた利点を持つているにもかかわらず、
現状の高温で焼成する普通ホーローに取つて替る
ほどの特性を有していず、未だ不十分なものであ
る。
その理由の一つとして、ホーローは耐熱性、耐
食性等の基材の表面保護機能と同時に、装飾的機
能が要求されるものであるが、従来の低融点フリ
ツトである鉛系フリツトでは両機能とも満足する
ものがなかつたからである。
その中で特に、装飾機能上要求される事項とし
て、ホーロー表面の表面状態、光沢等のほかに、
各種色調の発色性、安定性などがあげられるが、
従来の低融ホーローフリツトは発色性、色調の安
定性等に問題があつた。
そこで本発明者らは、特願昭57−19243に記し
たように、鉄もしくは鉄基合金のA1変態点(723
℃)以下で焼成でき、しかもすべての色調にわた
つて発色させることができ、化学的にも安定な低
軟化点のホーローフリツトを開発した。しかしな
がら、それらには次のような問題点が残されてい
た。
(1) ホーロー釉薬の長期保存性。
(2) デイツピング特性。
(1)の低軟化点ホーローフリツトを用いたホーロ
ー釉薬の長期保存性に関する問題は次のとおりで
ある。ホーローフリツトの軟化温度を下げるため
には、アルカリ成分(Na2O,K2O,Li2O等)を
ガラス中に添加する必要があり、従来の普通ホー
ロー用フリツトに比べ、アルカリ成分の量を増大
させることは避けられない。前記先願の低軟化点
ホーローフリツトを用いて、ホーロー釉薬を作製
し、長期間保存しておくと、ガラスフリツトから
アルカリ成分が徐々に溶出し、釉薬に悪影響を及
ぼす。この長期間保存した釉薬の施釉、焼成を行
うと、ホーロー層にゆず肌、亀裂、コツパーヘツ
ド等の重大欠陥の発生が見られた。
(2)のデイツピング特性は施釉法、すなわち釉薬
中に器物を浸して施釉するデイツプ法における問
題であるが、釉薬のチクソトロピー性、ガラスフ
リツトの流動性が重要なポイントとなる。前記先
願の低軟化ホーローフリツトは主として、スプレ
ー法用のガラスフリツトであり、デイツプ法で行
うと、ホーロー層にピンホール、ヒケ等が発生
し、好ましくなかつた。
そこで、このような問題点を解決するために、
発明者らにより、釉薬の長期保存性に優れ、デイ
ツピング特性に優れた低軟化点透明ホーローフリ
ツトが案出された。
下記の組成のものがそれである。
SiO2: 32〜45重量%
B2O3: 7〜20重量%
F2: 2〜9重量%
Na2O: 14〜22重量%
K2O: 0.4〜5重量%
Li2O: 0.3〜2重量%
CaO: 1.5〜15重量%
BaO: 1.5〜15重量%
ZrO2: 0.5〜4.5重量%
Al2O3: 0.5〜5重量%
しかし、このものは、ホーローの長期保存性
や、デイツピング特性に優れているという利点が
あるものの、耐水性にいささか問題があることが
わかつた。
ホーローの耐水性とは、調理器用の鍋やポツ
ト、浴槽等の使用上において水のかかる所では、
ホーロー表面のガラス成分やミル添加剤が、水ま
たは熱水中に徐々に溶出し、ホーロー表面を浸食
し凹凸にしたり、光沢が著しく低下したりするこ
とで、水と接して使用するホーロー表面の特性と
しては、重要な項目である。
発明の目的
本発明は、鉄もしくは鉄基合金のA1変態点
(723℃)以下で焼成でき、釉薬の長期保存化が図
れるとともに、デイツピング特性に優れ、さらに
耐水性の良好な低軟化点透明ホーローフリツトを
提供することを目的とする。
発明の構成
本発明のフリツトは、少なくともSiO2,B2O3,
F2,Na2O,K2O,Li2O,CaO,BaO,ZnO,
ZrO2及びAl2O3から構成され、SiO2を32〜45重量
%(以下単に%で表わす)、B2O3を7〜20%、F2
を2〜9%、Na2Oを14〜22%、K2Oを0.4〜5
%、Li2Oを0.3〜2%、CaOを1.5〜15%、BaOを
1.5〜15%、ZnOを0.1〜5%、ZrO2を0.5〜4.5%、
Al2O3を0.5〜5%含有し、かつTiO2,MgO,
SnO2及びSrOよりなる群から選択される成分を
0〜3重量%の範囲で含有することを特徴とする
ものである。
実施例の説明
ホーローフリツトに要求される重要な要件の1
つは、素地金属との熱膨張係数のバランスであ
る。素地金属としては、鉄、ステンレス鋼、アル
ミナイズド鋼、アルミニウムなどが代表的であ
り、従つて、これら素地金属に合うようにフリツ
トの熱膨張係数を調整する必要がある。
一般にフリツトの熱膨張係数αは、経験則とし
て次の様な加算式が便宜的に用いられている。
α=o
〓
aoPo
ここでαはフリツトの酸化物成分による熱膨張
係数因子、Pは各成分の重量百分率である。フリ
ツトの組成を決定する場合、この加算式を参考に
して、適当な膨張係数となるよう組成を決定しな
ければならない。
例えば、素地金属が鋼板の場合、一般ホーロー
では、膨張率が(85〜105)×10-7deg-1のフリツ
トを選択しなければならない。これ以下ではホー
ロー表面が割れたり、素地金属が凸変形したりホ
ーロー層がひけて、素地が露出する。フリツトの
膨張率が、前記の範囲より大きいと、素地金属が
凹変形したり、焼成後冷却時にホーロー層が剥離
するような現象を生じる。一方、鉄のA1変態点
以下の温度で焼成するフリツトの場合、現在一般
的に使われている鉄用フリツトの膨張率の適正範
囲(85〜105)×10-7deg-1より大きめの値(85〜
115)×10-7deg-1が最適範囲であつた。その理由
は、一般ホーローと比べて、焼成温度が約100〜
200℃低いため、素地金属にかかる熱応力が小さ
く、膨張率の適正範囲が一般ホーローフリツトよ
り大きくなるからである。
このように、ホーロー焼成温度によつても、選
択されるフリツトの膨張率が規定される。
また、低温でホーローを焼成するには、フリツ
トの軟化点を下げ、焼成温度でフリツトが軟化流
動し、鋼板の表面をぬらすようにすることが必要
である。例えば、鋼のA1変態点以下の低温でホ
ーロー被覆し、素地金属の変形や泡、ピンホール
等の欠陥を防ぐ場合は、ホーローの焼付温度を
720℃以下にする必要がある。素地金属が、アル
ミナイズド鋼板やアルミクラツド鋼板の場合、
600℃以上になるとアルミニウム層と鉄層の間に
Al―Fe合金層の成長が著しくなり、このAl―Fe
合金層が成長すると、ホーローと素地金属の密着
性が低下するので、焼成温度は600℃以下にする
必要がある。素地金属がアルミニウムの場合、ア
ルミニウムの融点は658℃であるため、素地金属
の熱変形を生じさせないように、焼付温度は600
℃以下にすることが必要となる。このように、使
用する素材金属の種類によつても、フリツトの軟
化点が規定される。
さらに、本発明の目的を達成するためには、以
下の事を配慮しなければならない。
(イ) ホーロー釉薬の長寿命性
前述したように、低軟化点フリツトはアルカ
リ成分の増大を余儀なくされている関係上、ガ
ラスフリツトの化学耐久性がポイントとなり、
化学耐久性を向上させる成分の種類あるいは量
の検討が必要である。
それと同時にアルカリ成分の他に選択的に溶
解する成分のチエツクも必須であり、これらの
検討がホーロー釉薬の長寿命性をもたらす。
(ロ) デイツピング特性
デイツピング特性に影響を与える因子の一つ
は、ガラスフリツトの化学耐久性である。その
理由は次のとおりである。ホーロー釉薬にミル
添加物として蛙目粘土を添加するが、蛙目粘土
の添加の目的は、フリツトを浮遊させる懸濁材
として働かせることおよび施釉したホーロー釉
薬の乾燥膜の強化である。この粘土粒子あるい
はガラスフリツトがスリツプ中で永く懸濁して
いるか、あるいは凝集して粗大粒子となり沈澱
するか否かは、スリツプ中に存在するイオンの
吸着によつて左右される。すなわち、ガラスフ
リツトから溶出する成分によつてその状態が変
化するので、好ましくはガラスフリツトから成
分溶出が極端に少ない、化学耐久性にすぐれた
ガラスフリツトを選択するのが良い。化学耐久
性の悪いガラスフリツトを用いると、スリツプ
中の粘度が増加し、作業性の悪い、しかもホー
ロー特性の好ましくないものとなる。
また、デイツピング特性に影響を与えるもう
一つの因子として、ガラスフリツトの流動性が
挙げられる。その理由は次のとおりである。デ
イピング施釉を行う場合、作業性の観点から施
釉膜厚は60〜120μmで、スプレー施釉の膜厚
120〜200μmに比べて少なくなるため、膜厚の
小さい箇所がどうしてもピンホール等の発生が
出やすくなる。
またデイツピングの際のフリツトの粒度分布
は50c.c.のスリツプ中に200メツシユ以上の粒子
が8〜15gであるのに対し、スプレイの時は4
〜10gと、デイツピング施釉の方がフリツト粒
子径が大きいこともピンホールが発生しやすく
なる。
このためガラスフリツト自体が所定の焼成温
度で十分流動し、基材上を被覆するような組成
の選択が重要である。
(ハ) 耐水性
ホーローの耐水性に影響を与える因子は、ガ
ラスフリツトの熱水への溶解性だけでなく、所
定の焼成温度でガラスと、粘土やケイ石粉、そ
の他ミル添加物が十分に溶融反応するかが重要
である。
以上のような配慮のもとに構成された本発明に
よるホーローフリツトの組成について以下に説明
する。
図に本発明者らが耐水性の向上に特に有効であ
つたホーローフリツト中のZnOの重量%とホーロ
ー被膜の熱水溶解量ならびにフリツトの流動性の
関係を示す。
図中、1は熱水溶解量とZnOの含量の関係、2
は流動性とZnOの含量の関係をそれぞれ示す。
第1表に本発明者らが検討した主なフリツトの
組成を示し、第2表にその性質およびホーロー層
の表面状態、ホーロー特性、耐久性などの評価結
果を示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a enamel frit that can be fired at low temperatures, and contributes to resource and energy saving in enamel processing. Structure of conventional examples and their problems In general, the baking temperature of iron enamel is 800 to 870℃, which is higher than the A1 transformation point (723℃) of iron, so the iron crystal type transforms from a iron to gamma iron during baking. The iron plate is easily deformed due to thermal distortion, and the dimensional accuracy after firing is poor, resulting in a high defective rate. Therefore, the plate thickness must be increased. Furthermore, when an iron plate is heated to a high temperature, hydrogen gas and the like adsorbed or occluded in the iron plate are significantly generated. In addition, moisture in the slip and on the iron plate reacts with carbon in the iron plate in the firing temperature range, generating carbon dioxide gas, causing bubbles and bubbles on the enamel surface.
Defects such as pinholes are more likely to occur. For example, the inner wall of the oven is made of steel plate with a thickness of 0.6 mm.
When iron enamel is baked at 800 to 870°C, the molded product is greatly deformed and many bubbles, pinholes, etc. occur, resulting in a high defect rate. On the other hand, if enamel can be fired at a low temperature below the A1 transformation point, there will be less deformation due to thermal distortion, and there will be fewer defects such as bubbles and pinholes due to gas generation, making it possible to use thin plates with a thickness of about 0.4 mm. It is also easy to enamel objects with more complex shapes. In recent years, resource conservation and energy conservation have become important issues. By lowering the firing temperature of the enamel, fuel costs can be reduced, and by allowing the use of thin plates, material costs for the base material can be reduced. Although low-melt enamel processing technology that involves firing at low temperatures has excellent advantages,
It does not have enough properties to replace the current ordinary enamel fired at high temperatures, and is still insufficient. One of the reasons for this is that enamel is required to have a decorative function as well as a surface protection function such as heat resistance and corrosion resistance, but lead-based frits, which are conventional low melting point frits, do not have both functions. Because there was nothing to be satisfied with. Among these, in addition to the surface condition and gloss of the enamel surface, the requirements for decorative functions include:
Examples include color development of various tones, stability, etc.
Conventional low-melting hollow frits have had problems with color development, color stability, etc. Therefore, the present inventors have investigated the A1 transformation point (723
We have developed a chemically stable enamel frit with a low softening point that can be fired at temperatures below 30°F (°C) or less, can develop colors in all tones, and is chemically stable. However, they still had the following problems. (1) Long-term storage stability of enamel glaze. (2) Dating characteristics. The problems regarding the long-term storage stability of enamel glazes using low softening point enamel frits in (1) are as follows. In order to lower the softening temperature of the enamel frit, it is necessary to add alkaline components (Na 2 O, K 2 O, Li 2 O, etc.) to the glass, and compared to conventional ordinary enamel frits, the amount of alkaline components is lower. Increasing the amount is inevitable. When a enamel glaze is prepared using the low softening point enamel frit of the prior application and stored for a long period of time, the alkaline component gradually dissolves from the glass frit and has a negative effect on the glaze. When this glaze that had been stored for a long period of time was applied and fired, serious defects such as orange skin, cracks, and crack heads were observed in the enamel layer. The dipping characteristic (2) is a problem in the glazing method, that is, the dipping method in which objects are immersed in the glaze to apply the glaze, but the thixotropic properties of the glaze and the fluidity of the glass frit are important points. The low-softening enamel frit of the prior application is mainly a glass frit for the spray method, and when the dip method is used, pinholes, sink marks, etc. occur in the enamel layer, which is not desirable. Therefore, in order to solve such problems,
The inventors have devised a low softening point transparent hollow frit that has excellent long-term glaze storage and excellent dipping properties. It has the following composition. SiO2 : 32-45% by weight B2O3 : 7-20% by weight F2 : 2-9% by weight Na2O : 14-22% by weight K2O : 0.4-5 % by weight Li2O : 0.3- 2% by weight CaO: 1.5-15% by weight BaO: 1.5-15% by weight ZrO 2 : 0.5-4.5% by weight Al 2 O 3 : 0.5-5% by weight However, this material has poor long-term storage properties and dipping properties of enamel. Although it has the advantage of being excellent in water resistance, it was found that there were some problems with water resistance. The water resistance of enamel means that it cannot be used in places where it gets wet when used in cooking pots, pots, bathtubs, etc.
The glass components and mill additives on the enamel surface gradually dissolve into water or hot water, causing the enamel surface to become uneven and become uneven, and the gloss to be significantly reduced. This is an important characteristic. Purpose of the Invention The present invention is a transparent glaze that can be fired at a temperature below the A1 transformation point (723°C) of iron or iron-based alloys, can preserve the glaze for a long time, has excellent dipping properties, and is transparent with a low softening point and good water resistance. The purpose is to provide enamel frits. Structure of the Invention The frit of the present invention contains at least SiO 2 , B 2 O 3 ,
F 2 , Na 2 O, K 2 O, Li 2 O, CaO, BaO, ZnO,
Composed of ZrO 2 and Al 2 O 3 , SiO 2 32 to 45% by weight (hereinafter simply expressed as %), B 2 O 3 7 to 20%, F 2
2-9%, Na 2 O 14-22%, K 2 O 0.4-5
%, Li2O 0.3-2%, CaO 1.5-15%, BaO
1.5-15%, ZnO 0.1-5%, ZrO 2 0.5-4.5%,
Contains 0.5 to 5% Al 2 O 3 and contains TiO 2 , MgO,
It is characterized by containing a component selected from the group consisting of SnO 2 and SrO in a range of 0 to 3% by weight. Description of Examples One of the important requirements for hollow frits
One is the balance of the thermal expansion coefficient with the base metal. Typical base metals include iron, stainless steel, aluminized steel, and aluminum, and it is therefore necessary to adjust the coefficient of thermal expansion of the frit to suit these base metals. Generally, the following addition formula is conveniently used as a rule of thumb for the coefficient of thermal expansion α of a frit. α= o 〓 a o P o where α is the thermal expansion coefficient factor due to the oxide component of the frit, and P is the weight percentage of each component. When determining the composition of the frit, the composition must be determined with reference to this addition formula so as to provide an appropriate expansion coefficient. For example, if the base metal is a steel plate, a frit with an expansion coefficient of (85 to 105) x 10 -7 deg -1 must be selected for general enamel. If it is less than this, the enamel surface will crack, the base metal will undergo convex deformation, or the enamel layer will shrink, exposing the base metal. If the expansion coefficient of the frit is larger than the above range, phenomena such as concave deformation of the base metal or peeling of the enamel layer during cooling after firing will occur. On the other hand, in the case of a frit that is fired at a temperature below the A1 transformation point of iron, the expansion coefficient is larger than the appropriate range (85 to 105) x 10 -7 deg -1 of currently commonly used iron frits. Value (85~
115) × 10 -7 deg -1 was the optimal range. The reason for this is that the firing temperature is approximately 100°C compared to general enamel.
Because it is 200°C lower, the thermal stress applied to the base metal is small, and the appropriate range of expansion coefficient is larger than that of general hollow frits. In this way, the expansion coefficient of the selected frit is also determined by the enamel firing temperature. Furthermore, in order to fire enamel at a low temperature, it is necessary to lower the softening point of the frit so that the frit softens and flows at the firing temperature and wets the surface of the steel plate. For example, when coating with enamel at a low temperature below the A 1 transformation point of steel to prevent deformation of the base metal and defects such as bubbles and pinholes, the baking temperature of the enamel should be adjusted.
It is necessary to keep the temperature below 720℃. If the base metal is an aluminized steel plate or aluminized steel plate,
When the temperature exceeds 600℃, the temperature between the aluminum layer and the iron layer
The growth of the Al-Fe alloy layer becomes remarkable, and this Al-Fe
As the alloy layer grows, the adhesion between the enamel and the base metal decreases, so the firing temperature needs to be 600°C or lower. When the base metal is aluminum, the melting point of aluminum is 658℃, so the baking temperature is set at 600℃ to prevent thermal deformation of the base metal.
It is necessary to keep the temperature below ℃. In this way, the softening point of the frit is also determined by the type of raw metal used. Furthermore, in order to achieve the purpose of the present invention, the following must be taken into consideration. (b) Long life of enamel glaze As mentioned above, low softening point frit is forced to increase the alkaline content, so the chemical durability of glass frit is a key point.
It is necessary to consider the type or amount of components that improve chemical durability. At the same time, it is also essential to check for selectively soluble components in addition to alkaline components, and these considerations will ensure the longevity of the enamel glaze. (b) Dipping characteristics One of the factors that affects the dipping characteristics is the chemical durability of the glass frit. The reason is as follows. Frog's eye clay is added to the enamel glaze as a mill additive, and the purpose of adding the frog's eye clay is to act as a suspending agent to suspend the frits and to strengthen the dry film of the applied enamel glaze. Whether the clay particles or glass frit remain suspended in the slip for a long time, or whether they aggregate into coarse particles and precipitate depends on the adsorption of ions present in the slip. That is, since the state of the glass frit changes depending on the components eluted from the glass frit, it is preferable to select a glass frit that has excellent chemical durability and has extremely low component elution from the glass frit. If a glass frit with poor chemical durability is used, the viscosity in the slip increases, resulting in poor workability and unfavorable enamel properties. Another factor that affects dipping characteristics is the fluidity of the glass frit. The reason is as follows. When performing dipping glazing, the glaze thickness is 60 to 120 μm from the viewpoint of workability, and the thickness of spray glazing is
Since the thickness is smaller than that of 120 to 200 μm, pinholes and the like tend to occur in areas where the film thickness is small. In addition, the particle size distribution of the frit during dipping is 8 to 15 g of particles of 200 mesh or more in a 50 c.c. slip, whereas when spraying
Pinholes are more likely to occur because the frit particle size is larger in the dipping glaze, which is ~10g. Therefore, it is important to select a composition such that the glass frit itself flows sufficiently at a predetermined firing temperature and coats the substrate. (c) Water resistance Factors that affect the water resistance of enamel are not only the solubility of glass frit in hot water, but also the sufficient melting reaction between glass, clay, silica powder, and other mill additives at a given firing temperature. The important thing is whether you do it. The composition of the hollow frit according to the present invention constructed based on the above considerations will be explained below. The figure shows the relationship between the weight percent of ZnO in the enamel frit, the amount of hot water dissolved in the enamel coating, and the fluidity of the frit, which the inventors found to be particularly effective in improving water resistance. In the figure, 1 is the relationship between the amount dissolved in hot water and the content of ZnO, 2
show the relationship between fluidity and ZnO content, respectively. Table 1 shows the compositions of the main frits studied by the present inventors, and Table 2 shows the properties and evaluation results of the surface condition of the enamel layer, enamel properties, durability, etc.
【表】【table】
【表】
フリツトはガラス原料調合後、ルツボに入れ
1200℃で45分間溶融して作製した。
表中の熱水溶解量は200〜350メツシユのフリツ
ト5gを100c.c.の蒸留水に浸漬し、1時間煮沸し
た後、その上澄み液を取り、メチルオレンジ指示
薬を用いて、溶出したアルカリ成分を0.1N―
H2SO4で滴定し、その消費量を溶出アルカリ量
の尺度とした。〇印は0.1N―H2SO4の消費量が
1ml以下、△印は1〜3ml、×はそれ以上を示す。
また、ガラスフリツトの流動性は200メツシユ
を通過したフリツト2gを採取し、その試料を金
型に入れ1トン/cm2でプレス成型し、直径12.7mm
のタブレツトとし、その試料を前処理を施したホ
ーロー用鋼板(酸洗減量300mg/dm2、ニツケル
付着量7mg/dm2)の上にのせ、690℃で5分間
熱処理を行い、試料の流動後の径をノギスで測定
した。その径が18mm以上のものを〇、14〜18mmの
ものを△、14mm以下のものを×で示す。
ホーロー釉薬は、フリツト1000重量部、粘土60
重量部、ケイ石粉60重量部、亜硝酸ソーダ1重量
部、顔料10重量部、水620重量部をボールミルに
投入し、約3時間ミル引を行ない、スリツプ中の
フリツトの粒度分布が、スリツプ50c.c.中の200メ
ツシユ以上の固形分が10gになるように調整し
た。
この釉薬中に、前処理を施した大きさ100×100
mm、厚さ0.6mmのSPP鋼板(酸洗減量300mg/d
m2、ニツケル付着量7mg/dm2)を浸漬し、デイ
ツプ法により施釉を行つた。その後乾燥し、710
℃で5分間焼成して試験板を作成した。
またスリツプの長期保存性を観察するため、ス
リツプをポリ容器に入れ、35℃の恒温槽で10日間
放置後、上記の様にデイツプ法で試験板を作成し
た。
ホーロー層の表面状態(ゆず肌、ピンホール、
亀裂など)は、試験板のホーロー表面を目視観察
を行つた結果であり、〇印はゆず肌、ピンホー
ル、亀裂が認められないことを示し、×印は認め
られることを示す。
光沢は試験板に入射角45゜、反射角45゜で光を当
て、光の反射率を測定したものであり、〇印は反
射率80以上、△印は80〜70、×印は70以下を示す。
ホーロー層の耐水性は、試験板を98℃の純水中
に浸漬し、3時間後の減量値で評価した。〇印は
10mg/dm2以下、△印は10〜30mg/dm2、×印は
30mg/dm2以上を示す。
また上記の3時間煮沸後の試験板の光沢が試験
前に比較して減少することによつても評価した。
〇印は光沢の変化率が10%以内、×印は10%以上
を示す。
ホーロー層の密着性はPEI密着試験機を用い
て、評価を行い、その値が90%以上のものは〇、
70〜90%のものは△、70%以下のものを×で示し
た。
また、総合評価としては本発明の目的に合致
し、有効なものは〇印、有効でないものを×印で
示した。
以上の結果から、本発明のホーローフリツトの
各成分の含有量を決定した理由について述べる。
(1) ZnO
ZnOはアルカリ土類金属酸化物であり、軟化
点を下げる性質を有しているが、特に耐水性を
向上させるとともに、水沢を向上させる性質を
有しており、本発明に必須の成分である。
第1図にZnOの重量%とホーロー被膜の熱水
溶解量ならびにフリツトの流動性の関係を示し
た。
ZnOの添加が無いと熱水溶解量が著しく大き
いが、0.1%以上添加するだけで10mg/m2以下
となり、耐水性が向上した。しかし、5%以上
になると流動性が悪くなる。
第1表のフリツトNo.1〜6はZnO量を変化さ
せたものであるが、ZnOが0.1%以上になると
第2表に示したように、耐水性として熱水への
溶解量と、光沢の変化率が小さいことがわか
る。特に光沢が、耐水性試験の前後で大きく変
化すると実使用において目視すると喫水線の上
下で明確に差として認識されるので特に好まし
くない。ZnO添加はこのような光沢の変化率を
少なくする効果が大きい。
しかし5%以上になるとフリツトの流動性が
低くなり、ホーロー表面にピンホールを生じる
ので好ましくない。これらの点からZnOの割合
は0.1〜5%の範囲である。
(2) SiO2
一般にフリツト中のSiO2量が大きくなると
軟化点は高くなり、熱膨張係数は小さくなる。
したがつて低軟化点のフリツトにするには
SiO2を少なくする必要がある。SiO2の量が32
%以下になるとフリツトの熱水への溶解度が大
きくなるとともに、ホーロー表面に、ゆず肌が
発生し、耐水性も悪い。また35℃10日間保存後
の釉薬をデイツピングし焼成したホーロー表面
に、ピンホール、亀裂が発生した。
逆に45%以上になると軟化点が高くなり、本
発明の目的であるA1変態点以下で焼成するこ
とが不可能となる。
これらの点からSiO2の割合は32〜45%の範
囲が適切である。
SiO2の原料としては、ケイ石、長石が用い
られるが、ZrO2・SiO2やNa2SiF6等からも混
入される。
(3) B2O3
B2O3の原料としては、主にホウ砂
(Na2B4O7・10H2O)、無水ホウ砂
(Na2B4O7)、ホウ酸(H3BO3)等が用いられ
る。
これらをフリツトの各原料と混合し、1200℃
以上に加熱し、溶融し、ガラス化させる際に、
例えばホウ砂の場合は、融点が747℃と非常に
低く、フリツトの他の成分と反応し、溶融化さ
せる上で重要な役割を果たしている。
またB2O3成分は、ホーローの特性としての、
密着性や光沢の向上に重要である。B2O3が20
%以上になると、熱水への溶解性が大きくな
り、ホーロー表面の耐水性も低く好ましくな
い。また7%以下になると、ホーロー特性とし
ての光沢が低下し、密着性も悪く好ましくな
い。
これらの点よりB2O3の適当な範囲は7〜20
%である。
また、SiO2/B2O3の値もフリツトの熱水溶
解量や、流動性に影響を与える。第1表に示す
ようにSiO2/B2O3は2〜5の値が好ましく、
2以下では熱水溶解量が大きく、スリツプの長
期保存ができず、5以上ではフリツトの流動性
が低くホーロー表面にピンホールを発生するの
で好ましくない。
(4) F2
F2の原料としては、螢石(CaF2)、氷晶石
(3NaF・AlF3)、フツ化ナトリウム(NaF)、
フツ化アルミニウム(AlF3)、ケイフツ化ナト
リウム(Na2SiF6)、ケイフツ化カリウム
(K2SiF6)等が用いられる。F2成分はガラス溶
融時に、理論調合量の20〜50%飛散するが、本
発明に示す最適範囲は生成したガラスフリツト
中に含有されているF2の重量%である。
F2が9%以上になるとホーロー表面に多数
の泡が発生し外観不良となるとともに、ガラス
溶融時にるつぼが浸食され易く、工業的にも問
題である。
F2が2%以下では、フリツトの流動性が低
く、ホーロー表面にピンホールが発生し、光
沢、密着性も低下するので好ましくない。これ
らの点からF2の最適範囲は2〜9%である。
(5) アルカリ金属酸化物 R2O
1価のアルカリ金属酸化物であるNa2O,
K2OおよびLi2Oは強力な溶融剤であり、フリ
ツトの軟化点を下げ流動性を増す重要な成分で
ある。しかし、これらの使用量が大きくなりす
ぎると、フリツトの水溶液に対する抵抗性が小
さくなり、ミル引後、フリツトが水中に溶解し
長期保存後に使用すると、デイツピングに最適
な粘度範囲から大きくはずれたり、ホーロー表
面にユズ肌、亀裂を生じたりする。またホーロ
ー表面の耐水性を低下させる成分である。
これらの成分の中で軟化点を下げる効果とし
ては、Li2O>Na2O>K2Oの順であり、R2Oの
選択と含有割合が重要である。
Na2Oはフリツトの流動性を向上させる成分
であり、R2Oの中で原料コストが安いが、フリ
ツトの熱水溶解量、フリツプの保存性、耐水性
に悪影響を与えるので、添加量は注意を要す
る。Na2Oが22%以上になると、熱水溶解量が
大きくなり、スリツプの保存性が悪くなり、ホ
ーロー表面にユズ肌、亀裂の発生が認められる
ので好ましくない。また14%以下ではフリツト
の流動性が低下し、ホーローの光沢、密着が低
下するとともに、表面にピンホールを発生する
ので好ましくない。
これらの点からNa2Oの適当な範囲は14〜22
%である。
K2Oはフリツトの流動性を増す成分である
が、Li2O,Na2Oにくらべて単独では効果が小
さいが、Li2O,Na2Oと組合わすと、安定でよ
り軟化点の低いフリツトが得られる。
K2Oが5%以上になるとフリツトの熱水への
溶解度が大きくなり、スリツプの保存性、耐水
性ともに低下するので好ましくない。これらの
点からK2Oは5%以下が好ましい。
Li2Oは前述のNa2O、K2Oに比べて、フリツ
トの軟化点を下げるのに一番効果的な成分であ
り、本発明の必須成分である。しかし、ホーロ
ーの表面状態に悪影響を及ぼしやすく、特にゆ
ず肌を生じたり光沢の低下を起こしたりするの
で、その添加量については注意しなければなら
ない。Li2Oが0.3%以下であると、フリツトの
流動性が著しく低下し、ホーロー表面にピンホ
ールが多く発生する。また2%以上になると、
ホーロー表面にゆず肌が発生し、光沢、耐水性
も低下する。
これらの点より、LiO2の適切な範囲は0.3〜
2%である。
以上述べてきたようにアルカリ金属酸化物の
各々の添加量も重要であるがこれらの成分の総
量を〔Na2O〕+〔K2O〕+〔Li2O〕で表わした時
の値も適切な範囲があり17〜25%である。17%
以下では流動性が不足し、25%以上になると熱
水溶解量が大きく、スリツプの長期保存ができ
ない。
(6) CaOとBaO
CaOとBaOはアルカリ土類金属酸化物であ
り、単独では効果がないが、併用することによ
り流動性が著しく向上する成分であり、本発明
の目的であるデイツピングを可能にする必須成
分である。
さらにCaOは、スリツプのチクソトロピー性
を維持させる傾向があり、デイツピング施釉に
おいて、適当な比重と粘度を保つことができ、
塗布の際の膜厚の均一化に効果があり、またス
リツプの長期保存性を向上させることができ
る。CaOが1.5%以下の時は、流動性が低く、
また、スリツプのチクソトロピー性が不十分で
あり、15%以上ではフリツトの熱水溶解量が大
きくなり、スリツプを長期保存すると、ホーロ
ー表面にゆず肌、亀裂を発生するので好ましく
ない。
BaOが1.5%以下の時は、流動性が低くホー
ロー表面にピンホールを発生する。また15%以
上ではフリツトの熱水溶解量が大きくなるとと
もに、るつぼの浸食が大きくなるので好ましく
ない。
またCaOとBaOの総量を〔CaO〕+〔BaO〕
で表わした時、この総量もデイツピング特性に
重要な値であり、9%以下であると流動性が低
く、また21%以上になるとスリツプの長期保存
性が悪くなる。
以上の点より、CaOの適当な範囲は1.5〜15
%であり、BaOの適当な範囲は1.5〜15%であ
り、〔CaO〕+〔BaO〕の総量の適当な範囲は9
〜21%である。
CaO成分の原料は炭酸カルシウム、水酸化カ
ルシウム以外にも螢石やドロマイトなどが用い
られる。BaO成分は、炭酸バリウム、硝酸バ
リウム、フツ化バリウムなどが用いられる。
(7) ZrO2
ZrO2はフリツトの熱水溶解量を少なくし、
スリツプの長期保存性を向上させ、さらにガラ
ス溶融炉の内壁に使用されているジルコンレン
ガのガラス成分による浸食を防止する効果があ
り、本発明の必須成分である。
ZrO2が0.5%以下では、フリツトの熱水溶解
量が大きく、ガラス溶融炉のジルコンレンガの
浸食も大きいので好ましくない。4.5%以上に
なるとフリツトの流動性が低くなるので好まし
くない。これらの点からZrO2の適当な範囲は
0.5〜4.5%である。
ZrO2成分としては、精製したものは高価で
あるので、ジルコン(ZrO2・Si2O)を用いる
方が価格も安く、ガラス溶融時に溶融し易いの
で好ましい。
(8) Al2O3
Al2O3は、特にフリツトの化学的耐久性を向
上させる成分であり、本発明の必須成分であ
る。Al2O3が0.5%以下であるとフリツトの熱水
溶解量が非常に大きくなり、スリツプの保存性
が悪くなり好ましくない。また5%以上になる
とフリツトの熱水溶解性は小さくなるが、フリ
ツトの流動性が悪く鋼のA1変態点以下の焼成
ではガラスが十分に顔料や粘土と溶融しておら
ず、耐水性試験を行なつた時のホーロー層の熱
水溶解量は大きくなり好ましくない。これらの
点よりAl2O3の適当な範囲は0.5〜5%である。
Al2O3の原料は、アルミナ、水酸化アルミニ
ウムや、氷晶石、長石を用いる。
(9) その他の成分
本発明のホーローフリツトに、TiO2,
MgO,SnO2及びSrOなどを添加しても良い。
これらの成分はフリツトの化学的耐久性を改善
することができ、少量の添加ではフリツトを着
色しないという性質を有する。
TiO2は熱水溶解量を少なくし、耐水性も向
上させる働きがあるが、3%以上になるとフリ
ツトが乳濁してくるので、本発明の目的である
透明フリツトには適さない。これよりTiO2は
3%以下が好ましい。
TiO2の原料としては、アナターゼ型とルチ
ル型の結晶構造があるが、原料として用いる場
合はどちらでもよい。
MgOは3%以上になると、ホーロー表面が
マツト状になり光沢が低下するので好ましくな
い。
SnO2が3%以上になると熱水溶解量が大き
くなりスリツプを長期保存すると、ホーロー表
面に泡を発生するので好ましくない。
SrOが3%以上になると熱水溶解量が大きく
なり好ましくない。
これらの点から、TiO2,MgO,SnO2及び
SrOよりなる群から選択される成分を3%以下
の範囲で添加することができる。
実施例として第1表のNo.3、比較例としてNo.1
について説明する。
ガラスの原料としては第3表に示すような配合
組成であり、これを乳鉢や、Vブレンダーで十分
に撹拌し、ろう石るつぼ中に投入する。このるつ
ぼを1200℃に加熱した電気炉中に投入し、炉が再
び1200℃になつてから30分間保ち、冷水中に溶融
したガラスを投入後、乾燥した。このガラスフリ
ツトを用い、第4表に示す様なミル組成をボール
ミル中に投入し、スリツプ50c.c.当たり、200メツ
シユのふるいに残るガラス等の重量が10gになる
ようにミル引を行なつた。できたスリツプの粘度
をB型粘度計で測定すると、No.1が1600センチポ
イズ、No.3が1550センチポイズで、両者とをデイ
ツピングに適した粘度とチクソトロピー性を有し
ていた。
基材としては、ホーロー用鋼材の板厚0.8mmの
ものを鍋の形状に成型したものを、前処理として
脱脂後、濃度7%、温度70℃の硫酸中に5分間浸
漬し、さらに、濃度15g/の硫酸ニツケル水溶
液中に5分間浸漬し、中和乾燥した。
この基材をスリツプ中に浸漬し、引き上げ余分
のスリツプを落とすデイツピング法で塗布後、乾
燥した。そして、710℃で5分間焼成した。
このNo.1とNo.3の鍋の光沢を光沢度測定装置で
測つたところ、No.1が83、No.3が84であつた。そ
して、純水を鍋の内容積の半分まで入れ、常に一
定の水量が保たれるように補給しながら、100時
間鍋をガスコンロ上で加熱した後、ホーロー表面
を洗浄、乾燥後、水に浸漬されていた表面の光沢
度を測定した。No.1は光沢が45であり、No.3は光
沢が78であり、ZnOを含むNo.3の耐水性が良好で
あることがわかり、浴槽、鍋、洗面台の他に耐水
性の必要な部品へ実用できる。[Table] After mixing the glass raw materials, put the frit into the crucible.
It was prepared by melting at 1200°C for 45 minutes. The amount of dissolved alkali in hot water in the table is calculated by immersing 5 g of frits of 200 to 350 meshes in 100 c.c. of distilled water, boiling for 1 hour, removing the supernatant liquid, and using a methyl orange indicator to measure the eluted alkaline components. 0.1N―
It was titrated with H 2 SO 4 and the amount consumed was taken as a measure of the amount of alkali eluted. ○ indicates that the consumption of 0.1N-H 2 SO 4 is 1 ml or less, △ indicates 1 to 3 ml, and × indicates more than that. In addition, the fluidity of glass frit was measured by taking 2 g of frit that had passed through 200 meshes, putting the sample into a mold and press-molding it at 1 ton/cm 2 to a diameter of 12.7 mm.
The sample was placed on a pretreated enameled steel plate (pickling loss: 300 mg/dm 2 , nickel adhesion: 7 mg/dm 2 ), and heat treated at 690°C for 5 minutes. The diameter was measured with a caliper. Those with a diameter of 18 mm or more are marked with ○, those with a diameter of 14 to 18 mm are marked with △, and those with a diameter of 14 mm or less are marked with ×. Enamel glaze consists of 1000 parts by weight of Fritz and 60 parts by weight of clay.
parts by weight, 60 parts by weight of silica powder, 1 part by weight of sodium nitrite, 10 parts by weight of pigment, and 620 parts by weight of water were put into a ball mill and milled for about 3 hours. The solid content of 200 mesh or more in .c. was adjusted to 10 g. In this glaze, pre-treated size 100 x 100
mm, thickness 0.6mm SPP steel plate (pickling loss 300mg/d
m 2 , nickel adhesion amount 7 mg/dm 2 ) was immersed and glazed by the dip method. Then dry, 710
A test plate was prepared by baking at ℃ for 5 minutes. In addition, in order to observe the long-term storage stability of the slips, the slips were placed in a plastic container, left in a constant temperature bath at 35°C for 10 days, and then test plates were prepared using the dip method as described above. Surface condition of the enamel layer (yuzu skin, pinholes,
(Cracks, etc.) are the results of visual observation of the enamel surface of the test plate; ○ mark indicates that yuzu skin, pinholes, cracks are not observed, and × mark indicates that they are observed. Gloss is measured by shining light on the test plate at an incident angle of 45° and a reflection angle of 45°, and measuring the reflectance of light. ○ mark indicates reflectance of 80 or more, △ mark indicates reflectance of 80 to 70, and × mark indicates reflectance of 70 or less. shows. The water resistance of the enamel layer was evaluated by immersing the test plate in pure water at 98°C and determining the weight loss value after 3 hours. 〇mark is
10 mg/dm 2 or less, △ mark is 10 to 30 mg/dm 2 , × mark is
Indicates 30 mg/dm 2 or more. Evaluation was also made based on the reduction in gloss of the test plate after boiling for 3 hours as compared to before the test.
〇 indicates that the gloss change rate is within 10%, and × indicates that it is 10% or more. The adhesion of the enamel layer is evaluated using a PEI adhesion tester, and those with a value of 90% or more are rated 〇,
70-90% is shown as △, and 70% or less is shown as ×. In addition, as a comprehensive evaluation, those that met the purpose of the present invention and were effective were marked with a circle, and those that were not effective were marked with an x. Based on the above results, the reasons for determining the content of each component in the hollow frit of the present invention will be described. (1) ZnO ZnO is an alkaline earth metal oxide and has the property of lowering the softening point, but in particular, it has the property of improving water resistance and water resistance, and is essential for the present invention. It is a component of Figure 1 shows the relationship between the weight percent of ZnO, the amount of hot water dissolved in the enamel coating, and the fluidity of the frit. Without the addition of ZnO, the amount dissolved in hot water was extremely large, but by adding 0.1% or more, the amount decreased to less than 10 mg/m 2 and water resistance improved. However, if it exceeds 5%, fluidity deteriorates. Frits No. 1 to 6 in Table 1 are those with varying ZnO content, but when ZnO exceeds 0.1%, as shown in Table 2, the water resistance is determined by the amount dissolved in hot water and the gloss. It can be seen that the rate of change is small. In particular, if the gloss changes significantly before and after the water resistance test, this is particularly undesirable because when visually inspected in actual use, a clear difference will be recognized between above and below the waterline. Addition of ZnO has a great effect in reducing the rate of change in gloss. However, if it exceeds 5%, the fluidity of the frit becomes low and pinholes are formed on the enamel surface, which is not preferable. From these points, the proportion of ZnO is in the range of 0.1 to 5%. (2) SiO 2 Generally, as the amount of SiO 2 in the frit increases, the softening point increases and the coefficient of thermal expansion decreases.
Therefore, in order to make a frit with a low softening point,
It is necessary to reduce SiO 2 . The amount of SiO2 is 32
% or less, the solubility of the frit in hot water increases, a citron skin appears on the enamel surface, and the water resistance is poor. In addition, pinholes and cracks appeared on the surface of the enamel made by dipping and firing the glaze after 10 days of storage at 35°C. On the other hand, if it exceeds 45%, the softening point becomes high and it becomes impossible to sinter at a temperature below the A1 transformation point, which is the objective of the present invention. From these points of view, the appropriate proportion of SiO 2 is in the range of 32 to 45%. As raw materials for SiO 2 , silica and feldspar are used, but ZrO 2 ·SiO 2 and Na 2 SiF 6 are also mixed in. (3) B 2 O 3 The main raw materials for B 2 O 3 are borax (Na 2 B 4 O 7・10H 2 O), anhydrous borax (Na 2 B 4 O 7 ), and boric acid (H 3 BO 3 ) etc. are used. Mix these with each frit material and heat to 1200℃.
When heating, melting, and vitrifying,
For example, borax has a very low melting point of 747°C, and plays an important role in reacting with other components of the frit and melting it. In addition, the B 2 O 3 component is a characteristic of enamel,
It is important for improving adhesion and gloss. B 2 O 3 is 20
% or more, the solubility in hot water increases and the water resistance of the enamel surface also becomes low, which is not preferable. Moreover, if it is less than 7%, the gloss as the enamel property will decrease, and the adhesion will also be poor, which is not preferable. From these points, the appropriate range for B 2 O 3 is 7 to 20
%. Moreover, the value of SiO 2 /B 2 O 3 also affects the amount of hot water dissolved in the frit and the fluidity. As shown in Table 1, SiO 2 /B 2 O 3 preferably has a value of 2 to 5;
If it is less than 2, the amount dissolved in hot water will be large and the slip cannot be stored for a long time, and if it is more than 5, the fluidity of the frit will be low and pinholes will occur on the enamel surface, which is not preferable. (4) Raw materials for F 2 F 2 include fluorite (CaF 2 ), cryolite (3NaF・AlF 3 ), sodium fluoride (NaF),
Aluminum fluoride (AlF 3 ), sodium silicate (Na 2 SiF 6 ), potassium silicate (K 2 SiF 6 ), etc. are used. The F2 component scatters in an amount of 20 to 50% of the theoretical amount during glass melting, but the optimum range shown in the present invention is the weight percent of F2 contained in the produced glass frit. When the F 2 content exceeds 9%, many bubbles are generated on the surface of the enamel, resulting in poor appearance, and the crucible is likely to be eroded during glass melting, which is also an industrial problem. If F 2 is less than 2%, the fluidity of the frit will be low, pinholes will occur on the enamel surface, and gloss and adhesion will decrease, which is not preferable. From these points, the optimum range for F2 is 2 to 9%. (5) Alkali metal oxide R 2 O Monovalent alkali metal oxide Na 2 O,
K 2 O and Li 2 O are strong melting agents and are important components that lower the softening point of the frit and increase its fluidity. However, if the amount used is too large, the resistance of the frit to aqueous solutions will decrease, and if the frit dissolves in water after milling and is used after long-term storage, the viscosity will deviate greatly from the optimal viscosity range for dipping, or the frit will become enamel. Yuzu skin and cracks may appear on the surface. It is also a component that reduces the water resistance of the enamel surface. Among these components, the effect of lowering the softening point is in the order of Li 2 O > Na 2 O > K 2 O, and the selection and content ratio of R 2 O are important. Na 2 O is a component that improves the fluidity of the frit, and the raw material cost is low among R 2 O, but it has a negative effect on the hot water dissolution amount of the frit, the storage stability of the frit, and the water resistance, so the amount added is limited. Caution is required. If the Na 2 O content exceeds 22%, the amount dissolved in hot water will increase, the storage stability of the slip will be poor, and the appearance of yuzu skin and cracks on the enamel surface will be undesirable. If it is less than 14%, the fluidity of the frit will decrease, the gloss and adhesion of the enamel will decrease, and pinholes will occur on the surface, which is not preferable. From these points, the appropriate range for Na 2 O is 14 to 22
%. K 2 O is a component that increases the fluidity of the frit, but when used alone it is less effective than Li 2 O and Na 2 O, but when combined with Li 2 O and Na 2 O, it becomes stable and has a lower softening point. Low frit can be obtained. If the K 2 O content exceeds 5%, the solubility of the frit in hot water will increase, and both the storage stability and water resistance of the slip will decrease, which is not preferable. From these points of view, K 2 O is preferably 5% or less. Li 2 O is the most effective component in lowering the softening point of the frit compared to the aforementioned Na 2 O and K 2 O, and is an essential component of the present invention. However, since it tends to have an adverse effect on the surface condition of the enamel, in particular causing orange skin and a decrease in gloss, care must be taken with the amount added. If the Li 2 O content is 0.3% or less, the fluidity of the frit will be significantly reduced and many pinholes will occur on the enamel surface. Moreover, when it becomes more than 2%,
Yuzu skin appears on the enamel surface, and gloss and water resistance also decrease. From these points, the appropriate range for LiO 2 is 0.3~
It is 2%. As mentioned above, the amount of each alkali metal oxide added is also important, but the value when the total amount of these components is expressed as [Na 2 O] + [K 2 O] + [Li 2 O] is also A suitable range is 17-25%. 17%
If it is less than 25%, the fluidity will be insufficient, and if it is more than 25%, the amount of hot water dissolved will be large, making it impossible to store the slip for a long time. (6) CaO and BaO CaO and BaO are alkaline earth metal oxides, and although they have no effect when used alone, they are components that significantly improve fluidity when used together, making it possible to perform dipping, which is the purpose of the present invention. It is an essential ingredient. Furthermore, CaO tends to maintain the thixotropic properties of the slip, and can maintain appropriate specific gravity and viscosity during dipping glazing.
It is effective in making the film thickness uniform during coating, and can also improve the long-term storage stability of the slip. When CaO is less than 1.5%, fluidity is low;
In addition, the thixotropy of the slip is insufficient, and if it exceeds 15%, the amount of hot water dissolution of the frit becomes large, and if the slip is stored for a long time, orange skin and cracks will occur on the enamel surface, which is not preferable. When BaO is less than 1.5%, the fluidity is low and pinholes occur on the enamel surface. Moreover, if it exceeds 15%, the amount of hot water dissolved in the frit will increase and the erosion of the crucible will increase, which is not preferable. Also, the total amount of CaO and BaO is [CaO] + [BaO]
This total amount is also an important value for dipping properties; if it is less than 9%, the fluidity will be low, and if it is more than 21%, the long-term shelf life of the slip will be poor. From the above points, the appropriate range for CaO is 1.5 to 15
%, the appropriate range for BaO is 1.5 to 15%, and the appropriate range for the total amount of [CaO] + [BaO] is 9
~21%. In addition to calcium carbonate and calcium hydroxide, fluorite and dolomite are also used as raw materials for the CaO component. As the BaO component, barium carbonate, barium nitrate, barium fluoride, etc. are used. (7) ZrO 2 ZrO 2 reduces the amount of frit dissolved in hot water,
It is an essential component of the present invention, as it has the effect of improving the long-term shelf life of the slip and also preventing erosion by the glass component of the zircon bricks used for the inner walls of glass melting furnaces. If ZrO 2 is less than 0.5%, the amount of hot water dissolved in the frit is large and the zircon bricks in the glass melting furnace are eroded to a large extent, which is not preferable. If it exceeds 4.5%, the fluidity of the frit will decrease, which is not preferable. From these points, the appropriate range of ZrO 2 is
It is 0.5-4.5%. As the ZrO 2 component, since purified ZrO 2 is expensive, it is preferable to use zircon (ZrO 2 .Si 2 O) because it is cheaper and melts easily during glass melting. (8) Al 2 O 3 Al 2 O 3 is a component that particularly improves the chemical durability of the frit, and is an essential component of the present invention. If the Al 2 O 3 content is less than 0.5%, the amount of hot water dissolved in the frit will be very large, and the storage stability of the slip will be poor, which is not preferable. In addition, when the content exceeds 5%, the hot water solubility of the frit decreases, but the fluidity of the frit is poor and when fired below the A1 transformation point of steel, the glass does not fully melt with the pigments and clay, and the water resistance test When this is carried out, the amount of hot water dissolved in the enamel layer becomes large, which is not preferable. From these points, a suitable range for Al 2 O 3 is 0.5 to 5%. The raw materials for Al 2 O 3 are alumina, aluminum hydroxide, cryolite, and feldspar. (9) Other components The hollow frit of the present invention contains TiO 2 ,
MgO, SnO2 , SrO, etc. may be added.
These components can improve the chemical durability of the frit, and have the property of not coloring the frit when added in small amounts. TiO 2 has the function of reducing the amount dissolved in hot water and improving water resistance, but if it exceeds 3%, the frit becomes milky, so it is not suitable for the transparent frit that is the object of the present invention. From this, TiO 2 is preferably 3% or less. As a raw material for TiO 2 , there are anatase type and rutile type crystal structures, but either one may be used as a raw material. If MgO exceeds 3%, the enamel surface becomes matte and the gloss decreases, which is not preferable. If the SnO 2 content exceeds 3%, the amount dissolved in hot water will increase, and if the slip is stored for a long time, bubbles will form on the enamel surface, which is not preferable. If the SrO content exceeds 3%, the amount dissolved in hot water will increase, which is not preferable. From these points, TiO 2 , MgO, SnO 2 and
A component selected from the group consisting of SrO can be added in an amount of 3% or less. No. 3 in Table 1 as an example, No. 1 as a comparative example
I will explain about it. The raw material for the glass has a composition as shown in Table 3, which is sufficiently stirred in a mortar or V-blender, and then put into a waxite crucible. This crucible was placed in an electric furnace heated to 1200°C, and after the furnace reached 1200°C again, it was kept for 30 minutes, and the molten glass was placed in cold water and then dried. Using this glass frit, the mill composition shown in Table 4 was put into a ball mill, and milling was carried out so that the weight of glass, etc. remaining on 200 mesh sieves was 10 g per 50 c.c. of slip. . When the viscosity of the resulting slip was measured using a B-type viscometer, No. 1 had a viscosity of 1,600 centipoise, and No. 3 had a viscosity of 1,550 centipoise, indicating that both had a viscosity and thixotropy suitable for dipping. As a base material, a steel plate for enamel with a thickness of 0.8 mm was molded into the shape of a pot. After degreasing as a pre-treatment, it was immersed in sulfuric acid with a concentration of 7% and a temperature of 70°C for 5 minutes. It was immersed in a 15 g/aqueous solution of nickel sulfate for 5 minutes, and then neutralized and dried. This base material was dipped in slip, pulled up and applied by a dipping method to remove excess slip, and then dried. Then, it was baked at 710°C for 5 minutes. When the gloss of these pots No. 1 and No. 3 was measured using a gloss measuring device, it was 83 for No. 1 and 84 for No. 3. Then, fill the pot with pure water up to half of its internal volume, heat the pot on a gas stove for 100 hours while replenishing the pot to maintain a constant water level, and then wash and dry the enamel surface, then immerse it in water. The gloss level of the surface was measured. No. 1 has a gloss of 45, and No. 3 has a gloss of 78, indicating that No. 3, which contains ZnO, has good water resistance. It can be applied to various parts.
【表】【table】
【表】
発明の効果
従来の800℃以上の高温焼成のホーローにくら
べ、鍋のA1変態点以下で使用できるので、焼成
歪が少なく薄板が使用でき、省資源、省エネルギ
ー製品の軽量化がはかれる。さらに、従来の低融
ホーローの問題点とされていたスリツプの長期保
存ができ、デイツピング施釉もでき、耐水性も優
れた、ホーロー加工品の実用化を可能とするもの
である。[Table] Effects of the invention Compared to conventional enamel fired at a high temperature of 800°C or higher, it can be used at temperatures below the A1 transformation point of the pot, so thin plates can be used with less firing distortion, resulting in resource-saving and energy-saving products that are lighter in weight. . Furthermore, the slip can be stored for a long time, which has been a problem with conventional low-melting enamel, and it is possible to put into practical use enamel products that can be glazed by dipping and have excellent water resistance.
図はホーロー被膜の耐水性試験をした時の熱水
への溶解量及びフリツトの流動性とZnOの含量の
関係を示したものである。
The figure shows the relationship between the amount dissolved in hot water, the fluidity of the frit, and the ZnO content when the enamel coating was tested for water resistance.
Claims (1)
Li2O,CaO,BaO,ZnO,ZrO2及びAl2O3から
構成され、SiO2を32〜45重量%、B2O3を7〜20
重量%、F2を2〜9重量%、Na2Oを14〜22重量
%、K2Oを0.4〜5重量%、Li2Oを0.3〜2重量
%、CaOを1.5〜15重量%、BaOを1.5〜15重量
%、ZnOを0.1〜5重量%、ZrO2を0.5〜4.5重量
%、Al2O3を0.5〜5重量%含有し、かつTiO2,
MgO,SnO2及びSrOよりなる群から選択される
成分を0〜3重量%の範囲で含有することを特徴
とする低軟化点透明ホーローフリツト。 2 各成分の含有割合としてSiO2/B2O3の値が
2〜5の範囲であり、CaOとBaOの総量が9〜
21重量%の範囲であり、Na2O,K2OおよびLi2O
の総量が17〜25重量%の範囲内にある特許請求の
範囲第1項記載の低軟化点透明ホーローフリツ
ト。[Claims] 1. At least SiO 2 , B 2 O 3 , F 2 , Na 2 O, K 2 O,
Composed of Li 2 O, CaO, BaO, ZnO, ZrO 2 and Al 2 O 3 , with 32-45% by weight of SiO 2 and 7-20% of B 2 O 3
% by weight, 2-9% by weight of F2 , 14-22% by weight of Na2O , 0.4-5% by weight of K2O , 0.3-2% by weight of Li2O , 1.5-15% by weight of CaO, Contains 1.5-15% by weight of BaO, 0.1-5% by weight of ZnO, 0.5-4.5% by weight of ZrO2 , 0.5-5% by weight of Al2O3 , and TiO2 ,
A low softening point transparent hollow frit characterized by containing a component selected from the group consisting of MgO, SnO 2 and SrO in a range of 0 to 3% by weight. 2 As for the content ratio of each component, the value of SiO 2 /B 2 O 3 is in the range of 2 to 5, and the total amount of CaO and BaO is in the range of 9 to 5.
In the range of 21% by weight, Na 2 O, K 2 O and Li 2 O
The low softening point transparent hollow frit according to claim 1, wherein the total amount of is within the range of 17 to 25% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14832583A JPS6042249A (en) | 1983-08-12 | 1983-08-12 | Transparent enamel frit with low softening point |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14832583A JPS6042249A (en) | 1983-08-12 | 1983-08-12 | Transparent enamel frit with low softening point |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6042249A JPS6042249A (en) | 1985-03-06 |
JPH0121101B2 true JPH0121101B2 (en) | 1989-04-19 |
Family
ID=15450253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14832583A Granted JPS6042249A (en) | 1983-08-12 | 1983-08-12 | Transparent enamel frit with low softening point |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6042249A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019049560A (en) * | 2018-10-05 | 2019-03-28 | 株式会社東芝 | Sensor, microphone, blood pressure sensor and touch panel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030062027A (en) * | 2002-01-15 | 2003-07-23 | 이재윤 | A Study of lowfired trantsparent glaze |
-
1983
- 1983-08-12 JP JP14832583A patent/JPS6042249A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019049560A (en) * | 2018-10-05 | 2019-03-28 | 株式会社東芝 | Sensor, microphone, blood pressure sensor and touch panel |
Also Published As
Publication number | Publication date |
---|---|
JPS6042249A (en) | 1985-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6238305B2 (en) | ||
US2467114A (en) | Vitreous coatings for light metals | |
Ryabova et al. | Development of compositions of new enamel coatings with various operational and decorative properties to protect steel architectural and construction panels | |
EP0077219B1 (en) | Low melting, opaque enamel frit | |
GB2152027A (en) | Vitreous enamels | |
US7410672B2 (en) | Water-resistant porcelain enamel coatings and method of manufacturing same | |
US2909438A (en) | Vitreous enamel compositions for aluminum and its alloys | |
JPH0121101B2 (en) | ||
JPH0121104B2 (en) | ||
JP2596948B2 (en) | Non-toxic glass frit | |
US3061449A (en) | Vitreous enamel frit | |
EP1230183B1 (en) | Water-resistant porcelain enamel coatings and method of manufacturing same | |
CA1239654A (en) | Glazes for glass-ceramic articles | |
JPH0118021B2 (en) | ||
JPH0121102B2 (en) | ||
JPH0121103B2 (en) | ||
JPH0121105B2 (en) | ||
JPS60108346A (en) | Enamel frit having low softening point | |
US3574666A (en) | Ceramic coated metal articles and process therefor | |
CN117843236A (en) | Washing-resistant low-melting-point flux for glass, preparation method and preparation method of opal glass overglaze color protective film | |
JPS5899139A (en) | Enamel frit | |
TR2022011612A2 (en) | Lithium-free enamel coating material applied with aqueous application methods | |
Janah | Vitreous enamelling of aluminium—A review | |
JPS6219372B2 (en) | ||
JPH04214044A (en) | Frit composition |