JPH01210830A - Infrared-ray temperature distribution measuring instrument - Google Patents

Infrared-ray temperature distribution measuring instrument

Info

Publication number
JPH01210830A
JPH01210830A JP3556388A JP3556388A JPH01210830A JP H01210830 A JPH01210830 A JP H01210830A JP 3556388 A JP3556388 A JP 3556388A JP 3556388 A JP3556388 A JP 3556388A JP H01210830 A JPH01210830 A JP H01210830A
Authority
JP
Japan
Prior art keywords
temperature
infrared
measured
filter
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3556388A
Other languages
Japanese (ja)
Other versions
JP2775017B2 (en
Inventor
Akira Umeboshino
晁 梅干野
Yutaka Kasai
豊 笠井
Masaru Kurokawa
黒川 賢
Norio Umekawa
記生 梅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12445215&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01210830(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NEC Avio Infrared Technologies Co Ltd filed Critical NEC Avio Infrared Technologies Co Ltd
Priority to JP63035563A priority Critical patent/JP2775017B2/en
Publication of JPH01210830A publication Critical patent/JPH01210830A/en
Application granted granted Critical
Publication of JP2775017B2 publication Critical patent/JP2775017B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/602Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering

Abstract

PURPOSE:To reduce the influence of a reflection and to exactly measure a temperature extending from a low temperature area to a room temperature area by switching plural optical filters for allowing a specific wavelength area to transmit through in front of an infrared-ray detector. CONSTITUTION:Plural optical filters for allowing a specific wavelength area to transmit through are provided in front of an infrared-ray detector 15. In such a state, in accordance with a kind of object to be measured 10, the filters 17, 18 are switched 20. That is, when the object to be measured 10 is, for instance, other than glass whose reflection factor is small or an object being equivalent thereto, the filter 17 for allowing infrared rays of about 8-13mum to transmit through is used as a filter, and when the object to be measured 10 is, for instance, glass or an object being equivalent thereto, the filter 18 for allowing infrared rays of about 5-8mum is used as a filter. In such a way, at the time of using the filter 17, the temperature of a low temperature area can be measured, and at the time of using the filter 18, the temperature of a room temperature area can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、温度に依存して物体から放射されてくる赤
外線を検出してその物体の温度を測定する赤外線温度分
布測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared temperature distribution measuring device that measures the temperature of an object by detecting infrared rays emitted from an object depending on the temperature.

〔発明の概要〕[Summary of the invention]

この発明は、温度に依存して物体から放射されてくる赤
外線を検出してその物体の温度を測定する赤外線温度分
布測定装置において、赤外線を検出する赤外線検出器の
前に特定の波長領域を透過させる複数の光学フィルタを
設け、測定対象物に応じてこれ等の光学フィルタを切換
えるようにすることにより、反射の影響を少なくして常
温領域の測温を6J能にすると共に低温領域の測温も−
■能になるようにしたものである。
This invention is an infrared temperature distribution measuring device that measures the temperature of an object by detecting infrared rays emitted from an object depending on the temperature. By installing multiple optical filters and switching these optical filters according to the object to be measured, it is possible to reduce the influence of reflection and make it possible to measure temperature in the normal temperature range by 6J, while also making it possible to measure temperature in the low temperature range. Mo-
■It was designed to be Noh.

〔従来の技術〕[Conventional technology]

温度に依存して物体から放射され°ζくる赤外線を検出
してその物体の温度を測定する赤外線温度分布測定装置
としては従来種々のものが提案されており、大別して感
度波長が約3〜5μmの量子型の検出器を用いた赤外線
温度分布測定装置(1nSb PoSe ) 、約8〜
13μNの量子型赤外線温度分布測定装置(IIgCd
Te)及び全波長(約2〜15μm)の熱型検出器を用
いた赤外線温度分布測定装置の3棟類がある。前2#に
対して熱型赤外線温度分布測定装置は感度が低く且つ応
答性も遅く、従ってこの装置は実際には一点の温度を測
定するのに多く使用され、一般に温度分布を測定するの
には不適当である。
Various types of infrared temperature distribution measuring devices have been proposed to measure the temperature of an object by detecting infrared rays emitted from an object depending on the temperature. Infrared temperature distribution measuring device (1nSb PoSe) using quantum type detector, approx.
13 μN quantum infrared temperature distribution measuring device (IIgCd
There are three types of infrared temperature distribution measuring equipment using thermal detectors of all wavelengths (approximately 2 to 15 μm). In contrast to the previous #2, thermal infrared temperature distribution measuring devices have lower sensitivity and slower response, so this device is actually often used to measure the temperature at one point, and is generally used to measure temperature distribution. is inappropriate.

量子型赤外線温度分布測定装置はいずれも第5図に示す
ようないわゆる“大気の窓”に対応して開発されたもの
であり、温度分布の測定に多用されている。
All of the quantum infrared temperature distribution measuring devices were developed in response to the so-called "atmospheric window" shown in FIG. 5, and are widely used for measuring temperature distribution.

ここで感度波長が5〜8μ鴎のものは欠蕗していること
がわかるが、これは第5図からもわかるようにこの領域
は水蒸気の吸収が大きく、従って例えば航空機や人工衛
星からのリモートセンシング等ではほとんど使用されて
おらず、その為従来製品としても存在していない。
Here, it can be seen that those with a sensitivity wavelength of 5 to 8 μm are missing, but this is because, as can be seen from Figure 5, water vapor absorption is large in this region, and therefore, for example, remote control from aircraft or artificial satellites is It is rarely used in sensing, etc., and therefore does not exist as a conventional product.

(発明が解決しようとする課題〕 ところで、上述した感度波長が8〜13μmの量子型赤
外線温度分布測定装置は、一般的な測温には、長波長を
検知することになり、ブランクの法則からも明白なよう
に程度良く、低温領域(例えば−50”C)まで測温が
可能になる。しかしこの装置を用いて測温するとき、特
に屋外で外壁診断等のため建物の温度を測温するような
場合、反射の対象となる周辺に大きな温度分布が存在す
ると、その高温物体による反射の影響が無視できない場
合が多々ある。
(Problems to be Solved by the Invention) By the way, the quantum infrared temperature distribution measuring device described above, which has a sensitivity wavelength of 8 to 13 μm, detects long wavelengths for general temperature measurement. As is obvious, this device is of good quality and can measure temperatures down to low temperatures (for example, -50"C). However, when using this device to measure temperature, it is especially important to measure the temperature of a building outdoors for external wall diagnosis, etc. In such cases, if there is a large temperature distribution around the object of reflection, the influence of reflection from the high-temperature object cannot be ignored in many cases.

例えば第3図に示すように、透明ガラス又はスリガラス
!11に対して所定角度で赤外線温度分布測定装置(2
)を配設してガラス(11の温度を測温する場合、ガラ
ス11)の前でしかもその赤外線温度分布測定装置(2
)の検出角度範囲内に第3図に示すような高温物体(3
)が存在した場合、測温した結果を見るとガラス(1)
の温度分布上に高温物体(3)の反射像が現われ、正確
にガラス(1)の温度を測温できない欠点がある。この
ことは第4図に示すガラスの透過率、放射率9反射率に
おいて、波長が8〜13μmの近傍では反射率が大きく
なっていることからもわかる。
For example, as shown in Figure 3, transparent glass or frosted glass! The infrared temperature distribution measuring device (2
) to measure the temperature of the glass (11), the infrared temperature distribution measuring device (2
) within the detection angle range of the high temperature object (3
), the temperature measurement results indicate that glass (1)
A reflected image of the high temperature object (3) appears on the temperature distribution of the glass (1), which has the disadvantage that the temperature of the glass (1) cannot be accurately measured. This can be seen from the fact that in the transmittance, emissivity, and reflectance of the glass shown in FIG. 4, the reflectance becomes large in the vicinity of wavelengths of 8 to 13 μm.

また、上述した感度波長が3〜5μmの量子型赤外線温
度分布測定装置の場合、第4図からもわかるように波長
が3〜5μmの近傍では反射率が小さいが透過率が大き
く (それに伴い放射率が小さくなっている)、3〜5
μ鴎の波長を利用するのは望ましくなく、4.8〜5.
2μ驕と云う狭い領域の赤外線を使用している。その結
果、上述したような高温物体の反射像は現われにくいが
、この領域では波長が短かく赤外線エネルギーを沢山と
れないのでS/N比が劣化し、その測温できる領域は約
100℃以上と高く、常温やそれ以下の低温fiJI域
で測温できない欠点がある。
In addition, in the case of the quantum infrared temperature distribution measuring device with a sensitivity wavelength of 3 to 5 μm, as shown in Figure 4, the reflectance is small in the vicinity of the wavelength of 3 to 5 μm, but the transmittance is large (accordingly, the radiation rate is getting smaller), 3-5
It is not desirable to use the wavelength of μ seaweed, and 4.8 to 5.
It uses infrared radiation in a narrow range of 2 μm. As a result, the reflected image of a high-temperature object as described above is unlikely to appear, but in this region the wavelength is short and it is not possible to capture a lot of infrared energy, so the S/N ratio deteriorates, and the temperature measurement range is approximately 100 degrees Celsius or higher. It has the disadvantage that it cannot measure temperature at room temperature or lower temperature fiJI range.

この発明は斯る点に鑑みてなされたもので、反射の影響
を無視できる程度に低減させて常温領域のガラス又はこ
れと等価な物体の測温を正確に行うことができると共に
光学フィルタを切換えることにより常温領域よりさらに
低い低温領域をも測温することができる赤外線温度分布
測定装置を提供するものである。
This invention was made in view of these points, and it is possible to accurately measure the temperature of glass or an equivalent object in the room temperature range by reducing the influence of reflection to a negligible extent, and to switch the optical filter. This provides an infrared temperature distribution measuring device that can measure temperatures even in a low temperature region lower than the normal temperature region.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明は、温度に依存して放射される被測定対象物(
lO)からの赤外線を赤外線検出器(15)で検出し、
被測定対象物(10)の温度を測定する赤外線温度分布
測定装置において、赤外線検出器(15)の前に特定の
波長領域を透過させる複数の光学フィルタ(17,18
)を設け、測定対象物(10)に応じて複数の光学フィ
ルタを切換えるように構成している。
This invention is based on the object to be measured, which emits radiation depending on the temperature (
Detecting infrared rays from lO) with an infrared detector (15),
In an infrared temperature distribution measurement device that measures the temperature of an object to be measured (10), a plurality of optical filters (17, 18) that transmit a specific wavelength range are installed in front of an infrared detector (15).
), and is configured to switch between a plurality of optical filters depending on the object to be measured (10).

(作用) 赤外線を検出する赤外線検出器(15)の前に特定の波
長領域例えば感度汲置が約8〜13μmと約5〜8μm
の領域を夫々透過する複数の光学フィルタ(17,18
)を設ける。そして、測定対象物(10)の種類に応じ
てこれ等の光学フィルタ(17゜18)を切換装置(2
0)により切換える。すなわち、測定対象物+11が例
えば反射率の小さいガラス又はこれと等価な物体以外の
場合光学フィルタとして約8〜13μmの赤外線を透過
させるものを用い、測定対象物(1)が例えばガラス又
はこれと等価な物体の場合光学フィルタとして約5〜8
μmの赤外線を透過させるものを用いる。これにより、
約8〜13μmの赤外線を透過させる光学フィルタ<1
7)を用いるときは低温領域例えば約−50℃までの測
温か可能となり、約5〜8μmの赤外線を透過させる光
学フィルタ(18)を用いるときは反射の影響を無視で
きる程度に低減させてガラス又はこれと等価な物体も含
めて常温領域の測温が可能となる。
(Function) In front of the infrared detector (15) that detects infrared rays, a specific wavelength range, for example, sensitivity is set at about 8 to 13 μm and about 5 to 8 μm.
A plurality of optical filters (17, 18
) will be established. Then, these optical filters (17°18) are connected to the switching device (2
0). That is, if the object to be measured +11 is other than glass with a low reflectance or an object equivalent thereto, an optical filter that transmits infrared rays of about 8 to 13 μm is used, and if the object to be measured (1) is glass or an object equivalent to this, for example, Approximately 5 to 8 as an optical filter for an equivalent object
A material that transmits μm infrared rays is used. This results in
Optical filter that transmits infrared rays of approximately 8 to 13 μm <1
7), it is possible to measure temperatures in low temperature ranges, for example, down to about -50°C, and when using an optical filter (18) that transmits infrared rays of about 5 to 8 μm, the influence of reflection is reduced to a negligible level. Alternatively, it is possible to measure the temperature of objects in the room temperature range, including objects equivalent to this.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図〜第4図に基づいて
詳しく説明する。
Hereinafter, one embodiment of the present invention will be described in detail based on FIGS. 1 to 4.

第1図は本実施例の構成を示すもので、同図において、
(It))は被測定対象物、(11)は被測定対象物(
10)からの赤外線を集光する対物レンズ、(12)は
赤外線エネルギーをチョッピングして交流信号に変換す
るためのチョッパ、(13)はチョッパ(12)を駆動
するためのモータ、(14)はリレーレンズ、(15)
はチョッピングされた赤外線エネルギーを電気信号例え
ば電圧信号に変換する赤外線検出器(HgCdTe)、
(I6)は出力端子である。
FIG. 1 shows the configuration of this embodiment, and in the figure,
(It)) is the object to be measured, (11) is the object to be measured (
(12) is a chopper for chopping the infrared energy and converting it into an alternating current signal; (13) is a motor for driving the chopper (12); (14) is a motor for driving the chopper (12); Relay lens, (15)
is an infrared detector (HgCdTe) that converts chopped infrared energy into an electrical signal, such as a voltage signal;
(I6) is an output terminal.

さて本実施例では例えばチョッパ(12)の前にその略
中心が赤外線の光路上に位置するように蝮数の光学フィ
ルタ(17)及び(18)を取付けた回転保持部材(1
9)を設ける。光学フィルタ(17)は感度波長が約8
〜13μmの赤外線を透過し、光学フィルタ(18)は
感度波長が約5〜8μmの赤外線を透過するように成さ
れている。そして、この回転保持部材(19)を切換装
置(2o)で回動し、光学フィルタ(1’/)及び(1
8)を被測定対象物(10)の種類に応じて切換えて赤
外線の光路上に配するようにする。
In this embodiment, for example, in front of the chopper (12), a rotary holding member (1) is provided with a number of optical filters (17) and (18) so that the approximate center thereof is located on the optical path of infrared rays.
9). The optical filter (17) has a sensitivity wavelength of approximately 8
The optical filter (18) is configured to transmit infrared rays having a sensitivity wavelength of about 5 to 8 µm. Then, the rotation holding member (19) is rotated by the switching device (2o), and the optical filter (1'/) and (1
8) is switched depending on the type of the object to be measured (10) and placed on the infrared light path.

第2図は光学フィルタ(17)及び(18)の取付けら
れた回転保持部材(19)を上より見た図で、ここでは
光学フィルタ(17)及び(18)は等間隔で対向して
設けられているが、その略中心が赤外線の光路上よりず
れなければ任意の位置でよい。
Fig. 2 is a top view of the rotation holding member (19) to which the optical filters (17) and (18) are attached; However, as long as its approximate center does not deviate from the optical path of infrared rays, it may be at any position.

いま、被測定対象物(1o)がガラス又はこれと等価な
物体以外の反射率の小さい物体例えば冷凍機に付着した
霜のようなものの場合、切換装置(20)により回転保
持部材(19)を回動して光学フィルタ(17)を赤外
線の光路上に配する。すると、被測定対象物(10)と
しての霜からの赤外線は対物レンズ(11)で集光され
、光学フィルタ(17)で感度波長が約8〜13μmの
赤外線のみが透過し、ナシツバ(12)でチョッピング
されてリレーレンズ(14)を介して赤外線検出W(1
5)で検出される。そして、ここで電気信号に変換され
て出力端子(16)に取り出され、図示せずも増幅器で
増幅された後モニタによってその温度分布が表示される
Now, if the object to be measured (1o) is an object with a low reflectance other than glass or an equivalent object, such as frost on a refrigerator, the switching device (20) switches the rotation holding member (19). The optical filter (17) is rotated to be placed on the infrared light path. Then, the infrared rays from the frost as the object to be measured (10) are condensed by the objective lens (11), and only the infrared rays with a sensitivity wavelength of approximately 8 to 13 μm are transmitted through the optical filter (17). infrared detection W (1) through the relay lens (14).
5) is detected. Here, the signal is converted into an electrical signal and taken out to an output terminal (16), and after being amplified by an amplifier (not shown), its temperature distribution is displayed on a monitor.

このようにしてこの場合光学フィルタ(17)は感度波
長が約8〜13μmの赤外線のみを透過させるので、約
5〜8μmの領域に対して感度波長が長<S/N比が向
上することから低温領域例えば約−50℃までの測温が
可能となる。また、この場合被測定対象物(lO)は反
射率の小さいものとされているので反射の影響を受ける
ことはない。
In this way, in this case, the optical filter (17) only transmits infrared rays with a sensitivity wavelength of about 8 to 13 μm, so for the region of about 5 to 8 μm, the sensitivity wavelength is long < S/N ratio is improved. It is possible to measure temperatures in a low temperature range, for example, down to about -50°C. Further, in this case, the object to be measured (lO) has a low reflectance, so it is not affected by reflection.

次に被測定対象物(10)がガラス又はこれと等価な物
体の場合、切換装置(2o)により回転部材(19)を
回動して光学フィルタ(18)を赤外線の光路上に配す
る。すると、被測定対象物(10)としてのガラス又は
これと等価な物体からの赤外線は対物レンズ(11)で
集光され、光学フィルタ(18)で感度波長が約5〜8
μmの赤外線のみが透過し、チョッパ(12)でナヨッ
ピングされてリレーレンズ(14)を介して赤外線検出
器(15)で検出される。そして、ここで電気46号に
変換されて出力端子(I6)に取り出され、図ホせずも
増幅器で増幅された後モニタによってその温度分布が表
示される。
Next, when the object to be measured (10) is glass or an object equivalent thereto, the rotating member (19) is rotated by the switching device (2o) to place the optical filter (18) on the infrared light path. Then, the infrared rays from the glass as the object to be measured (10) or an object equivalent thereto are focused by the objective lens (11), and the infrared rays are collected by the optical filter (18) with a sensitivity wavelength of approximately 5 to 8.
Only infrared rays of μm are transmitted through, are nayopped by a chopper (12), and detected by an infrared detector (15) via a relay lens (14). Then, the temperature is converted into electrical power No. 46, taken out to the output terminal (I6), and, as shown in the figure, after being amplified by an amplifier, its temperature distribution is displayed on a monitor.

このようにしてこの場合光学フィルタ(18)は感度波
長が約5〜8μmの赤外線のみを透過させ、この感度波
1是が約5〜8μmのときは反射率は第4図からもわか
るように低いので反影の影響がなくなり、しかも3〜5
μ−の領域に対して感度波長が長く沢山赤外線エネルギ
ーを得ることができるので、S/N比を向上でき、もっ
て常温領域の測温かi″IJ能となる。
In this way, in this case, the optical filter (18) only transmits infrared rays with a sensitivity wavelength of about 5 to 8 μm, and when this sensitivity wavelength is about 5 to 8 μm, the reflectance is as shown in Figure 4. Because it is low, there is no influence of reflection, and 3 to 5
Since the sensitivity wavelength is longer than in the μ- region and a large amount of infrared energy can be obtained, the S/N ratio can be improved, resulting in temperature measurement i''IJ performance in the room temperature region.

因みに光学フィルタ(■8)を赤外線の光路上に配し、
透明ガラス又はすりガラスを第3図の如くして本装置で
測温した場合高温物体の反射像は無視し得る程度に低減
させることができた。
By the way, an optical filter (■8) is placed on the infrared light path,
When the temperature of transparent glass or frosted glass was measured using this device as shown in FIG. 3, the reflected image of the high temperature object could be reduced to a negligible level.

このように本実施例では光学フィルタ(17)として感
度波長が約8〜13μmの赤外線を透過するものを用い
、光学フィルタ(18)として感度波長が約5〜8μm
の赤外線を透過するものを用い、被測定対象物+11が
冷凍機に付着した霜の如きガラス又はこれと等価な物体
以外の反射率の小さいものの場合は赤外線の光路上に光
学フィルタ(17)を配し、ガラス又はこれと等価な物
体の場合は赤外線の光路上に光学フィルタ(18)を配
するようにしたので、反射の影響を無視できる程度に低
減し、同一の装置を用いて例えば約−50℃と低温領域
におけるガラス又はこれと等価な物体以外の反射率の小
さい物体の測温が可能になると共に常温領域における正
確なガラス又はこれと等価な物体の測温が可能となる。
As described above, in this embodiment, an optical filter (17) that transmits infrared rays with a sensitivity wavelength of approximately 8 to 13 μm is used, and an optical filter (18) that transmits infrared rays with a sensitivity wavelength of approximately 5 to 8 μm is used.
If the object to be measured (+11) is something with a low reflectance other than glass such as frost on a refrigerator or an equivalent object, an optical filter (17) should be placed on the infrared light path. In the case of glass or an equivalent object, an optical filter (18) is placed on the optical path of the infrared rays, so that the influence of reflection is reduced to a negligible level, and the same device can be used to e.g. It becomes possible to measure the temperature of objects with low reflectance other than glass or objects equivalent thereto in the low temperature region of -50° C., and it also becomes possible to accurately measure the temperature of glass or objects equivalent thereto in the room temperature region.

なお、上述の実施例では回転保持部材(19)に2つの
光学フィルタ(17)及び(18)を設けた場合である
が、これに限定されることなく、測温する感度波長の領
域に応じてそれ以上の光学フィルタを設けるようにして
もよい。また、光学フィルタ(17)及び(18)を取
付けた回転保持部材(19)の位置も、第1図の場合に
限定されず、赤外線の光路上で効果的に等価できれば赤
外線検出器(15)の前の任怠の位置でよい。
In the above embodiment, the rotation holding member (19) is provided with two optical filters (17) and (18). However, more optical filters may be provided. Furthermore, the position of the rotation holding member (19) to which the optical filters (17) and (18) are attached is not limited to the case shown in FIG. It is okay to be in the position of duty in front of.

〔発明の効果〕〔Effect of the invention〕

上述の如くこの発明によれば、赤外線検出器の前に特定
の波長領域を透過させる複数の光学フィルタを設け、被
測定対象物に応じてこれ等の光学フィルタを切換えて測
温するようにしたので、反射の影響を無視できる程度に
低減でき、同一の装置でもって、低温領域から常温領域
にわたって正確に測温することができる。
As described above, according to the present invention, a plurality of optical filters that transmit a specific wavelength range are provided in front of the infrared detector, and the temperature is measured by switching these optical filters depending on the object to be measured. Therefore, the influence of reflection can be reduced to a negligible extent, and the temperature can be accurately measured from a low temperature range to a normal temperature range using the same device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図、第2図はこ
の発明の要部の平面図、第3図はガラスの熱画像測定図
、第4図はガラスの透過率、放射率9反射率を示す図、
第5図は大気の吸収率を示す図である。 (10)は被測定対象物、(11)は対物レンズ、(1
2)はチョッパ、(13)はモータ、(14)はリレー
レンズ、(15)は赤外線検出器、(1’/)。 (18)は光学フィルタ、(19)は回転保持部材、(
20)は切換装置である。
Figure 1 is a configuration diagram showing an embodiment of the present invention, Figure 2 is a plan view of the main parts of the invention, Figure 3 is a thermal image measurement diagram of glass, and Figure 4 is the transmittance and emissivity of glass. 9 Diagram showing reflectance,
FIG. 5 is a diagram showing the absorption rate of the atmosphere. (10) is the object to be measured, (11) is the objective lens, (1
2) is a chopper, (13) is a motor, (14) is a relay lens, (15) is an infrared detector, (1'/). (18) is an optical filter, (19) is a rotation holding member, (
20) is a switching device.

Claims (1)

【特許請求の範囲】 温度に依存して放射される被測定対象物からの赤外線を
赤外線検出器で検出し、 上記被測定対象物の温度を測定する赤外線温度分布測定
装置において、 上記赤外線検出器の前に特定の波長領域を透過させる複
数の光学フィルタを設け、 上記測定対象物に応じて上記複数の光学フィルタを切換
えるようにしたことを特徴とする赤外線温度分布測定装
置。
[Scope of Claims] An infrared temperature distribution measuring device that measures the temperature of the object by detecting infrared rays emitted from the object depending on the temperature with an infrared detector, the infrared detector An infrared temperature distribution measuring device characterized in that a plurality of optical filters that transmit a specific wavelength range are provided in front of the device, and the plurality of optical filters are switched depending on the object to be measured.
JP63035563A 1988-02-18 1988-02-18 Infrared temperature distribution measuring device Expired - Lifetime JP2775017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63035563A JP2775017B2 (en) 1988-02-18 1988-02-18 Infrared temperature distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63035563A JP2775017B2 (en) 1988-02-18 1988-02-18 Infrared temperature distribution measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7043503A Division JP2756648B2 (en) 1995-02-08 1995-02-08 Infrared temperature distribution measuring device and its measuring method

Publications (2)

Publication Number Publication Date
JPH01210830A true JPH01210830A (en) 1989-08-24
JP2775017B2 JP2775017B2 (en) 1998-07-09

Family

ID=12445215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035563A Expired - Lifetime JP2775017B2 (en) 1988-02-18 1988-02-18 Infrared temperature distribution measuring device

Country Status (1)

Country Link
JP (1) JP2775017B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835884A (en) * 1995-02-08 1996-02-06 Akira Umeboshino Infrared temperature distribution measuring apparatus and measuring method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133688U (en) * 1977-03-29 1978-10-23
JPS5476193A (en) * 1977-11-07 1979-06-18 Aga Ab Method and device for making color thermogram on photographic film
JPS5611327A (en) * 1979-07-09 1981-02-04 Seiichi Okuhara Color temperature distribution measuring unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133688U (en) * 1977-03-29 1978-10-23
JPS5476193A (en) * 1977-11-07 1979-06-18 Aga Ab Method and device for making color thermogram on photographic film
JPS5611327A (en) * 1979-07-09 1981-02-04 Seiichi Okuhara Color temperature distribution measuring unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835884A (en) * 1995-02-08 1996-02-06 Akira Umeboshino Infrared temperature distribution measuring apparatus and measuring method therefor
JP2756648B2 (en) * 1995-02-08 1998-05-25 晁 梅干野 Infrared temperature distribution measuring device and its measuring method

Also Published As

Publication number Publication date
JP2775017B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
EP0453297B1 (en) Thermal detection arrangement
WO1991009389A1 (en) Infrared sensor suitable for fire fighting applications
JPS6146768B2 (en)
US3955184A (en) Passive infrared room intrusion detector
RU2534937C2 (en) Device and method for flame detection by means of detectors
GB2314618A (en) Smoke detector using light scatter and extinction
JPH01210830A (en) Infrared-ray temperature distribution measuring instrument
JPH0585014B2 (en)
JP2999534B2 (en) Object detector
US3453434A (en) Infrared ray detector utilizing ferroelectric single crystal
JP2756648B2 (en) Infrared temperature distribution measuring device and its measuring method
US3348058A (en) Radiation detection system having wide field of view
US5084621A (en) Radiometric standard infrared detector
JPS6176970A (en) Infrared ray detecting device
JPH0377032A (en) Temperature detector
JPH1038696A (en) Infrared detector
Stephens et al. A high speed spectrally scanning radiometer (SPERAD) for airborne measurements of cloud optical properties
Ashley et al. A cloud detector for automated telescopes
JPS6176922A (en) Flame detecting device
JPH09230021A (en) Target detecting device
JPH0467896B2 (en)
JPS5868631A (en) Infrared ray detecting device
JPH06249712A (en) Pyroelectric infrared sensor
Potter Infrared Detector Characteristics; Measurement And Use
JPH0518048B2 (en)