JPH01210617A - Method and apparatus for controlling rigidity of static pressure gas bearing - Google Patents

Method and apparatus for controlling rigidity of static pressure gas bearing

Info

Publication number
JPH01210617A
JPH01210617A JP63032801A JP3280188A JPH01210617A JP H01210617 A JPH01210617 A JP H01210617A JP 63032801 A JP63032801 A JP 63032801A JP 3280188 A JP3280188 A JP 3280188A JP H01210617 A JPH01210617 A JP H01210617A
Authority
JP
Japan
Prior art keywords
bearing
gap
gas
rigidity
static pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63032801A
Other languages
Japanese (ja)
Inventor
Akio Yamada
昭夫 山田
Fumio Hayashi
文男 早矢仕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP63032801A priority Critical patent/JPH01210617A/en
Publication of JPH01210617A publication Critical patent/JPH01210617A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0618Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0681Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
    • F16C32/0685Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for radial load only

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To maintain high rigidity of a bearing by controlling gas pressure supplied to the bearing in proportion to the size of a bearing gap. CONSTITUTION:A gap detecting sensor 7 for detecting a bearing gap S is mounted on a bearing 2, and a signal from said sensor 7 is sent to the input of a control section 8 to output the control signal to a gas controlling valve 6 for controlling gas pressure supplied to the bearing 2 in proportion to the size of the bearing gap S. Thus, a hollow rotary shaft 1 is stably supported with high pressure in the large bearing gap S with low rotational speed, so that the high rigidity of the bearing can be maintained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、遠心力の影響による軸受隙間の変化を伴う中
空回転軸を支持する静圧気体軸受の剛性制御方法及びそ
の装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for controlling the rigidity of a hydrostatic gas bearing that supports a hollow rotating shaft with changes in bearing clearance due to the influence of centrifugal force.

[従来の技術] 中空回転軸を回転自在に支持する静圧気体軸受にあって
は、その回転軸が高速回転時に遠心力により拡径して軸
受との接触を生じる一因となるので、予め大きい軸受隙
間をもって組み立てられている。
[Prior Art] In a hydrostatic gas bearing that rotatably supports a hollow rotating shaft, the diameter of the rotating shaft expands due to centrifugal force during high-speed rotation, which may cause contact with the bearing. Assembled with large bearing clearance.

〔発明が解決しようとする課題] しかしながら、このような軸受にありは、低速回転時に
は軸受隙間が大き過ぎるため、軸受の剛性が低くなって
いた。
[Problems to be Solved by the Invention] However, the problem with such a bearing is that the bearing gap is too large during low-speed rotation, resulting in low rigidity of the bearing.

本発明は上記課題を解決し、低速回転時における軸受の
剛性を高く確保することができる静圧気体軸受の剛性制
御方法とその装置を提供することである。
The present invention solves the above problems and provides a method and apparatus for controlling the rigidity of a hydrostatic gas bearing, which can ensure high rigidity of the bearing during low-speed rotation.

[課題を解決するための手段] 上記目的を達成するために本発明方法は、中空回転軸を
回転自在に支持する静圧気体軸受の軸受隙間を検出し、
検出された軸受隙間の大きさに比例して上記軸受に供給
する気体の圧力を制御し、軸受の剛性を維持するように
したしたものである。
[Means for Solving the Problems] In order to achieve the above object, the method of the present invention detects a bearing gap of a hydrostatic gas bearing that rotatably supports a hollow rotating shaft,
The pressure of the gas supplied to the bearing is controlled in proportion to the detected size of the bearing gap to maintain the rigidity of the bearing.

また発明装置は、中空回転軸を回転自在に支持する静圧
気体軸受にその軸受隙間を検出する隙間検出センサを設
けると共に、軸受の気体供給管に気体制御弁を設け、上
記センサの出力信号を入力して軸受隙間の太き・さに比
例して軸受に供給する気体の圧力を制御すべく上記気体
制御弁に制御信号を出力する制御部を設けたものである
In addition, the device of the invention is provided with a gap detection sensor for detecting the bearing gap in the static pressure gas bearing that rotatably supports the hollow rotary shaft, and a gas control valve in the gas supply pipe of the bearing, so that the output signal of the sensor is A control section is provided which inputs a control signal and outputs a control signal to the gas control valve in order to control the pressure of gas supplied to the bearing in proportion to the width and size of the bearing gap.

[作 用] 回転軸の低速回転時には軸受隙間が大きく、高速回転に
なるにつれて中空回転軸が遠心力により拡径して軸受隙
間が減少する。軸受隙間が大きくなると軸受の剛性が低
下するので、これを防止するために軸受隙間の大きさを
検出し、軸受隙間の大きさに比例して軸受に供給する気
体の圧力を制御する。軸受隙間の増大に応じて軸受の気
体圧力を増大することにより、回転が安定し、軸受の剛
性が高く維持されることになる。
[Function] When the rotating shaft rotates at low speed, the bearing gap is large, and as the rotating shaft rotates at high speed, the diameter of the hollow rotating shaft expands due to centrifugal force, and the bearing gap decreases. When the bearing gap becomes large, the rigidity of the bearing decreases, so to prevent this, the size of the bearing gap is detected and the pressure of the gas supplied to the bearing is controlled in proportion to the size of the bearing gap. By increasing the gas pressure of the bearing in accordance with the increase in the bearing clearance, rotation becomes stable and the rigidity of the bearing is maintained at a high level.

また、上記軸受隙間を隙間検出センサにより検出して軸
受隙間の大きさに比例して制御部により気体制御弁を制
御することにより回転速度の変更に対しても連続的に気
体圧力を制御することにより軸受の剛性を常に一定に維
持することが可能になる。
Furthermore, the bearing gap is detected by a gap detection sensor and the control unit controls the gas control valve in proportion to the size of the bearing gap, thereby continuously controlling the gas pressure even when the rotation speed changes. This makes it possible to maintain the rigidity of the bearing constant at all times.

[実施例] 以下、本発明の好適一実施例を添付図面に基づいて詳述
する。
[Embodiment] Hereinafter, a preferred embodiment of the present invention will be described in detail based on the accompanying drawings.

図示する如く、中空回転軸1が静圧ラジアル気体軸受2
により回転自在に支持されている。この軸受には中空回
転軸1の外周を囲繞する圧力室3が形成され、この圧力
室3を覆うように気体絞りとしての多孔質材4が設けら
れている。なお、気体絞りとしてはスロット絞り等その
池の形式のものであってもよい。
As shown in the figure, a hollow rotating shaft 1 is supported by a hydrostatic radial gas bearing 2.
It is rotatably supported by. A pressure chamber 3 surrounding the outer periphery of the hollow rotating shaft 1 is formed in this bearing, and a porous material 4 serving as a gas restrictor is provided so as to cover this pressure chamber 3. Note that the gas restrictor may be in the form of a pond, such as a slot restrictor.

軸受2には圧力室3に気体を供給する気体供給管5が接
続され、この気体供給管5には気体制御弁6が介設され
ている。
A gas supply pipe 5 for supplying gas to the pressure chamber 3 is connected to the bearing 2, and a gas control valve 6 is interposed in the gas supply pipe 5.

また、軸受2には軸受内径と中空回転軸外径との間の隙
間(軸受隙間)Sを検出する渦電流式等の隙間検出セン
サ7が取付けられ、このセンサ7にはその出力信号を入
力して軸受隙間Sの大きさに比例して軸受2に供給する
気体の圧力を制御すべく上記気体制御弁6に制御信号を
出力する制御部8が接続されている。気体の圧力Pは次
式のように制御される。
Furthermore, a gap detection sensor 7 such as an eddy current type is attached to the bearing 2 to detect a gap (bearing gap) S between the inner diameter of the bearing and the outer diameter of the hollow rotating shaft, and the output signal is input to this sensor 7. A control section 8 is connected to the gas control valve 6 to output a control signal to control the pressure of gas supplied to the bearing 2 in proportion to the size of the bearing gap S. The gas pressure P is controlled as shown in the following equation.

P=α・5−Pa 但し、αは定数、Sは隙間、Paは計画隙間での供給圧
力である。
P=α·5−Pa where α is a constant, S is the gap, and Pa is the supply pressure at the planned gap.

軸受隙間Sは予め大きく形成されているため、低速回転
時には大き過ぎて軸受2の剛性が低くなる傾向がある。
Since the bearing gap S is formed large in advance, it tends to be too large during low-speed rotation, and the rigidity of the bearing 2 tends to decrease.

そこで、隙間検出センサ7により、その軸受隙間Sの大
きさが検出され、軸受隙間Sの大きさに比例して制御部
8により気体制御弁6が開放され、軸受2に供給される
気体の圧力が増大する。圧力の増大により中空回転軸1
が安定に支持されるようになるので、低速回転時でも軸
受の剛性が高く維持される。
Therefore, the gap detection sensor 7 detects the size of the bearing gap S, and the control unit 8 opens the gas control valve 6 in proportion to the size of the bearing gap S, thereby increasing the pressure of the gas supplied to the bearing 2. increases. Due to the increase in pressure, the hollow rotating shaft 1
Since the bearing is stably supported, the rigidity of the bearing is maintained at a high level even during low speed rotation.

一方、高速回転時には中空回転軸1が遠心力により拡径
するため、軸受隙間Sが減少する。軸受隙間Sが小さい
場合にはそもそも回転が安定し、軸受2の剛性が高いの
で、軸受2にはそれ程高い圧力は必要とされない。この
場合、隙間検出センサ7により軸受隙間Sが小さいこと
が検出され、その軸受隙間Sの大きさに応じて制御部8
により気体制御弁6が絞られて軸受2に供給される気体
の圧力が低減する。
On the other hand, during high-speed rotation, the hollow rotating shaft 1 expands in diameter due to centrifugal force, so the bearing clearance S decreases. When the bearing gap S is small, the rotation is stable in the first place and the bearing 2 has high rigidity, so the bearing 2 does not require a very high pressure. In this case, the gap detection sensor 7 detects that the bearing gap S is small, and the control unit 8
As a result, the gas control valve 6 is throttled and the pressure of the gas supplied to the bearing 2 is reduced.

中空回転軸1の回転速度と一定の関係を有する軸受隙間
Sを検出して、この軸受隙間Sの大きさに比例して軸受
2に供給される気体の圧力を制御するようにしたので、
回転速度の変化に応じて連続的に軸受2の気体圧力を制
御することができ、回転速度に拘らず軸受2の剛性を常
に一定に維持することができる。
Since the bearing gap S having a certain relationship with the rotational speed of the hollow rotating shaft 1 is detected, and the pressure of the gas supplied to the bearing 2 is controlled in proportion to the size of this bearing gap S,
The gas pressure of the bearing 2 can be continuously controlled according to changes in the rotational speed, and the rigidity of the bearing 2 can always be maintained constant regardless of the rotational speed.

[発明の効果] 以上要するに本発明によれば次のような優れた効果を発
揮する6 ■ 軸受隙間の大きさに比例して軸受に供給する気体の
圧力を制御するようにしたので、軸受隙間の大きい低速
回転時には中空回転軸が高い圧力で支持されて安定し、
軸受の剛性を高く維持することができる。
[Effects of the Invention] In summary, according to the present invention, the following excellent effects are achieved.6 ■ Since the pressure of the gas supplied to the bearing is controlled in proportion to the size of the bearing clearance, the bearing clearance can be reduced. When rotating at high speeds and at low speeds, the hollow rotating shaft is supported under high pressure and stabilized.
The rigidity of the bearing can be maintained at a high level.

■ 軸受隙間の大きさを隙間検出センサで検出して軸受
隙間の大きさに比例して気体制御弁により軸受に供給す
る気体の圧力を制御するようにしたので、軸受隙間の大
きさに応じて、即ち、中空回転軸の回転速度に応じて軸
受の気体圧力を連続的に制御することができ、回転速度
に拘らず軸受の剛性を常に一定に維持することができる
■ The size of the bearing gap is detected by a gap detection sensor and the gas pressure supplied to the bearing is controlled by the gas control valve in proportion to the size of the bearing gap. That is, the gas pressure of the bearing can be continuously controlled according to the rotational speed of the hollow rotating shaft, and the rigidity of the bearing can always be maintained constant regardless of the rotational speed.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す構成図である。 図中、工は中空回転軸、2は静圧気体軸受、5は気体供
給管、6は気体制御弁、7は隙間検出センサ、8は制御
部である。 7隙間検出センサ 8制御部
The figure is a configuration diagram showing an embodiment of the present invention. In the figure, reference numeral 1 indicates a hollow rotating shaft, 2 a static pressure gas bearing, 5 a gas supply pipe, 6 a gas control valve, 7 a gap detection sensor, and 8 a control section. 7 Gap detection sensor 8 Control section

Claims (1)

【特許請求の範囲】 1、中空回転軸を回転自在に支持する静圧気体軸受の軸
受隙間を検出し、検出された軸受隙間の大きさに比例し
て上記軸受に供給する気体の圧力を制御し、軸受の剛性
を維持するようにしたことを特徴とする静圧気体軸受の
剛性制御方法。 2、中空回転軸を回転自在に支持する静圧気体軸受にそ
の軸受隙間を検出する隙間検出センサを設けると共に、
軸受の気体供給管に気体制御弁を設け、上記センサの出
力信号を入力して軸受隙間の大きさに比例して軸受に供
給する気体の圧力を制御すべく上記気体制御弁に制御信
号を出力する制御部を設けたことを特徴とする静圧気体
軸受の剛性制御装置。
[Claims] 1. Detecting the bearing gap of a static pressure gas bearing that rotatably supports a hollow rotating shaft, and controlling the pressure of gas supplied to the bearing in proportion to the size of the detected bearing gap. A method for controlling the rigidity of a hydrostatic gas bearing, characterized in that the rigidity of the bearing is maintained. 2. Providing a gap detection sensor for detecting the bearing gap on the static pressure gas bearing that rotatably supports the hollow rotating shaft,
A gas control valve is provided in the gas supply pipe of the bearing, and by inputting the output signal of the sensor, a control signal is output to the gas control valve to control the pressure of the gas supplied to the bearing in proportion to the size of the bearing gap. 1. A rigidity control device for a static pressure gas bearing, comprising a control section that controls the rigidity of a static pressure gas bearing.
JP63032801A 1988-02-17 1988-02-17 Method and apparatus for controlling rigidity of static pressure gas bearing Pending JPH01210617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032801A JPH01210617A (en) 1988-02-17 1988-02-17 Method and apparatus for controlling rigidity of static pressure gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032801A JPH01210617A (en) 1988-02-17 1988-02-17 Method and apparatus for controlling rigidity of static pressure gas bearing

Publications (1)

Publication Number Publication Date
JPH01210617A true JPH01210617A (en) 1989-08-24

Family

ID=12368947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032801A Pending JPH01210617A (en) 1988-02-17 1988-02-17 Method and apparatus for controlling rigidity of static pressure gas bearing

Country Status (1)

Country Link
JP (1) JPH01210617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2299130A1 (en) * 2009-09-18 2011-03-23 FESTO AG & Co. KG Pneumatic bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2299130A1 (en) * 2009-09-18 2011-03-23 FESTO AG & Co. KG Pneumatic bearing device

Similar Documents

Publication Publication Date Title
JP4993680B2 (en) Spindle device
US4091687A (en) High-speed rotation system
JPS60245443A (en) Controllable radial magnetic shaft bearing device
KR960001501A (en) Vacuum system exhaust method and device
KR20000035006A (en) Controllable magnetic bearing apparatus
JPH01210617A (en) Method and apparatus for controlling rigidity of static pressure gas bearing
JP3463218B2 (en) Magnetic bearing device
US3560064A (en) Servo controlled fluid bearing
US5584463A (en) Radial vibration damping arrangement
JP4553422B2 (en) Cooling control device for rotating shaft
US3989258A (en) Shaft stiffness control apparatus
US5838083A (en) Device for breaking eddies at a surface submerged by a turbulent flow
JP3071489B2 (en) Non-contact bearing overload detection device
JP2002139038A (en) Temperature control method of air static pressure bearing and air static pressure bearing device
KR20180096528A (en) High speed spindle apparatus
JPS6332983Y2 (en)
JP2573853B2 (en) 5-axis control type magnetic bearing
JP2000120580A (en) Turbo molecular pump
JP2001304342A (en) Bearing vibration damping device
JPH05141423A (en) Magnetic bearing device attached to movable object
KR100417782B1 (en) System for controlling bearing torque of foil bearing supporting a rotating shaft
JPH10339319A (en) Bearing device
KR100447021B1 (en) Control method of magnetic bearing used in built in spindle
JPH03234913A (en) Control device for radial magnetic bearing
JPH07248021A (en) Control device for magnetic bearing