JPH01208815A - Generator for magnetostatic field - Google Patents

Generator for magnetostatic field

Info

Publication number
JPH01208815A
JPH01208815A JP63034164A JP3416488A JPH01208815A JP H01208815 A JPH01208815 A JP H01208815A JP 63034164 A JP63034164 A JP 63034164A JP 3416488 A JP3416488 A JP 3416488A JP H01208815 A JPH01208815 A JP H01208815A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
gradient
gradient magnetic
eddy currents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63034164A
Other languages
Japanese (ja)
Inventor
Kimio Matsumoto
松本 公雄
Toshiya Iinuma
俊哉 飯沼
Yasuji Honjo
本所 又嗣
Kenji Oyamada
小山田 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63034164A priority Critical patent/JPH01208815A/en
Publication of JPH01208815A publication Critical patent/JPH01208815A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower eddy currents generated in a magnetic pole, to improve the linearity of the quantity of phase encoded and to enhance a ghost in the direction of phase of a picture image by arranging an electric good conductor generating eddy currents at the time of the change of a gradient magnetic field on the front of the magnetic pole. CONSTITUTION:A pair of magnetic poles 105 and 106 uniformly correcting the magnetostatic fields of a pair of permanent magnets 108 and 109 are attracted to the permanent magnets 108 and 109 fixed onto the opposite surfaces of a magnetic yoke. Gradient field coils 103, 104 shaping gradient magnetic fields into the magnetostatic fields and a plurality of electric good conductors 1 and 2 formed to a shape concentric and similar to these coils and disposed under mutually separate states onto the surfaces of each magnetic pole are mounted on each opposed surface side. When magnetic fields are changed on the rise and fall of the gradient magnetic fields, eddy currents are generated in the good conductors 1, 2, and the magnetic poles are shielded, thus remarkably reducing the generation of eddy currents in the magnetic poles, then preventing a ghost displayed in the direction of phase of a picture image.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は磁気共鳴撮像装fW(以下MHIと云う)に係
り、主磁場を形成供給する永久磁石型の静磁場発生装置
の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a magnetic resonance imaging system fW (hereinafter referred to as MHI), and relates to the structure of a permanent magnet type static magnetic field generator that forms and supplies a main magnetic field. It is.

(ロ) 従来の技術 MHIにおいては、均一な静磁場が形成されている空間
に、勾配磁場をパルス的に加えることによって位置情報
を周波数情報に変換して、NMR(核磁気共鳴)信号と
してデータ収集し、フーリエ変換することによって、画
像を再構成する。
(b) In conventional MHI technology, position information is converted into frequency information by applying a gradient magnetic field in pulses to a space where a uniform static magnetic field is formed, and data is generated as an NMR (nuclear magnetic resonance) signal. Reconstruct the image by collecting and Fourier transforming.

第10図に2次元フーリエ変換(以下2DFTと云う)
法の原理を示す、被験体内の原子(例えば’H)を90
”RFパルス(101)で励起した後に現われるFID
信号<102)に対し、まずY方向の勾配磁場Gyをt
y時間、続いてX方向の勾配磁場Gxをtx時間印加し
、時間txの後に信号を観測する。X方向の位置の情報
はwx” r (Ho + Gx・X)で表わされる周
波数taXの違いにより与えられ、Y方向の位置の情報
は時間txの間に観測される信号の位相9yの違い、9
y−y(Ho +cy・Y)・tyで与えられる。ここ
でγは磁気回転比、Hoは静磁場である。
Figure 10 shows the two-dimensional Fourier transform (hereinafter referred to as 2DFT).
90 atoms (e.g. 'H) in the subject, demonstrating the principle of the method.
"FID that appears after excitation with RF pulse (101)
signal < 102), first, the gradient magnetic field Gy in the Y direction is set to t
A gradient magnetic field Gx in the X direction is applied for y time and then for tx time, and the signal is observed after time tx. The information on the position in the X direction is given by the difference in frequency taX expressed as wx''r (Ho + Gx・X), and the information on the position in the Y direction is given by the difference in phase 9y of the signal observed during time tx, 9
It is given by y−y(Ho +cy・Y)・ty. Here, γ is the gyromagnetic ratio and Ho is the static magnetic field.

そこで、勾配磁場cyの犬き薯を順次変化させ、画像の
Y方向の画素数だけの信号を観測し、これらを2DFT
すれば、被験体のXY方向の2次元画像が得られる。
Therefore, we sequentially change the gradient of the gradient magnetic field cy, observe as many signals as the number of pixels in the Y direction of the image, and convert these signals into 2DFT.
Then, a two-dimensional image of the subject in the X and Y directions can be obtained.

一般に、周波数勾配(Gx)は常に一定の大きさで印加
され、位相勾配(Gy)はパルス毎に強度が直線的に変
化するものである0位相勾配に関しては、時間に関して
積分した面積(位相エンフードi)が、投影に関して直
線的に変化する必要がある。
In general, the frequency gradient (Gx) is always applied with a constant magnitude, and the phase gradient (Gy) is one in which the intensity changes linearly for each pulse. i) must vary linearly with respect to the projection.

第9図に一般的な永久磁石型静磁場発生装置を示す、同
図において(107)はヨーク、(108)(109>
は永久磁石である。勾配磁場フィル(103)(104
)にパルス的に電流を流すと、近傍に存在する金属、特
に磁極(105)(106)に渦電流が発生し、勾配磁
場コイル(103)(104)により形成される磁場の
立上り、立下りが勾配磁場フィル(103)(104>
に流される電流の立上り、立下りから遅れるという、い
わゆる“なまり”現象が観測されるという問題点があっ
た。更に、発生した渦電流により、位相エンコード量の
直線性が損われ、画像の位相方向にゴーストが表われる
という問題点もあった。
Figure 9 shows a general permanent magnet type static magnetic field generator. In the figure, (107) is a yoke, (108) (109>
is a permanent magnet. Gradient magnetic field fill (103) (104
), eddy currents are generated in nearby metals, especially the magnetic poles (105) (106), and the rise and fall of the magnetic field formed by the gradient magnetic field coils (103) (104) is the gradient magnetic field fill (103) (104>
There was a problem in that a so-called "rounding" phenomenon was observed, in which the rise and fall of the current flowing through the circuit were delayed. Furthermore, the generated eddy current impairs the linearity of the phase encode amount, causing ghosts to appear in the phase direction of the image.

(ハ)発明が解決しようとする課題 本発明が解決しようとする課題は、永久磁石型静磁場発
生装置の磁極に発生する渦電流を低減し画像の位相方向
に表われるゴーストを無くすことである。
(c) Problems to be Solved by the Invention The problem to be solved by the present invention is to reduce the eddy currents generated in the magnetic poles of a permanent magnet type static magnetic field generator and eliminate ghosts that appear in the phase direction of images. .

(ニ) 課題を解決するための手段 閉じた磁気回路を形成する磁気ヨークと、該磁気ヨーク
の相対向する上・下面に固定される一対の永久磁石と、
これら磁石の各対向面に吸着され、該磁石が形成する静
磁場を均一に補正する一対の磁石と、該磁極の各対向面
側に取付位置せしめられ、前記静磁場内に勾配磁場を形
成する勾配磁場コイルと、該勾配磁場コイルと同心的な
相似形状に形成され、前記磁極の表面に互いに分離状態
で配置される複数個の電気良導体とを具備する静磁場発
生装置である。
(d) Means for solving the problem A magnetic yoke forming a closed magnetic circuit, a pair of permanent magnets fixed to opposing upper and lower surfaces of the magnetic yoke,
a pair of magnets that are attracted to each opposing surface of these magnets and uniformly correct the static magnetic field formed by the magnet; and a pair of magnets that are attached and positioned on each opposing surface of the magnetic poles to form a gradient magnetic field within the static magnetic field. The present invention is a static magnetic field generating device that includes a gradient magnetic field coil and a plurality of electrically conductive conductors formed in a similar shape concentrically with the gradient magnetic field coil and arranged in a separated state on the surface of the magnetic pole.

(ホ) 作用 磁極の前面に配置された電気良導体に渦電流が発生する
ことにより、勾配磁場の立上り、立下り時の磁場変化が
磁極まで達することを抑制し、磁極に発生する渦電流を
低減させる。これにより、位相エンフード量の直線性が
改善され、画像の位相方向に表われるゴーストが改善さ
れる。
(e) By generating eddy currents in the electrically conductive material placed in front of the working magnetic pole, magnetic field changes at the rise and fall of the gradient magnetic field are suppressed from reaching the magnetic poles, reducing the eddy currents generated at the magnetic poles. let As a result, the linearity of the amount of phase enhancement is improved, and ghosts appearing in the phase direction of the image are improved.

(へ) 実施例 以下、本発明静磁場発生装置を図面の一実施例について
詳細に説明する。第3図に永久磁石型静磁場発生装置の
要部断面図を示す、同図に示1゛様に磁極(105)(
106)と勾配磁場コイル(103)(104)の間に
電気良導体(1)(2)を配置すれば、勾配磁場の立上
り立下り時に電気良導体<1)(2)に渦を汰が発生す
る0例えば、勾配磁場コイル(103)(104)に第
3図(a)に示す電流を流す場合、電流の立上り時には
電気良導体に、第3図(b)の様な電流密度分布で、勾
配磁場フィル(toa>(t04)の電流方向と逆向き
の渦を流(3)(4)が発生する。尚図中、■は紙面を
表から裏に貫く方向、■は紙面を裏から表に貫く方向の
′Wl流を表わす、この渦電流(3)(4)により、磁
i@ (105)(106)は磁場変化からシールドき
れることになり、磁極(105)(106)に発生する
渦電流は著しく低減される。又、勾配磁場コイル(10
3)(104)の電流の立下り時も同様に磁極(105
)(106)に発生する渦電流は低減される。
(F) Example Hereinafter, the static magnetic field generator of the present invention will be described in detail with reference to an example of the drawings. Fig. 3 shows a sectional view of the main parts of a permanent magnet type static magnetic field generator.
106) and the gradient magnetic field coils (103) and (104), a vortex is generated in the electrically good conductors (<1) and (2) at the rise and fall of the gradient magnetic field. 0 For example, when the current shown in Fig. 3 (a) is passed through the gradient magnetic field coils (103) (104), when the current rises, the gradient magnetic field is Flows (3) and (4) are generated in a vortex in the opposite direction to the current direction of fill (toa>(t04). In the figure, ■ is the direction that penetrates the paper from the front to the back, and ■ is the direction that penetrates the paper from the back to the front. Due to these eddy currents (3) and (4), which represent the 'Wl flow in the penetrating direction, the magnetic i@ (105) and (106) can be shielded from changes in the magnetic field, and the vortices generated at the magnetic poles (105 and 106) The current is significantly reduced.Also, the gradient coil (10
3) When the current of (104) falls, the magnetic pole (105)
) (106) are reduced.

次に2勾配磁場コイルに関する実施例を第1図(a)の
斜視図と(b)の鉛直断面図に示す0円盤状磁極<10
6)の上に、リング状に切断された電気良導体(21)
〜(27)の板を配置し、その上に円形の2フイル(5
)が配置されている。2コイル(5)により電気良導体
(21)〜(27)に発生する渦電流は同心円状に流れ
るので、リング状に切断されることにより渦電流が減少
することは無い、即ち、磁極(106)を勾配磁場の立
上り立下りからシールドする効果は、前記一体の電気良
導体(1)(2)の場合と同等である。しかし、リング
状に切断することにより、X勾配磁場フィル、Y勾配磁
場コイルにより電気両道体(21)〜(27)に発生す
る渦電流を抑制する効果があり、2勾配磁場フイル独立
の対策が可能である。
Next, an example of a two-gradient magnetic field coil is shown in the perspective view of FIG. 1(a) and the vertical sectional view of FIG. 1(b).
On top of 6), a good electrical conductor (21) cut into a ring shape.
~ (27) Place the board and place 2 circular films (5
) are placed. Since the eddy current generated in the electrical conductors (21) to (27) by the second coil (5) flows concentrically, the eddy current will not be reduced by cutting it into a ring shape, that is, the magnetic pole (106) The effect of shielding the magnetic field from the rise and fall of the gradient magnetic field is equivalent to that of the integrated electrical conductors (1) and (2). However, cutting into a ring shape has the effect of suppressing the eddy currents generated in the electric bipaths (21) to (27) by the X gradient magnetic field fill and the Y gradient magnetic field coil, and the two gradient magnetic field filters can be used independently. It is possible.

又電気良導体(21)〜(27)に発生する渦電流が大
きい程、磁極(106)を勾配磁場変化からシールドす
る効果は大きいが、別の弊害が表われるので、画像に位
相方向のゴーストが発生しない範囲内で、電気良導体(
21)〜(27)に発生する渦電流を制限することが必
要である。そのためには、電気良導体(21)〜(27
)の厚さをできるだけ薄くし、リング状の板を磁極(1
06)全面に配置せず、効果の大きい部分に限り配置す
る等の方法で対策する。第6図にリング状の板(28)
〜(30)を部分的に配置した実施例を示す。
Also, the larger the eddy currents generated in the electrically conductive conductors (21) to (27), the greater the effect of shielding the magnetic pole (106) from gradient magnetic field changes. A good electrical conductor (
It is necessary to limit the eddy currents generated in (21) to (27). For that purpose, good electrical conductors (21) to (27
) as thin as possible, and place the ring-shaped plate on the magnetic pole (1
06) Take measures such as not placing it all over the surface, but placing it only in areas where it has a large effect. Figure 6 shows a ring-shaped plate (28)
An example in which ~(30) is partially arranged is shown.

尚、リング状の電気良導体(21)〜(30)の材質は
静磁場の均一性に影響を与えない様な非磁性の電気良導
体であれば何でも良いが、軽量なアルミが望ましい、又
リング幅は狭い程X、Y勾配m場コイルによる渦電流の
発生を抑制する効果は大きいが、実際に応用した結果、
数Gの幅で十分効果があることが判明している。
The ring-shaped electrically conductive conductors (21) to (30) may be made of any non-magnetic electrically conductive material that does not affect the uniformity of the static magnetic field, but lightweight aluminum is preferable, and the ring width The narrower the field, the greater the effect of suppressing the generation of eddy currents caused by the X and Y gradient m-field coils, but as a result of actual application,
It has been found that a width of several G is sufficiently effective.

更にリング状の板(21)〜(30)は相互に電気的に
絶縁されていることが望ましいが、部分的に導通してい
たとしても本発明の効果を減少させるものではない。
Furthermore, although it is desirable that the ring-shaped plates (21) to (30) be electrically insulated from each other, the effects of the present invention will not be diminished even if they are partially electrically connected.

以上において円形の2勾配磁場コイルに関して説明した
が、三角形、四角形等の多角形の2勾配磁場コイルも可
能であり、その場合には電気良導体は2勾配磁場コイル
の形状と同じ形状のリングに分割された構造となる。
In the above, we have explained a circular two-gradient magnetic field coil, but polygonal two-gradient magnetic field coils such as triangles and squares are also possible. In that case, the electrically conductive material is divided into rings with the same shape as the two-gradient magnetic field coil. The structure is as follows.

次にX勾配磁場フィルに間して実施例を説明する。X勾
配磁場s イル(61)〜(64)、 (65)= (
68)は例として第4図(b)及び第5図(b)に示す
様に、XY平面及びYZ平面に関して対称な形である。
Next, an example will be explained with reference to the X gradient magnetic field fill. X gradient magnetic field s il (61) ~ (64), (65) = (
68) has a symmetrical shape with respect to the XY plane and the YZ plane, as shown in FIGS. 4(b) and 5(b), for example.

電気良導体に発生する渦電流は、X勾配磁場コイルと同
じ形状の電流分布となるので、第4図(b)及び第5図
(b)の場合には、それぞれ第4図(a)、第5図(a
)の様に電気良導体を分割(71)〜(80)、 (8
1)〜(92)することによって、2勾配磁場フイル、
Y勾配磁場コイルによる渦電流を発生することなく、X
勾配磁場フィル独立の対策が可能である。他の形状のX
勾配磁場コイルに関しでも、X勾配磁場コイルの形状と
同じ形状に電気良導体を分割することにより、本発明を
実施することが可能である。
Eddy currents generated in a good electrical conductor have a current distribution in the same shape as the X-gradient magnetic field coil, so in the cases of Figures 4(b) and 5(b), the eddy currents in Figures 4(a) and 5(b), respectively. Figure 5 (a
) Divide the electrically conductive material like (71) to (80), (8
1) to (92), two gradient magnetic field films,
X without generating eddy currents due to Y gradient magnetic field coils.
Measures that are independent of the gradient magnetic field fill are possible. X of other shapes
Regarding gradient magnetic field coils, the present invention can also be implemented by dividing the electrically conductive material into the same shape as the X-gradient magnetic field coil.

また、Y勾配磁場コイルは、X勾配磁場コイルを2軸の
回りに90@回転させた形であり、電気良導体もX勾配
磁場コイル用のものを2軸の回りに901回転させた構
造にすれば良い。
In addition, the Y gradient magnetic field coil has a structure in which the X gradient magnetic field coil is rotated 90 degrees around two axes, and the electrical conductor has a structure in which the one for the X gradient magnetic field coil is rotated 90 times around two axes. Good.

以上の様に、x、y、X勾配磁場コイルそれぞれに固有
な形状の電気良導体を組合せることにより、任意方向を
位相エンフードに使用する場合の画像の位相方向のゴー
ストを無くすことが可能である。
As described above, by combining good electrical conductors with unique shapes for the x, y, and X gradient magnetic field coils, it is possible to eliminate ghosts in the phase direction of images when using arbitrary directions for phase enrichment .

又、各リング状の電気良導体を切断し機械的に開放、短
絡可能な構造とすることにより磁極形状に応じて最適な
リング配置を容易に決定することができ、静磁場発生装
置製作上のバラツキ等による磁極形状の変化による影響
を吸収することが可能である。開放、短絡可能な構造物
例えばスイッチ機構(10)は第7図の様にりング(1
1)に直接取り付けられても良いし第8図の様;こリー
ド(12)によって静磁場発生装置の外側に設けられて
も良い。
In addition, by cutting each ring-shaped electrical conductor to create a structure that can be mechanically opened and shorted, the optimal ring arrangement can be easily determined according to the magnetic pole shape, and variations in the manufacturing of the static magnetic field generator can be easily determined. It is possible to absorb the influence of changes in the magnetic pole shape due to etc. A structure that can be opened and shorted, such as a switch mechanism (10), is a ring (1) as shown in Figure 7.
1), or it may be provided outside the static magnetic field generator using a lead (12) as shown in FIG.

(ト) 発明の効果 本発明は以上の説明の如く、閉じた磁気回路を形成する
磁気ヨークと、該磁気ヨークの相対向する上・下面に固
定される一対の永久磁石と、これら磁石の各対向面に吸
着され、該磁石が形成する静磁場を均一に補正する一対
の磁極と、該磁極の各対向面側に取付位置せしめられ、
前記静磁場内に勾配磁場を形成する勾配磁場コイルと、
該勾配磁場コイル七同心的な相似形状に形成きれ前記磁
極の表面に互いに分離状態で配flれる複数個の電気良
導体とを具備するものであるから、磁極に発生する渦電
流を低減し位相エンコード量の直線性を改善し、画像の
位相方向のゴーストが改善されるという効果がある。
(G) Effects of the Invention As described above, the present invention comprises a magnetic yoke forming a closed magnetic circuit, a pair of permanent magnets fixed to the opposing upper and lower surfaces of the magnetic yoke, and each of these magnets. a pair of magnetic poles that are attracted to opposing surfaces and uniformly correct the static magnetic field formed by the magnets; and a pair of magnetic poles that are attached to the opposing surfaces of the magnetic poles,
a gradient magnetic field coil that forms a gradient magnetic field within the static magnetic field;
Since the gradient magnetic field coils are formed in seven concentric similar shapes and are equipped with a plurality of electrically conductive conductors separated from each other on the surface of the magnetic poles, eddy currents generated in the magnetic poles can be reduced and phase encoded. This has the effect of improving the linearity of the quantity and reducing ghosting in the phase direction of the image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8F5!:Jは本発明に係り第1図(a)は
静磁場発生装置の2勾配磁場コイルの一実施例を示す概
観斜視V!:に(b)は同じく(a)の縦断面図、第2
図は静磁場発生装置の要部縦断面図、第3図(a)は勾
配磁場コイルに流す電流の時間特性図;(b)は(a)
の電流によって生じる渦電流分布を示す図、第4図(a
)はX勾配磁場コイルの一実施例を示す概観斜視図;(
b)は静磁場中のX勾配磁場コイルの配置を示す図、第
5図(a)・(b)は第4図(a)・(b)に相当する
X勾配磁場コイルの他の実施例を示す図、第6図は第1
図(a)に相当する電気良導体の池の実施例を示す図、
第7図は電気良導体のスイッチ機構の一実施例を示す概
観斜視図、第8図は第7110に相当するスイッチ機構
の他の実施例を示す図、第9図は従来の永久磁石型静磁
場発生装置の縦断面図、第10図は2DFT法の原理説
明図である。 (107)・・・磁気ヨーク、(108)(109)・
・・永久磁石、(105)(106)・・・磁極、(1
03)(104)、(5)、(61)〜(68)・・・
勾配磁場コイル、(1)(2)、(11)、 (21)
〜(30)。 (71)〜(92)・・・電気良導体。
Figures 1-8F5! :J is related to the present invention, and FIG. 1(a) is a perspective view showing an embodiment of a two-gradient magnetic field coil of a static magnetic field generator. : (b) is the same vertical cross-sectional view of (a), the second
The figure is a longitudinal cross-sectional view of the main part of the static magnetic field generator, Figure 3 (a) is a time characteristic diagram of the current flowing through the gradient magnetic field coil; (b) is (a)
Figure 4 (a) is a diagram showing the eddy current distribution caused by the current of
) is an overview perspective view showing one embodiment of the X-gradient magnetic field coil; (
b) is a diagram showing the arrangement of the X-gradient magnetic field coil in a static magnetic field, and FIGS. 5(a) and (b) are other embodiments of the X-gradient magnetic field coil corresponding to FIGS. 4(a) and (b). Figure 6 shows the first
A diagram showing an example of a pond of good electrical conductor corresponding to Figure (a),
FIG. 7 is a perspective view showing an example of a switch mechanism with good electrical conductivity, FIG. 8 is a view showing another example of a switch mechanism corresponding to No. 7110, and FIG. 9 is a conventional permanent magnet type static magnetic field FIG. 10, a longitudinal cross-sectional view of the generator, is a diagram explaining the principle of the 2DFT method. (107) ... Magnetic yoke, (108) (109)
...Permanent magnet, (105) (106)...Magnetic pole, (1
03) (104), (5), (61) to (68)...
Gradient magnetic field coil, (1) (2), (11), (21)
~(30). (71) to (92)... Good electrical conductor.

Claims (1)

【特許請求の範囲】[Claims] (1)閉じた磁気回路を形成する磁気ヨークと、該磁気
ヨークの相対向する上・下面に固定される一対の永久磁
石と、これら磁石の各対向面に吸着され、該磁石が形成
する静磁場を均一に補正する一対の磁極と、該磁極の各
対向面側に取付位置せしめられ、前記静磁場内に勾配磁
場を形成する勾配磁場コイルと、該勾配磁場コイルと同
心的な相似形状に形成され、前記磁極の表面に互いに分
離状態で配置される複数個の電気良導体とを具備する静
磁場発生装置。
(1) A magnetic yoke that forms a closed magnetic circuit, a pair of permanent magnets fixed to opposing upper and lower surfaces of the magnetic yoke, and a static magnet that is attracted to each opposing surface of these magnets and formed by the magnets. a pair of magnetic poles for uniformly correcting a magnetic field; a gradient magnetic field coil mounted on each opposing surface of the magnetic poles to form a gradient magnetic field within the static magnetic field; and a gradient magnetic field coil having a similar shape concentric with the gradient magnetic field coil. a plurality of electrically conductive conductors formed on the surface of the magnetic pole and arranged in a separated state from each other.
JP63034164A 1988-02-17 1988-02-17 Generator for magnetostatic field Pending JPH01208815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63034164A JPH01208815A (en) 1988-02-17 1988-02-17 Generator for magnetostatic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63034164A JPH01208815A (en) 1988-02-17 1988-02-17 Generator for magnetostatic field

Publications (1)

Publication Number Publication Date
JPH01208815A true JPH01208815A (en) 1989-08-22

Family

ID=12406569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63034164A Pending JPH01208815A (en) 1988-02-17 1988-02-17 Generator for magnetostatic field

Country Status (1)

Country Link
JP (1) JPH01208815A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414399A (en) * 1991-12-19 1995-05-09 Applied Superconetics, Inc. Open access superconducting MRI magnet having an apparatus for reducing magnetic hysteresis in superconducting MRI systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414399A (en) * 1991-12-19 1995-05-09 Applied Superconetics, Inc. Open access superconducting MRI magnet having an apparatus for reducing magnetic hysteresis in superconducting MRI systems

Similar Documents

Publication Publication Date Title
US3622869A (en) Homogenizing coils for nmr apparatus
EP0231879B1 (en) Self-shielded gradient coils for nuclear magnetic resonance imaging
US5592089A (en) Eddy current control in NMR imaging system
JP4481395B2 (en) Open magnetic resonance imaging system
JPH11244259A (en) Magnetic resonance tomographic image photographing device
US4980641A (en) Method and apparatus of reducing magnetic hysteresis in MRI systems
FI88079C (en) TV GRADIENT SPEED, SPECIFICLY SPOOL FOR BRAKE I NUCLEAR MAGNETIC RESONANSAVBILDNINGSSYSTEM
US5414399A (en) Open access superconducting MRI magnet having an apparatus for reducing magnetic hysteresis in superconducting MRI systems
US4728895A (en) System of coils for producing additional fields for obtaining polarization fields with constant gradients in a magnet having polarization pole pieces for image production by nuclear magnetic resonance
WO1993004493A1 (en) Screened electromagnetic coil of restricted length having optimized field and method
CN108303663B (en) Double-air-gap open type magnetic resonance imaging magnet
US5049848A (en) High field strength magnet, preferably having remote shimming of field
GB2201793A (en) Compact transverse magnetic gradient coils and dimensioning method therefor
JPH01208815A (en) Generator for magnetostatic field
EP1150133A2 (en) MRI RF coil
JPH0614900A (en) Production of gradient magnetic field coil and coil unit for gradient magnetic field and gradient magnetic field coil
JP3377822B2 (en) Magnetic resonance imaging equipment
JP2811328B2 (en) Nuclear magnetic resonance imaging equipment
JPS6325907A (en) Magnetic field generating apparatus
US9939502B2 (en) Radio frequency resonator, radio frequency coil and magnetic resonance imaging apparatus
JPH05144628A (en) Magnetic field generator
JPH02119844A (en) Magnetic field generating device for nuclear magnetic resonance tomograph
JPH03258243A (en) Magnetic resonance imaging apparatus
JPH0280033A (en) Permanent magnet type magnetic resonance imaging device
JPH02219204A (en) Magnetic field generating apparatus