JPH01209700A - Deflection electromagnet for charged particle accumulation ring - Google Patents

Deflection electromagnet for charged particle accumulation ring

Info

Publication number
JPH01209700A
JPH01209700A JP3323988A JP3323988A JPH01209700A JP H01209700 A JPH01209700 A JP H01209700A JP 3323988 A JP3323988 A JP 3323988A JP 3323988 A JP3323988 A JP 3323988A JP H01209700 A JPH01209700 A JP H01209700A
Authority
JP
Japan
Prior art keywords
magnetic field
uniformity
magnetic
magnetic pole
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3323988A
Other languages
Japanese (ja)
Inventor
Tetsuya Matsuda
哲也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3323988A priority Critical patent/JPH01209700A/en
Publication of JPH01209700A publication Critical patent/JPH01209700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To make it possible to obtain excellent uniformity of magnetic field in spite of a roughly machined magnetic pole and to fine-adjust the magnetic field uniformity after machining the magnetic pole by employing a shim coil for adjusting the uniformity of the magnetic field on the magnetic pole surface. CONSTITUTION:If the error magnetic field produced by a deflection electromagnet 1 is a magnetic field linearly increasing in the Y direction, the magnetic field can be corrected by producing a magnetic field increasing linearly in the direction opposite to that of the error magnetic field. Such a magnetic field can be produced by a shim coil 5. It is also possible to make a shim coil to produce magnetic field component that increases by secondary degree in the Y direction or that increases by first or secondary order in the X direction. It is possible to obtain the uniformity of the magnetic field the error magnetic field of which is easy to correct. This arrangement makes rough machined shape of a magnetic pole acceptable and permits adjustment of the magnetic field uniformity after the machining of the magnetic pole.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、荷電粒子蓄積リング装置の偏向電磁石にお
ける磁界均一度向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to improving magnetic field uniformity in a deflection electromagnet of a charged particle storage ring device.

[従来の技術] 第3図(a)(b)は各々、例えは刊行物(Proce
ed−ings Of The 5th Sympos
ium On Accelerator 5c−ien
ce And Technology (1984) 
KEK、Japan P270)に記載された従来の偏
向電磁石を示す断面図および要部拡大断面構成図である
。図において、(1)は鉄ヨーク、(2)はコイル、(
3)は磁極、(4)は荷電粒・子の通る領域(アパーチ
ャ)である。
[Prior Art] FIGS. 3(a) and 3(b) each show, for example, a publication (Proce
ed-ings Of The 5th Sympos
ium On Accelerator 5c-ien
ce And Technology (1984)
FIG. 2 is a cross-sectional view and an enlarged cross-sectional configuration diagram of essential parts of a conventional bending electromagnet described in KEK, Japan P270). In the figure, (1) is an iron yoke, (2) is a coil, (
3) is a magnetic pole, and (4) is a region (aperture) through which charged particles/particles pass.

次に動作について説明する。Next, the operation will be explained.

荷電粒子蓄積リング装置において、荷電粒子を安定して
蓄積する必要がある。このため、荷電粒子を曲げるため
の偏向電磁石は、荷電粒子の通る領域(アパーチャ)に
、なるべく均一な磁界を発生させることが必要となる。
In a charged particle storage ring device, it is necessary to stably store charged particles. Therefore, a bending electromagnet for bending charged particles needs to generate a magnetic field as uniform as possible in the region (aperture) through which the charged particles pass.

このため、偏向電磁石の磁極(3)は、第3図(h)(
第3図(a)のB部の拡大図)に示すように、(イ)磁
極端部(155≦X≦220)に丸みをつけて磁界の飽
和を避ける。(ロ)磁H’i、端部に近ずくほど磁界が
弱くなるため、磁極シムと呼はれる磁極の突起部(95
≦X≦155)を設け、これにより、磁極端部の磁界が
強められ、磁界均一度が向上する等の工夫がなされてい
る。
Therefore, the magnetic pole (3) of the bending electromagnet is
As shown in the enlarged view of part B in FIG. 3(a), (a) the magnetic pole tip (155≦X≦220) is rounded to avoid saturation of the magnetic field. (b) Magnetic H'i, the magnetic field becomes weaker as it gets closer to the end, so the protrusion of the magnetic pole called the magnetic pole shim (95
≦X≦155), thereby strengthening the magnetic field at the pole tip and improving the magnetic field uniformity.

[発明が解決しようとする課題] 従来の荷電粒子蓄積リング用偏向電磁石は以−ヒのよう
に構成されており、上記(ロ)の方法は磁極の突起が大
きすぎると、端部の磁界が強められすき、磁界均一度が
逆に悪化してしまうという欠点があった。従って、良好
な磁界均一度を得るには、磁界設計通りに高精度で加工
する必要があった。
[Problems to be Solved by the Invention] Conventional bending electromagnets for charged particle storage rings are constructed as shown below, and in the method (b) above, if the protrusion of the magnetic pole is too large, the magnetic field at the end is This has the disadvantage that the magnetic field is strengthened and the uniformity of the magnetic field deteriorates. Therefore, in order to obtain good magnetic field uniformity, it was necessary to process the magnetic field with high precision according to the magnetic field design.

また、磁極の加工後は磁極形状を変更できないため、磁
界均一度の微調ができず、磁界分布を変更して磁界均一
度を最適化することもできなかった。
Furthermore, since the shape of the magnetic pole cannot be changed after the magnetic pole is processed, it is not possible to finely adjust the magnetic field uniformity, and it is also not possible to optimize the magnetic field uniformity by changing the magnetic field distribution.

この発明は上記のような問題点を解決するためになされ
たものであり、磁極が粗い加工でも良い磁界均一度が得
られるとともに、磁極加工後も磁界均一度の微調が可能
な偏向電磁石を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides a bending electromagnet in which good magnetic field uniformity can be obtained even when the magnetic poles are roughly machined, and the magnetic field uniformity can be finely adjusted even after the magnetic poles are machined. The purpose is to

[課題を解決するための手段] この発明に係わる荷電粒子蓄積リング用偏向電磁石は、
磁極表面に磁界均一度調整用のシムコイルを設けたもの
である。
[Means for Solving the Problems] A deflection electromagnet for a charged particle storage ring according to the present invention has the following features:
A shim coil for adjusting magnetic field uniformity is provided on the magnetic pole surface.

[作用] この発明におけるシフ1コイルは、シムコイルの作る磁
界により、偏向電磁石の誤差磁界を打ち消し、磁界均一
度を向上させる。
[Function] The Schiff 1 coil according to the present invention cancels the error magnetic field of the bending electromagnet by the magnetic field created by the shim coil, and improves the uniformity of the magnetic field.

[実施例] 以下、この発明の一実施例を図について説明する。[Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による荷電粒子蓄積リング
用偏向電磁石を示す断面図である。
FIG. 1 is a sectional view showing a deflection electromagnet for a charged particle storage ring according to an embodiment of the present invention.

図において、(1)〜(4)は従来と同一のものである
In the figure, (1) to (4) are the same as the conventional one.

(5)はシムコイルである。(5) is a shim coil.

偏向電磁石の作る磁界は第1図においてX方向である。The magnetic field created by the bending electromagnet is in the X direction in FIG.

例えば、偏向電磁石の作る誤差磁界が、X方向に1次で
増加する磁界であるとする。これを補正するには、誤差
磁界とは逆方向に1次で増加する磁界を発生させれば良
い。このような磁界は第2図に示すようなシムコイルに
よって発生できる。実際の偏向電磁石の誤差磁界成分は
その他種々あるが、X方向に2次で増加する磁界成分、
X方向に1次、2次で増加する磁界成分を発生するシム
コイル等も作成可能であり、これらのシムコイルの組合
せにより、誤差磁界を補正し易い磁界均一度を得ること
が可能となる。
For example, assume that the error magnetic field created by the deflection electromagnet is a magnetic field that increases linearly in the X direction. To correct this, it is sufficient to generate a magnetic field that increases linearly in the opposite direction to the error magnetic field. Such a magnetic field can be generated by a shim coil as shown in FIG. There are various other error magnetic field components of actual bending electromagnets, including a magnetic field component that increases quadratically in the X direction,
It is also possible to create a shim coil or the like that generates a magnetic field component that increases first and second in the X direction, and by combining these shim coils, it is possible to obtain magnetic field uniformity that makes it easy to correct error magnetic fields.

なお、上記実施例では荷電粒子蓄積リング用偏向電磁石
の場合について説明したが、シンクロトロン用偏向電磁
石であってもよく、上記実施例と同様の効果を奏する。
In addition, although the case of the bending electromagnet for a charged particle storage ring was explained in the said Example, the bending electromagnet for a synchrotron may be sufficient, and the effect similar to the said Example will be produced.

[発明の効果] 以上のように、こ°の発明によれば偏向電磁石にシムコ
イルで誤差磁界の補正をするようにしたので、磁極の形
状加工が粗くても良く、また磁極加工後も磁界均一度の
調整が可能であるという効果かある。
[Effects of the Invention] As described above, according to this invention, since the error magnetic field is corrected by using shim coils in the bending electromagnet, the shape of the magnetic pole does not need to be rough, and even after the magnetic pole is processed, the magnetic field is not uniform. This has the advantage of being able to be adjusted once.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による偏向電磁石を示す断
面図、第2図はこの発明の一実施例による偏向電磁石の
要部を示す拡大断面構成図、及び第3図(a )())
)は各々従来の偏向電磁石を示す断面図およびその要部
拡大断面構成図である。 図において、(3)は磁極、(5)はシムコイルである
。 なお、図中、同一符号は同一または相当部分を示す。
Fig. 1 is a sectional view showing a bending electromagnet according to an embodiment of the present invention, Fig. 2 is an enlarged sectional view showing the main parts of a bending electromagnet according to an embodiment of the invention, and Fig. 3 (a) (). )
) are a cross-sectional view showing a conventional bending electromagnet and an enlarged cross-sectional configuration diagram of its essential parts. In the figure, (3) is a magnetic pole, and (5) is a shim coil. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 磁極表面に誤差磁界補正用のシムコイルを設けたことを
特徴とする荷電粒子蓄積リング用偏向電磁石。
A bending electromagnet for a charged particle storage ring characterized by having a shim coil for error magnetic field correction provided on the magnetic pole surface.
JP3323988A 1988-02-15 1988-02-15 Deflection electromagnet for charged particle accumulation ring Pending JPH01209700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3323988A JPH01209700A (en) 1988-02-15 1988-02-15 Deflection electromagnet for charged particle accumulation ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3323988A JPH01209700A (en) 1988-02-15 1988-02-15 Deflection electromagnet for charged particle accumulation ring

Publications (1)

Publication Number Publication Date
JPH01209700A true JPH01209700A (en) 1989-08-23

Family

ID=12380913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3323988A Pending JPH01209700A (en) 1988-02-15 1988-02-15 Deflection electromagnet for charged particle accumulation ring

Country Status (1)

Country Link
JP (1) JPH01209700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5112571B1 (en) * 2012-02-13 2013-01-09 三菱電機株式会社 Septum electromagnet and particle beam therapy system
JP2013541170A (en) * 2010-10-27 2013-11-07 イオン・ビーム・アプリケーションズ・エス・アー Synchro cyclotron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541170A (en) * 2010-10-27 2013-11-07 イオン・ビーム・アプリケーションズ・エス・アー Synchro cyclotron
JP5112571B1 (en) * 2012-02-13 2013-01-09 三菱電機株式会社 Septum electromagnet and particle beam therapy system
WO2013121503A1 (en) 2012-02-13 2013-08-22 三菱電機株式会社 Septum electromagnet and particle beam therapy device
US8884256B2 (en) 2012-02-13 2014-11-11 Mitsubishi Electric Corporation Septum magnet and particle beam therapy system

Similar Documents

Publication Publication Date Title
JP2667832B2 (en) Deflection magnet
US4425506A (en) Stepped gap achromatic bending magnet
US5596304A (en) Permanent magnet edge-field quadrupole
US4445102A (en) Magnet pole tips
JPH01209700A (en) Deflection electromagnet for charged particle accumulation ring
US3052808A (en) Beam centering device for travelling wave tubes
US5739646A (en) Magnetic field adjusting center rods for cyclotron a magnet for cyclotron, and cyclotron
CN110113857A (en) A kind of four sextupole magnetic field magnet of combination with chromaticity correction performance
JPS63281410A (en) Electromagnet with magnetic shield
JPH0311800Y2 (en)
JPS63292607A (en) Sloped magnetic field coil
JPH02100300A (en) Quadrupole electromagnet
JPS58186915A (en) Superconductive magnet
JPH063498A (en) Hexapolar shim coil
Yoshimoto et al. The magnet design study for the FFAG accelerator
JP4298312B2 (en) Electromagnet device and charged particle acceleration device
JP2565889B2 (en) Electromagnet for charged particle device
Chen et al. Design and optimization of combined-function quadrupole-sextupole magnets
Sarma et al. A simple design of sextupole magnets with optimized circular pole faces
JP3068630B2 (en) Quadrupole magnet device
JP2980226B2 (en) Electromagnet for charged particle storage ring
JP2001085199A (en) Charged particle accelerator
Nadji et al. Analysis of the multipurpose sextupole of SOLEIL using Halbach’s perturbation theory and the Opera-2d code
JPH0864398A (en) Periodic magnetic field generating device
GB1583887A (en) Race track microtron