JPH01208314A - Mordenite-type zeolite having particular crystal form and production thereof - Google Patents

Mordenite-type zeolite having particular crystal form and production thereof

Info

Publication number
JPH01208314A
JPH01208314A JP26277287A JP26277287A JPH01208314A JP H01208314 A JPH01208314 A JP H01208314A JP 26277287 A JP26277287 A JP 26277287A JP 26277287 A JP26277287 A JP 26277287A JP H01208314 A JPH01208314 A JP H01208314A
Authority
JP
Japan
Prior art keywords
aqueous solution
alkali metal
homogeneous phase
phase compound
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26277287A
Other languages
Japanese (ja)
Other versions
JP2555643B2 (en
Inventor
Senji Kasahara
泉司 笠原
Hiroaki Hayashi
博明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP62262772A priority Critical patent/JP2555643B2/en
Publication of JPH01208314A publication Critical patent/JPH01208314A/en
Application granted granted Critical
Publication of JP2555643B2 publication Critical patent/JP2555643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • C01B33/28Base exchange silicates, e.g. zeolites
    • C01B33/2807Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures
    • C01B33/2861Zeolitic silicoaluminates with a tridimensional crystalline structure possessing molecular sieve properties; Isomorphous compounds wherein a part of the aluminium ore of the silicon present may be replaced by other elements such as gallium, germanium, phosphorus; Preparation of zeolitic molecular sieves from molecular sieves of another type or from preformed reacting mixtures of mordenite type, e.g. ptilolite or dachiardite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To obtain the above rod-shaped zeolite having spherically grown parts at both ends and useful as a catalyst, etc., by reacting an aqueous solution of an alkali metal silicate with an Al-containing aqueous solution under specific condition, contacting the obtained compound with NaBr or Na3BO3 and crystallizing in an aqueous solution of an alkali metal hydroxide. CONSTITUTION:An aqueous solution of an alkali metal silicate (e.g., Na2SiO3) is made to continuously react with an Al-containing aqueous solution [e.g., Al2(SO4)3 solution] at pH 5-9 and a definite ratio selected according to the SiO2/Al2O3 molar ratio of the objective zeolite. The produced slurry is retained in a reaction vessel preferably for >=3min and then separated to obtain a homogeneous phase compound of a granular amorphous aluminosilicate having an Al2O3 content of 3-14wt.% (in terms of anhydrous state). The obtained compound is mixed with an aqueous solution of NaBr or Na3BO3 at a molar ratio of 0.1-20 based on the Al2O3 in the aluminosilicate compound. After homogenizing the mixture, it is crystallized in an aqueous solution of an alkali metal hydroxide having a concentration of 0.5-3.0wt.% e.g., at 130-250 deg.C and the obtained crystal is separated and dried.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特異な結晶形態を有するゼオライト、及び、
その製造方法に間する。ゼオライトを触媒或いは吸着剤
等として使用する場合に、その性能は、その組成、結晶
形状、結晶の大きさ等により影響される。そこで、本発
明は、触媒、吸着剤等として有効に使用できる新規な結
晶形態を有するモルデナイト型ゼオライト及びその経済
的な製造方法を提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a zeolite having a unique crystal morphology, and
The manufacturing method is explained below. When zeolite is used as a catalyst or adsorbent, its performance is affected by its composition, crystal shape, crystal size, etc. Therefore, the present invention provides a mordenite-type zeolite having a novel crystalline form that can be effectively used as a catalyst, an adsorbent, etc., and an economical method for producing the same.

[従来の技術] 触媒、吸着剤等に用いられているモルデナイトは、通常
、0.5〜2μの板状或いは幅1μ以下の角柱状の結晶
であり、その結晶同志が密着し2次粒子を形成している
。しかしながら、その結晶形状を制御したモルデナイト
も合成されている。
[Prior Art] Mordenite used in catalysts, adsorbents, etc. is usually a plate-like crystal of 0.5 to 2 μm or a prismatic crystal with a width of 1 μm or less, and the crystals stick together and form secondary particles. is forming. However, mordenite with controlled crystal shape has also been synthesized.

特開昭62−52121号公報には、アミノアルコール
を反応混合物中に存在させる事により、30〜50μの
大結晶モルデナイトを!!遺する方法が開示されている
。また、この方法は、高価な有機物を使用するので非工
業的である。
JP-A No. 62-52121 discloses that large crystal mordenite of 30 to 50 μm can be obtained by the presence of an amino alcohol in the reaction mixture! ! The method of leaving is disclosed. Furthermore, this method is non-industrial because it uses expensive organic materials.

また、その反応混合物中に無機鉱化剤を添加して合成す
る方法も開示されている。
Furthermore, a method for synthesis by adding an inorganic mineralizing agent to the reaction mixture is also disclosed.

特開昭46−4369号公報に開示されている方法は、
160℃以下の温度で高品位の結晶を得る事を目的とし
、最高解離段階に対し18℃で測定して10以上のpK
値を有する多塩基酸を反応混合物中に存在させるもので
ある。そして、その多塩基酸を、Na2Oで表して、反
応混合物中にNa2O/A又203のモル比(m) m=8.3−0.06 (t−100)±2.3くtは
160℃以下の温度) の量添加する方法である。しかしながら、この発明の実
施例では、オルトリン酸ナトリウムのみが使用されてい
る。
The method disclosed in Japanese Patent Application Laid-Open No. 46-4369 is as follows:
The purpose is to obtain high-quality crystals at a temperature of 160°C or lower, and a pK of 10 or more when measured at 18°C for the highest dissociation stage.
A polybasic acid having a value is present in the reaction mixture. Then, the polybasic acid is expressed as Na2O, and the molar ratio (m) of Na2O/A or 203 in the reaction mixture is m=8.3-0.06 (t-100)±2.3 and t is 160 ℃ or below). However, in the embodiments of this invention, only sodium orthophosphate is used.

[発明が解決しようとする問題点] 本発明では、従来得られていない、吸着剤、触媒等とし
て有効に使用できる新規な結晶形態を有するモルデナイ
ト型ゼオライト及びその経済的な製造方法を提供するも
のである。
[Problems to be Solved by the Invention] The present invention provides a mordenite-type zeolite that has a novel crystalline form that can be effectively used as an adsorbent, a catalyst, etc., which has not been previously available, and an economical method for producing the same. It is.

[問題点を解決するための手段] 本発明の新規物質は、両端が球状に成長した棒状の結晶
形態を有するモルデナイト型ゼオライトである。
[Means for Solving the Problems] The novel substance of the present invention is a mordenite-type zeolite having a rod-like crystal morphology with both ends grown into spherical shapes.

以下、この新規物質の製造方法について説明する。The method for producing this new substance will be explained below.

アルカリ金属珪酸塩水溶液と含アルミニウム水溶液とを
一定比率で同時に且つ連続的に反応させて得た粒状無定
型アルミノ珪酸塩均一相化合物に、臭化ナトリウム或い
はホウ酸ナトリウムを接触させ、水酸化アルカリ金属水
溶液中で結晶化させる事により製造する。
A granular amorphous aluminosilicate homogeneous phase compound obtained by simultaneously and continuously reacting an alkali metal silicate aqueous solution and an aluminum-containing aqueous solution at a fixed ratio is brought into contact with sodium bromide or sodium borate to form an alkali metal hydroxide. Manufactured by crystallization in an aqueous solution.

そして、アルカリ金属珪酸塩水溶液としては珪酸リチウ
ム、珪酸ナトリウム、珪酸カリウム等の水溶液が、また
含アルミニウム水溶液としては硫酸アルミニウム、硝酸
アルミニウム、塩化アルミニウム、アルミン酸ナトリウ
ム、アルミン酸カリウム等が好適に使用できる。また、
必要に応じてこれらに苛性アルカリ或いは鉱酸を添加し
、アルカリまたは酸の量を調整して用いても良い、前記
両水溶液は市販のアルカリ金属珪酸塩水溶液及びアルミ
ニウム鉱酸塩水溶液またはアルミン酸アルカリ水溶液を
用いても良いし、珪砂、含水固体珪酸等のシリカ源を苛
性アルカリで、また水酸化アルミニウム、活性アルミナ
等のアルミニウム源を苛性アルカリまたは鉱酸で溶解し
てそれぞれの水溶液を調製して用いる事もできる。
As the aqueous alkali metal silicate solution, aqueous solutions of lithium silicate, sodium silicate, potassium silicate, etc. can be suitably used, and as the aluminum-containing aqueous solution, aluminum sulfate, aluminum nitrate, aluminum chloride, sodium aluminate, potassium aluminate, etc. can be suitably used. . Also,
If necessary, a caustic alkali or a mineral acid may be added to these aqueous solutions to adjust the amount of alkali or acid. Both aqueous solutions may be commercially available aqueous alkali metal silicate solutions, aqueous aluminum mineral salt solutions, or alkali aluminate solutions. Aqueous solutions may be used, or aqueous solutions may be prepared by dissolving silica sources such as silica sand and hydrated solid silicic acid in caustic alkali, and dissolving aluminum sources such as aluminum hydroxide and activated alumina in caustic alkali or mineral acids. It can also be used.

両水溶液の濃度は特に限定されるものではなく、反応液
がスラリー状となれば良いが、スラリー濃度が1すぎる
と非経済的となる。
The concentrations of both aqueous solutions are not particularly limited, as long as the reaction solution becomes a slurry, but if the slurry concentration is too high, it becomes uneconomical.

この方法での均一相化合物を調製する為の最も好ましい
実施形態は、攪拌機を備えたオーバーフロータイプの反
応槽に、攪拌下で両水溶液を同時に且つ連続的に供給し
て反応させる方法である。
The most preferred embodiment for preparing a homogeneous phase compound using this method is a method in which both aqueous solutions are simultaneously and continuously fed into an overflow type reaction tank equipped with a stirrer and reacted under stirring.

この方法によると、生成する均一相化合物はほぼ球状で
あり、粒子径の大部分が1〜500μの範囲に分布し1
μ以下の微粒子は極く微量となる。
According to this method, the homogeneous phase compound produced is approximately spherical, and most of the particle diameters are distributed in the range of 1 to 500μ.
The amount of fine particles smaller than μ is extremely small.

そして両水溶液の供給割合は、目的とするモルデナイト
型ゼオライトのS i O2/A120aモル比によっ
て設定され任意に決める事ができる。
The supply ratio of both aqueous solutions is set depending on the S i O2/A120a molar ratio of the target mordenite-type zeolite and can be arbitrarily determined.

その際、反応液は生成した粒状均一相化合物を懸濁して
スラリー状となるが、該スラリーのpHは両水溶液に加
えるアルカリ或いは酸の量によって調節され、通常pH
が5〜9の範囲更に好ましくはpHが6〜8の範囲に調
節する。pHが低くなるとアルミニウムが母液に溶解し
、また、pHが高くなると珪素が母液に溶解し、何れの
場合も非経済的となる。また、該スラリーが反応種内に
滞在する時間は好ましくは3分以上である。滞在時間は
、 (反応容器の内容積)/(単位時間当りの両水溶液の供
給量の和) で表される。滞在時間が3分よりも短い場合には1μ以
下の微粒子の生成割合が増加し、生成した均一相化合物
の濾過、分離工程に負担がかかり好ましくない傾向とな
る。一方、滞在時間が3分以上になると生成物の大部分
が球状となり、微粒子の存在は極く僅かとなる。更に滞
在時間が長くなるにつれて粒子径が大きくなると同時に
球状粒子の硬度が増してくる。従って、滞在時間を制御
することにより生成する球状粒子の大きさ及び硬度を変
える事ができるので、均一相化合物自身の反応性を目的
に応じて調節する事が可能となる。
At that time, the reaction solution suspends the generated particulate homogeneous phase compound and becomes a slurry, but the pH of the slurry is controlled by the amount of alkali or acid added to both aqueous solutions, and the pH of the slurry is usually adjusted.
The pH is adjusted to a range of 5 to 9, more preferably a pH of 6 to 8. When the pH becomes low, aluminum dissolves in the mother liquor, and when the pH increases, silicon dissolves in the mother liquor, both of which are uneconomical. Further, the time that the slurry stays in the reaction species is preferably 3 minutes or more. The residence time is expressed as (inner volume of reaction vessel)/(sum of supply amounts of both aqueous solutions per unit time). If the residence time is shorter than 3 minutes, the proportion of fine particles of 1 μm or less in size increases, which puts an undesirable burden on the filtration and separation process of the produced homogeneous phase compound. On the other hand, when the residence time is 3 minutes or more, most of the product becomes spherical, and the presence of fine particles becomes extremely small. Further, as the residence time becomes longer, the particle diameter becomes larger and at the same time the hardness of the spherical particles increases. Therefore, by controlling the residence time, the size and hardness of the generated spherical particles can be changed, so it is possible to adjust the reactivity of the homogeneous phase compound itself depending on the purpose.

均一相化合物調製時の反応温度は特に限定されるもので
はなく、通常使用される室温〜100℃であれば良い。
The reaction temperature during the preparation of the homogeneous phase compound is not particularly limited, and may be from room temperature to 100°C, which is commonly used.

室温より低い場合は冷却する事が必要となり、また、1
00℃より高い場合は水を蒸発させない為に耐圧容器が
必要となり好ましくない、そして、低温、高温何れの場
合もほぼ球状となると共に、生成した均一相化合物の反
応性にも大きな差は認められない。
If the temperature is lower than room temperature, cooling is required, and 1
If the temperature is higher than 00℃, a pressure-resistant container is required to prevent the water from evaporating, which is undesirable.Also, in both low and high temperatures, the homogeneous phase compound becomes almost spherical, and there is no significant difference in the reactivity of the homogeneous phase compound formed. do not have.

本発明に於て特徴的な事は、両水溶液を一定比率で同時
に且つ連続的に反応させることにより、常に組成一定且
つ均一な状態で析出するほぼ球状の均一相化合物を使用
するので、その均一相化合物に不均一部分がなく、結晶
化に当り組成の不均一性に起因する不純物の共生等を完
全に防止できる事である。
The characteristic feature of the present invention is that by reacting both aqueous solutions simultaneously and continuously at a fixed ratio, a nearly spherical homogeneous phase compound is used, which always precipitates in a uniform state with a constant composition. There is no non-uniformity in the phase compound, and the coexistence of impurities caused by non-uniformity of composition during crystallization can be completely prevented.

一方、通常の方法、例えば一方の水溶液を他方の水溶液
に添加する方法では、析出物に不均一部分が生じる。ま
た、析出物の粒径が非常に広い分布をもつ為に固液分離
及び洗浄が非常に困難となる。さらに、析出物の吸水率
が高いので、結晶化させる為の反応混合物をスラリー化
する為にはスラリー濃度を非常に低くする必要があり非
経済的となる。
On the other hand, in a conventional method, for example, a method in which one aqueous solution is added to another aqueous solution, non-uniform portions occur in the precipitate. Furthermore, since the particle size of the precipitate has a very wide distribution, solid-liquid separation and cleaning become extremely difficult. Furthermore, since the precipitate has a high water absorption rate, slurrying the reaction mixture for crystallization requires a very low slurry concentration, which is uneconomical.

しかしながら、本発明の方法により得られる均一相化合
物は適宜な大きさの球状物で得られるので、固液分離及
び洗浄が極めて容易である。更に脱水生が良い為、これ
を湿潤状態でそのまま使用しても結晶化させる為の均一
相化合物スラリーを調製する際にスラリー濃度を高くす
る事が可能となる。この点も本発明の特徴の一つである
。洗浄が完了した均一相化合物は湿潤状態或いは乾燥状
態で使用される。
However, since the homogeneous phase compound obtained by the method of the present invention is obtained in the form of spheres of appropriate size, solid-liquid separation and washing are extremely easy. Furthermore, since it is well dehydrated, even if it is used as it is in a wet state, it is possible to increase the slurry concentration when preparing a homogeneous phase compound slurry for crystallization. This point is also one of the features of the present invention. The homogeneous phase compound after washing can be used in a wet or dry state.

前記した方法により種々の組成の均一相化合物を調製す
る事ができるが、本発明を実施する為には、均一相化合
物は無水基準でアルミニウム分をA1203として3〜
14 w t%(無水基準)含有する事が必須である*
 A !;1203含有率が3wt%よりも低い均一相
化合物、及び、Af20a含有率が14wt%よりも高
い均一相化合物を用いて結晶化を行うと不純物が生成し
てくる。Al203含有率が3〜14wt%(無水基準
)の均一相化合物は、両原料水溶液のSiO2とAl2
O3の濃度を考慮して両水溶液の流量比を調節する事に
よって得られる。例えば、含アルミニウム水溶液の八又
203濃度やその流量比を増す事によってAn203含
有率の高い均一相化合物が得られる0本発明に於て、モ
ルデナイト型ゼオライトの5i02/ A J2203
モル比を高くするには上記の範囲内で低いAlzOa含
有率の均一相化合物を使用する事が望ましく、また S
 i O2/Al2O3モル比の低いモルデナイト型ゼ
オライトを得るには上記の範囲内で高いAl2O3含有
率の均一相化合物を使用する事が望ましい。前記したよ
うに、本発明に於ては均一相化合物中のAl203含有
率を上記の範囲内で変える事により生成するモルデナイ
ト型ゼオライトのS i O?/Al2O3モル比を自
由に調節する事ができる。
Homogeneous phase compounds having various compositions can be prepared by the method described above, but in order to carry out the present invention, the homogeneous phase compound has an aluminum content of A1203 on an anhydrous basis.
It is essential to contain 14 wt% (anhydrous standard)*
A! ; When crystallization is performed using a homogeneous phase compound in which the 1203 content is lower than 3 wt% and the homogeneous phase compound in which the Af20a content is higher than 14 wt%, impurities are generated. A homogeneous phase compound with an Al203 content of 3 to 14 wt% (anhydrous basis) is composed of SiO2 and Al2 of both raw material aqueous solutions.
This can be obtained by adjusting the flow rate ratio of both aqueous solutions in consideration of the O3 concentration. For example, by increasing the Yamata 203 concentration of the aluminum-containing aqueous solution and its flow rate ratio, a homogeneous phase compound with a high An203 content can be obtained.
In order to increase the molar ratio, it is desirable to use a homogeneous phase compound with a low AlzOa content within the above range, and S
In order to obtain a mordenite type zeolite with a low iO2/Al2O3 molar ratio, it is desirable to use a homogeneous phase compound with a high Al2O3 content within the above range. As mentioned above, in the present invention, the SiO? /Al2O3 molar ratio can be adjusted freely.

このようにして得られた均一相化合物は、微細な細孔を
多く有するポーラスな無定形アルミノ珪酸塩であるので
、その細孔内に大量の無機或いは有機の中性塩を選択的
に吸着させる事ができる。
The homogeneous phase compound obtained in this way is a porous amorphous aluminosilicate with many fine pores, so a large amount of inorganic or organic neutral salts can be selectively adsorbed into the pores. I can do things.

従って、これらの無機或いは有機の中性塩がその結晶化
生成物の構造の変化、結晶形態の変化等に非常に有効に
作用する。
Therefore, these inorganic or organic neutral salts act very effectively on changing the structure and crystal form of the crystallized product.

得られた均一相化合物は臭化ナトリウム又はホウ酸ナト
リウムと接触される。ホウ酸ナトリウムとしては、四ホ
ウ酸ナトリウム、メタホウ酸ナトリウム、五ホウ酸ナト
リウム等が使用できる。塩化ナトリウム、硫酸ナトリウ
ム、トリポリリン酸ナトリウム、硝酸ナトリウムを用い
た場合は、板状のモルデナイトが得られる。また、接触
させる方法としては特に限定されないが、通常臭化ナト
リウム又はホウ酸ナトリウムの添加された水溶液中に浸
漬させる。この臭化ナトリウム或いはホウ酸ナトリウム
の添加量は特に限定されないが、均一相化合物のAl2
O3に対するモル比で表して0゜1〜20である事が必
須である。添加量が0.1より少ない場合には板状のモ
ルデナイトが得られる。また、20を越えても非経済的
であり同等改善されない。
The resulting homogeneous phase compound is contacted with sodium bromide or sodium borate. As the sodium borate, sodium tetraborate, sodium metaborate, sodium pentaborate, etc. can be used. When sodium chloride, sodium sulfate, sodium tripolyphosphate, and sodium nitrate are used, plate-shaped mordenite is obtained. The contacting method is not particularly limited, but it is usually immersed in an aqueous solution containing sodium bromide or sodium borate. Although the amount of sodium bromide or sodium borate added is not particularly limited,
It is essential that the molar ratio to O3 is 0.1 to 20. When the amount added is less than 0.1, plate-like mordenite is obtained. Moreover, even if it exceeds 20, it is uneconomical and the same improvement cannot be achieved.

次に、結晶化は臭化ナトリウム或いはホウ酸ナトリウム
と接触された均一相化合物を水酸化アルカリ金属水溶液
中で加熱する事によって行う。水酸化アルカリ金属水溶
液としては水酸化ナトリウム、水酸化カリウム、水酸化
リチウム等の水溶液が好適である。また、これら2種以
上の混合水溶液であっても良い。
Crystallization is then carried out by heating the homogeneous phase compound in contact with sodium bromide or sodium borate in an aqueous alkali metal hydroxide solution. As the aqueous alkali metal hydroxide solution, an aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide, etc. is suitable. Moreover, a mixed aqueous solution of two or more of these may be used.

水酸化アルカリ金属水溶液の濃度は、結晶化液中のMO
H(Mはアルカリ金属)濃度として0゜3〜5wt%で
ある事が必須である0M0Hi1度が5wt%を越える
と不純物が共生し、また0゜3wt%より低くなると結
晶化し難くなる。また水酸化アルカリ金属水溶液の量は
特に限定されるものではなく、結晶化の為の反応混合物
がスラリー状となれば良いが、水酸化アルカリ金属水溶
液の量が多すぎるとスラリー濃度が低下し非経済的とな
る。
The concentration of the alkali metal hydroxide aqueous solution is the MO in the crystallization solution.
It is essential that the H (M is an alkali metal) concentration be 0.3 to 5 wt%. If 0M0Hi1 degree exceeds 5 wt%, impurities will coexist, and if it is lower than 0.3 wt%, it will be difficult to crystallize. The amount of the alkali metal hydroxide aqueous solution is not particularly limited, and it is sufficient that the reaction mixture for crystallization becomes a slurry, but if the amount of the alkali metal hydroxide aqueous solution is too large, the slurry concentration will decrease and the It becomes economical.

結晶化は、ステンレス等の密閉容器を用い、通常ゼオラ
イト合成に使用される130〜250℃の温度で行う。
Crystallization is carried out using a closed container made of stainless steel or the like at a temperature of 130 to 250°C, which is usually used for zeolite synthesis.

130℃より低い場合は結晶化時間が非常に長くなり、
250℃を越えると不純物が共生してくる。結晶化に要
する時間はその温度にもよるが、通常1〜200時間で
ある。
If the temperature is lower than 130℃, the crystallization time will be very long.
When the temperature exceeds 250°C, impurities coexist. The time required for crystallization depends on the temperature, but is usually 1 to 200 hours.

結晶化が終了した後、生成した結晶は固液分離、洗浄、
次いで乾燥により回収される。
After crystallization is completed, the generated crystals undergo solid-liquid separation, washing,
It is then recovered by drying.

以上述べたようにして、両端が球状に成長した棒状の結
晶形態を有するモルデナイト型ゼオライトが得られる。
In the manner described above, a mordenite-type zeolite having a rod-like crystal form with both ends grown into spherical shapes can be obtained.

[作用及び発明の効果コ ゼオライトを触媒、吸着剤等として使用する場合には、
特に結晶形状により、その触媒性能、熱安定性、寿命等
は大きく影響される。
[Action and Effect of the Invention When cozeolite is used as a catalyst, adsorbent, etc.
In particular, the crystal shape greatly affects the catalyst performance, thermal stability, lifespan, etc.

本発明では、アルカリ金属珪酸塩水溶液と含アルミニウ
ム水溶液とを同時に且つ連続的に反応させて得た粒状無
定型アルミノ珪酸塩均一相化合物に、臭化ナトリウム又
はホウ酸ナトリウムを接触させ、水酸化アルカリ金属水
溶液中で結晶化させる事により、触媒、吸着剤等として
有効に使用できる特異な結晶形態を有するモルデナイト
型ゼオライトを経済的に得ることができるようになった
In the present invention, a granular amorphous aluminosilicate homogeneous phase compound obtained by simultaneously and continuously reacting an aqueous alkali metal silicate solution and an aqueous aluminum-containing solution is brought into contact with sodium bromide or sodium borate, and an alkali hydroxide By crystallizing it in an aqueous metal solution, it has become possible to economically obtain mordenite-type zeolite, which has a unique crystalline form that can be effectively used as a catalyst, adsorbent, etc.

以上説明したように、本発明によれば、特異な結晶形態
を有するモルデナイト型ゼオライトを経済的に得る事が
でき、触媒、吸着剤等として有効に使用することができ
る。
As explained above, according to the present invention, mordenite-type zeolite having a unique crystal form can be obtained economically and can be effectively used as a catalyst, an adsorbent, etc.

通常、モルデナイト型ゼオライトは角柱状或いは平板上
の結晶が密着し凝集することにより2次凝集粒子の形で
得られる。この為に触媒、吸着剤等として使用する場合
、結晶表面にある細孔人口の大部分が使用できない状態
となる。しかしながら、本発明で得られるモルデナイト
型ゼオライトは、両端が球状にふくらんでいるので結晶
同志が密着する事なく凝集状態を形成し、その結晶の全
表面が触媒、吸着剤等として有効に使用できる。
Usually, mordenite-type zeolite is obtained in the form of secondary agglomerated particles by prismatic or flat crystals sticking together and agglomerating. For this reason, when used as a catalyst, adsorbent, etc., most of the pore population on the crystal surface becomes unusable. However, since the mordenite-type zeolite obtained in the present invention has spherical bulges at both ends, the crystals do not stick together and form an aggregated state, and the entire surface of the crystals can be effectively used as a catalyst, adsorbent, etc.

また、本発明で得られた特異な結晶形態を有するモルデ
ナイトは、更に他のイオンでイオン交換し細孔径及び吸
着特性を制御し、種々の吸着分離剤として使用すること
ができる。また、H型とする事によって触媒化し、種々
の反応の個体酸触媒として用いる事ができる。更に、P
t等の金属イオンを担持させる事により、各種触媒とし
て有効に使用される。
Further, the mordenite having a unique crystal form obtained by the present invention can be further ion-exchanged with other ions to control the pore size and adsorption characteristics, and can be used as various adsorption/separation agents. In addition, it can be catalyzed by converting it into H type and used as a solid acid catalyst for various reactions. Furthermore, P
By supporting metal ions such as t, it can be effectively used as various catalysts.

[実施例] 以下、実施例によって、本発明を更に詳しく説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1゜ パドル型攪拌機付のオーバーフロータイプの反応槽(内
容積5λ)に、硫酸アルミニウム水溶液(Ai20a=
5.97w/v%、H2S04=24゜5w/v%)と
珪酸ナトリウム水溶液(S i 02=15.Ow/v
%、Na20=4.78w/v%)をそれぞれ21/H
r及び81/Hrの一定比率の供給速度で同時に且つ連
続的に供給し、60℃、滞在時間30分で反応させた。
Example 1゜An aqueous aluminum sulfate solution (Ai20a=
5.97w/v%, H2S04=24°5w/v%) and sodium silicate aqueous solution (S i 02=15.Ow/v
%, Na20=4.78w/v%) respectively at 21/H
The reactants were fed simultaneously and continuously at a constant feed rate of r and 81/Hr, and the reaction was carried out at 60° C. for a residence time of 30 minutes.

反応液のpHは7.0であった。反応槽からオーバーフ
ローした生成物を遠心分離機で固液分離し、十分洗浄し
て均一相化合物を得た。この均一相化合物の組成は、 Na2O(無水基準)    5.23wt%A又20
3(無水基準)    8.60wt%SiO2(無水
基準)   8B、2wt%H20(有姿基準)   
53.4wt%であり、平均40μ、lO〜100μの
分布を持つ粒子であった。
The pH of the reaction solution was 7.0. The product overflowing from the reaction tank was separated into solid and liquid using a centrifuge and thoroughly washed to obtain a homogeneous phase compound. The composition of this homogeneous phase compound is: Na2O (anhydrous basis) 5.23 wt% A or 20
3 (anhydrous standard) 8.60wt%SiO2 (anhydrous standard) 8B, 2wt%H20 (as-formed standard)
It was 53.4 wt%, and the particles had an average of 40μ and a distribution of lO to 100μ.

この均一相化合物64.5gを、純水120gに臭化ナ
トリウム13.3gを添加した水溶液に、攪拌しながら
混合し均一化した。臭化ナトリウムの添加量は均一相化
合物のAl2O2に対するモル比で表して、6.1であ
った。次いで、水酸化ナトリウム2.32gを添加し反
応混合物を調製した。結晶化液の水酸化ナトリウムの濃
度は1.45wt%であった。この反応混合物を、各成
分が均一になるまで十分攪拌した後、ステンレス製の密
閉容器に入れ、175℃、自生圧力下で72時間反応さ
せた。
64.5 g of this homogeneous phase compound was mixed with an aqueous solution prepared by adding 13.3 g of sodium bromide to 120 g of pure water with stirring to make the mixture homogeneous. The amount of sodium bromide added was 6.1 expressed as a molar ratio of the homogeneous phase compound to Al2O2. Next, 2.32 g of sodium hydroxide was added to prepare a reaction mixture. The concentration of sodium hydroxide in the crystallization solution was 1.45 wt%. This reaction mixture was thoroughly stirred until each component became homogeneous, and then placed in a stainless steel sealed container and reacted at 175° C. under autogenous pressure for 72 hours.

得られた生成物スラリーを固液分離、洗浄し、110℃
で乾燥させた。
The obtained product slurry was separated into solid and liquid, washed, and heated to 110°C.
It was dried with.

この生成物のX線回折図を図1に、電子顕微鏡写真を図
2に示す、この結晶は、幅約0.3μ、長さ約2.5μ
で両端が球状に成長していた。
The X-ray diffraction pattern of this product is shown in Figure 1, and the electron micrograph is shown in Figure 2. This crystal has a width of approximately 0.3μ and a length of approximately 2.5μ.
It had grown into a spherical shape at both ends.

実施例2゜ 実施例1で用いた均一相化合物133gを、純水226
gに四ホウ酸ナトリウム10水塩32゜6gを添加した
水溶液に、攪拌しながら混合し均一化した。四ホウ酸ナ
トリウムの添加量は均一相化合物のAJ120sに対す
るモル比で表して、1゜7であった0次いで、水酸化ナ
トリウム8.3gを添加し反応混合物を調製した。結晶
化液の水酸化ナトリウムの濃度は2.66wt%であっ
た。
Example 2 133 g of the homogeneous phase compound used in Example 1 was added to 226 g of pure water.
g and 32.6 g of sodium tetraborate decahydrate were added thereto and mixed with stirring to homogenize. The amount of sodium tetraborate added, expressed as a molar ratio to AJ120s of the homogeneous phase compound, was 1.7.0 Next, 8.3 g of sodium hydroxide was added to prepare a reaction mixture. The concentration of sodium hydroxide in the crystallization solution was 2.66 wt%.

この反応混合物を、各成分が均一になるまで十分攪拌し
た後、ステンレス製の密閉容器に入れ、175℃、自生
圧力下で84時間反応させた。
This reaction mixture was thoroughly stirred until each component became uniform, and then placed in a stainless steel sealed container and allowed to react at 175°C under autogenous pressure for 84 hours.

得られた生成物スラリーを固液分離、洗浄し、110℃
で乾燥させた。
The obtained product slurry was separated into solid and liquid, washed, and heated to 110°C.
It was dried with.

この生成物は実質上図1と同じX線回折図を示した。こ
の生成物の電子顕微鏡写真を図3に示す。
This product showed an X-ray diffraction pattern substantially the same as in FIG. An electron micrograph of this product is shown in FIG.

この結晶は、幅0.2〜0.4μ、長さ3〜5μで両端
が球状に成長していた。
This crystal had a width of 0.2 to 0.4 μm, a length of 3 to 5 μm, and had grown into a spherical shape at both ends.

比較例1゜ 実施例1で用いた均一相化合物173gを、純水321
gに水酸化ナトリウム8.22gを添加した水溶液に、
攪拌しながら混合し反応混合物を1!!L、た、結晶化
液の水酸化ナトリウムの濃度は1.45wt%であった
。この反応混合物を、各成分が均一になるまで十分攪拌
した後、ステンレス製の密閉容器に入れ、175℃、自
生圧力下で72時間反応させた。
Comparative Example 1 173 g of the homogeneous phase compound used in Example 1 was added to 321 g of pure water.
To an aqueous solution in which 8.22 g of sodium hydroxide was added to g,
Mix while stirring and reduce the reaction mixture to 1! ! The concentration of sodium hydroxide in the crystallization solution was 1.45 wt%. This reaction mixture was thoroughly stirred until each component became homogeneous, and then placed in a stainless steel sealed container and reacted at 175° C. under autogenous pressure for 72 hours.

得られた生成物スラリーを固液分離、洗浄し、110℃
で乾燥させた。
The obtained product slurry was separated into solid and liquid, washed, and heated to 110°C.
It was dried with.

この生成物は実質上図1と同じX線回折図を示した。こ
の生成物の電子顕微鏡写真を図4に示す。
This product showed an X-ray diffraction pattern substantially the same as in FIG. An electron micrograph of this product is shown in FIG.

この結晶は、幅0.3〜0.5μ、長さ約1μの板状で
あった。
This crystal was plate-shaped with a width of 0.3 to 0.5 μm and a length of about 1 μm.

比較例2゜ ホワイトカーボン(日本シリカニ業製、5i02  ;
87.7wt%+ AfzOa;0.5wt%。
Comparative Example 2゜White carbon (manufactured by Nippon Shirikanigyo, 5i02;
87.7wt%+AfzOa; 0.5wt%.

H2O; 11.8wt%)73.7gを、純水358
gに臭化ナトリウム33.2gを添加した水溶液に、攪
拌しながら混合し均一化した後、アルミン酸ナトリウム
水溶液(AfzOa ; 1B、8wt%、  Na2
O; 19.2wt%*  H2O;62.0wt%)
32.4g及び水酸化ナトリウム2.82gを添加し反
応混合物を調製した。臭化ナトリウムの添加量はAfz
Oaに対するモル比で表して、5.1であった。また、
結晶化液の水酸化ナトリウムの濃度は2.79wt%で
あった。
73.7 g of H2O; 11.8 wt%), 358 g of pure water
33.2 g of sodium bromide was added to the aqueous solution of 33.2 g of sodium bromide.
O; 19.2wt%* H2O; 62.0wt%)
32.4 g and 2.82 g of sodium hydroxide were added to prepare a reaction mixture. The amount of sodium bromide added is Afz
The molar ratio to Oa was 5.1. Also,
The concentration of sodium hydroxide in the crystallization solution was 2.79 wt%.

この反応混合物を、各成分が均一になるまで十分攪拌し
た後、ステンレス製の密閉容器に入れ、175℃、自生
圧力下で900時間反応せた。
This reaction mixture was thoroughly stirred until each component became homogeneous, and then placed in a stainless steel sealed container and reacted at 175° C. under autogenous pressure for 900 hours.

得られた生成物スラリーを固液分離、洗浄し、110℃
で乾燥させた。
The obtained product slurry was separated into solid and liquid, washed, and heated to 110°C.
It was dried with.

この生成物は実質上図1と同じX線回折図を示した。こ
の生成物の電子顕微鏡写真を図5に示す。
This product showed an X-ray diffraction pattern substantially the same as in FIG. An electron micrograph of this product is shown in FIG.

この結晶は、輻0.5〜1.0μ、長さ約4μの板状で
あった。
This crystal had a plate shape with a radius of 0.5 to 1.0 μm and a length of about 4 μm.

比較例3゜ ホワイトカーボン(日本シリカニ業iJ、  5i02
 ;87.7wt%、A又203;0.5wt%。
Comparative example 3゜white carbon (Japanese Silikani Industry iJ, 5i02
; 87.7 wt%, A or 203; 0.5 wt%.

H2O; 11.8wt%)74.9gを、純水343
gに四ホウ酸ナトリウム10水塩41.7gを添加した
水溶液に、攪拌しながら混合し均一化した後、アルミン
酸ナトリウム水溶液(AJ220a;1B、8wt%、
  Na2O;19.2wt%。
H2O; 11.8wt%) 74.9g, pure water 343g
g and 41.7 g of sodium tetraborate decahydrate were added to the aqueous solution with stirring and homogenized, and then a sodium aluminate aqueous solution (AJ220a; 1B, 8 wt%,
Na2O: 19.2wt%.

H2O;62.owt%)32.9g及び水酸化ナトリ
ウム7.32gを添加し反応混合物を調製した。四ホウ
酸ナトリウムの添加量はA1203に対するモル比で表
して、1.7であった。また、結晶化液の水酸化ナトリ
ウムの濃度は3.92wt%であった。この反応混合物
を、各成分が均一になるまで十分攪拌した後、ステンレ
ス製の密閉容器に入れ、175℃、自生圧力下で900
時間反応せた。
H2O; 62. %) and 7.32 g of sodium hydroxide were added to prepare a reaction mixture. The amount of sodium tetraborate added was 1.7 expressed as a molar ratio to A1203. Further, the concentration of sodium hydroxide in the crystallization solution was 3.92 wt%. The reaction mixture was thoroughly stirred until each component became homogeneous, and then placed in a stainless steel sealed container and heated at 175°C and 900°C under autogenous pressure.
Time reacted.

得られた生成物スラリーを固液分離、洗浄し、110℃
で乾燥させた。
The obtained product slurry was separated into solid and liquid, washed, and heated to 110°C.
It was dried with.

この生成物は実質上図1と同じX線回折図を示した。こ
の生成物の電子顕微鏡写真を図6に示す。
This product showed an X-ray diffraction pattern substantially the same as in FIG. An electron micrograph of this product is shown in FIG.

この結晶は、輻0.2〜0.3μ、長さ約3μの針状で
あった。
This crystal had a needle shape with a radius of 0.2 to 0.3 μm and a length of about 3 μm.

比較例4゜ 実施例1で用いた均一相化合物160gを、純水291
gにトリポリリン酸ナトリウム38.8gを添加した水
溶液に、攪拌しながら混合し均一化した。トリポリリン
酸ナトリウムの添加量は均一相化合物のA J220 
aに対するモル比で表して、1.7であった。次いで、
水酸化ナトリウム10゜0gを添加し反応混合物を調製
した。結晶化液の水酸化ナトリウムの濃度は2.60w
t%であった。この反応混合物を、各成分が均一になる
まで十分攪拌した後、ステンレス製の密閉容器に入れ、
175℃、自生圧力下で84時間反応させた。
Comparative Example 4 160 g of the homogeneous phase compound used in Example 1 was added to 291 g of pure water.
g and 38.8 g of sodium tripolyphosphate were added thereto and mixed with stirring to homogenize. The amount of sodium tripolyphosphate added is the same as that of homogeneous phase compound A J220.
The molar ratio to a was 1.7. Then,
A reaction mixture was prepared by adding 10.0 g of sodium hydroxide. The concentration of sodium hydroxide in the crystallization solution is 2.60w
It was t%. This reaction mixture was thoroughly stirred until each component was homogeneous, and then placed in a stainless steel airtight container.
The reaction was carried out at 175°C under autogenous pressure for 84 hours.

得られた生成物スラリーを固液分離、洗浄し、110℃
で乾燥させた。
The obtained product slurry was separated into solid and liquid, washed, and heated to 110°C.
It was dried with.

この生成物は実質上図1と同じX線回折図を示した。こ
の生成物の電子顕微鏡写真を図7に示す。
This product showed an X-ray diffraction pattern substantially the same as in FIG. An electron micrograph of this product is shown in FIG.

この結晶は、幅0.2〜0.3μ、長さ0.5〜1.0
μの板状であり、結晶同志が激しく密着していた。
This crystal has a width of 0.2~0.3μ and a length of 0.5~1.0μ.
It was μ plate-like, and the crystals were tightly adhered to each other.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は実施例1で得られた生成物のX線回折図形を示す
6図2及び図3はそれぞれ実施例1及び実施例2で得ら
れた生成物の結晶構造を示す電子顕微鏡写真を示す。図
4、図5、図6及び図7はそれぞれ比較例1、比較例2
、比較例3及び比較例4で得られた生成物の結晶構造を
示す電子顕微鏡写真を示す。 特許出願人 東洋曹達工業株式会社 図4   “命゛ r’=’9−i @51v 図611j 図71μ
Figure 1 shows the X-ray diffraction pattern of the product obtained in Example 1. Figures 2 and 3 show electron micrographs showing the crystal structure of the product obtained in Example 1 and Example 2, respectively. . Figures 4, 5, 6 and 7 are Comparative Example 1 and Comparative Example 2, respectively.
, shows electron micrographs showing the crystal structure of the products obtained in Comparative Example 3 and Comparative Example 4. Patent applicant: Toyo Soda Kogyo Co., Ltd. Figure 4 “Life゛r'='9-i @51v Figure 611j Figure 71μ

Claims (2)

【特許請求の範囲】[Claims] (1)両端が球状に成長した棒状の結晶形態を有するモ
ルデナイト型ゼオライト。
(1) Mordenite-type zeolite that has a rod-like crystal morphology with spherical growth at both ends.
(2)アルカリ金属珪酸塩水溶液と含アルミニウム水溶
液とを一定比率で同時に且つ連続的に反応させて得たA
l_2O_3含有率が3〜14wt%である粒状無定型
アルミノ珪酸塩均一相化合物に、該均一相化合物のAl
_2O_3に対するモル比で表して0.1〜20の臭化
ナトリウム又はホウ酸ナトリウムを接触させ、濃度0.
5〜3.0wt%の水酸化アルカリ金属水溶液中で結晶
化させる事を特徴とする両端が球状に成長した棒状の結
晶形態を有するモルデナイト型ゼオライトを製造する方
法。
(2) A obtained by simultaneously and continuously reacting an alkali metal silicate aqueous solution and an aluminum-containing aqueous solution at a fixed ratio
A granular amorphous aluminosilicate homogeneous phase compound having an l_2O_3 content of 3 to 14 wt% is added with Al of the homogeneous phase compound.
Sodium bromide or sodium borate in a molar ratio of 0.1 to 20 relative to _2O_3 is brought into contact and the concentration is 0.
A method for producing mordenite-type zeolite having a rod-like crystal form with spherical ends grown, the method comprising crystallizing in a 5 to 3.0 wt% aqueous alkali metal hydroxide solution.
JP62262772A 1987-10-20 1987-10-20 Mordenite-type zeolite having a unique crystal morphology and method for producing the same Expired - Fee Related JP2555643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262772A JP2555643B2 (en) 1987-10-20 1987-10-20 Mordenite-type zeolite having a unique crystal morphology and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262772A JP2555643B2 (en) 1987-10-20 1987-10-20 Mordenite-type zeolite having a unique crystal morphology and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01208314A true JPH01208314A (en) 1989-08-22
JP2555643B2 JP2555643B2 (en) 1996-11-20

Family

ID=17380375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262772A Expired - Fee Related JP2555643B2 (en) 1987-10-20 1987-10-20 Mordenite-type zeolite having a unique crystal morphology and method for producing the same

Country Status (1)

Country Link
JP (1) JP2555643B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218950A (en) * 2011-04-04 2012-11-12 Nippon Chem Ind Co Ltd Mordenite-type zeolite having thin flaky crystal shape and method for producing the same
CN102963906A (en) * 2012-11-15 2013-03-13 太原理工大学 Method for preparing nanozeolite bundle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218950A (en) * 2011-04-04 2012-11-12 Nippon Chem Ind Co Ltd Mordenite-type zeolite having thin flaky crystal shape and method for producing the same
CN102963906A (en) * 2012-11-15 2013-03-13 太原理工大学 Method for preparing nanozeolite bundle

Also Published As

Publication number Publication date
JP2555643B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
US4503024A (en) Process for the preparation of synthetic zeolites, and zeolites obtained by said process
US3356450A (en) Process for the production of molecular sieve granules
US3329627A (en) Synthetic zeolites
US4891200A (en) Omega type zeolite having high thermal stability, its process of preparation and its utilization
US4891199A (en) Preparation of zeolites of type ZSM-5
JPS5973424A (en) Preparation of mordenite zeolite
JP3547791B2 (en) High heat water resistant high silica zeolite and method for producing the same
AU673474B2 (en) Amorphous aluminosilicate and process for producing the same
JPH0517169B2 (en)
JPS63162520A (en) Production of synthetic mazzite
WO2004058643A1 (en) Method of preparing zsm-5 using variable temperature without organic template
JPH01208314A (en) Mordenite-type zeolite having particular crystal form and production thereof
JP3677807B2 (en) Clinotylolite and synthesis method thereof
JPH0244771B2 (en)
JPS61155215A (en) Synthesizing method of l-type zeolite by stirring
RU2603800C1 (en) METHOD OF PRODUCING ZEOLITE NaA AS DETERGENT
JPH08183611A (en) Production of mfi type zeolite
JPH04305010A (en) Production of zeolite highly resistant to hot water
JPH09227116A (en) Production of layered silicic acid salt
RU2033966C1 (en) Method for production of granulated zeolite of faujasite type based on natural clay materials
JPS62132726A (en) Production of l-type zeolite
JP2576143B2 (en) Crystalline metallosilicate and method for producing the same
KR850000287B1 (en) Industrial process for the semi-continuous production of zeohte a
RU2146222C1 (en) Method of production of synthetic zeolite, type a
JPS61236610A (en) Production of homogeneous x-type zeolite

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees