JPH01207606A - Fourier transformation infrared spectral type film thickness meter - Google Patents

Fourier transformation infrared spectral type film thickness meter

Info

Publication number
JPH01207606A
JPH01207606A JP3347788A JP3347788A JPH01207606A JP H01207606 A JPH01207606 A JP H01207606A JP 3347788 A JP3347788 A JP 3347788A JP 3347788 A JP3347788 A JP 3347788A JP H01207606 A JPH01207606 A JP H01207606A
Authority
JP
Japan
Prior art keywords
polarized light
light
laser
cube
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3347788A
Other languages
Japanese (ja)
Inventor
Akio Izumi
晶雄 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3347788A priority Critical patent/JPH01207606A/en
Publication of JPH01207606A publication Critical patent/JPH01207606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve the measurement accuracy by converting one of two light beams which is split in the optical system of a laser interferometer from linear polarized light to circular polarized light and extracting out-of-phase interference signals from the interference light between the linear polarized light and circular polarized light. CONSTITUTION:In the luminous flux splitting optical system for laser light, a 1/8-wavelength plate 23 is provided as a means which converts the linear polarized light into the circular polarized light on the optical axis between a fixed-side plane mirror 3 and a cube half-mirrors 13. Cube samplers 24-26 as cube half-mirrors forming a means which extract the mutually out-of-phase interference signals from the interference light between the linear polarized light and circular polarized light are provided in series on the optical axis behind the cube half-mirror 13. Analyzers 27-30 are arranged on the output sides of the cube samplers 24-26 and attached laser detectors 31-34 are pro vided to the analyzers 27-30. Consequently, when one wavelength of laser light is denoted as lambda, a sample signal can be extracted optically at intervals of lambda/n (n>1) and the measurement accuracy is increased up to Xn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、フーリエ変換赤外分光光度計を用い、例え
ば半導体ウェハの上に成長させたエピタキシャル層の膜
厚を赤外光により非破壊、非接触式に測定するフーリエ
変換赤外分光方式の膜厚計に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention uses a Fourier transform infrared spectrophotometer to non-destructively measure the thickness of an epitaxial layer grown on a semiconductor wafer using infrared light. This invention relates to a film thickness meter using Fourier transform infrared spectroscopy for non-contact measurement.

〔従来の技術〕[Conventional technology]

半導体製造分野におけるウェハプロセス工程で頭記半導
体ウェハのエピタキシャル層の膜厚を測定する膜厚計と
して、測定が簡単、かつ価格も安価である他、膜厚測定
とともに赤外分光分析(例えばウェハ中の不純物の定量
、同定)も同時に行えるフーリエ変換赤外分光方式の膜
厚計が広く採用されている。
As a film thickness meter that measures the film thickness of the epitaxial layer of the above-mentioned semiconductor wafer in the wafer process process in the semiconductor manufacturing field, it is easy to measure and inexpensive. Film thickness meters using Fourier transform infrared spectroscopy are widely used because they can simultaneously quantify and identify impurities.

次に上記フーリエ変換赤外分光方式の従来における膜厚
計の構成を第4図に示す0図において、lは赤外光源、
2はコリメータ鏡、3は固定側の平面鏡、4は推進装置
5で平行移動操作される可動側の平面鏡、6は赤外ビー
ムスプリッタ、7は平面鏡、8は集光鏡、9は赤外検出
器であってこれらで赤外光学系の二光線束干渉計を構成
し、前記平面鏡7と集光鏡8との間の光路途中にini
をつけた被測定試料10(例えば頭記の半導体ウェハ)
が配置されている。
Next, the configuration of the conventional film thickness meter using the Fourier transform infrared spectroscopy method is shown in FIG. 4, where l is an infrared light source,
2 is a collimator mirror, 3 is a fixed plane mirror, 4 is a movable plane mirror that is operated in parallel by the propulsion device 5, 6 is an infrared beam splitter, 7 is a plane mirror, 8 is a condenser mirror, 9 is an infrared detection These devices constitute a two-beam interferometer with an infrared optical system, and an ini-
Sample 10 to be measured (for example, the semiconductor wafer mentioned above)
is located.

一方、前記の干渉計には赤外光学系と別に光路差計測用
のレーザ干渉計が組み込まれており、レーザ発振器11
.平面鏡12.キューブ半透明鏡13゜平面鏡14. 
 レーザ検出器15等で赤外光学系と同様な二光線東干
渉計を構成している。
On the other hand, the above-mentioned interferometer incorporates a laser interferometer for measuring the optical path difference separately from the infrared optical system, and the laser oscillator 11
.. Plane mirror 12. Cube semi-transparent mirror 13° plane mirror 14.
The laser detector 15 and the like constitute a two-beam east interferometer similar to an infrared optical system.

かかる構成で、赤外光学系の干渉計より出射した平行光
線束の赤外光16が試料10に照射され、その反射光を
集光鏡8で集めてその光強度を赤外検出器9で検知する
。この過程で推進装W5の操作により可動側の平面鏡4
を矢印方向へ平行移動して干渉計の光路差を変え、かつ
各光路差を次記のようにしてレーザ干渉計で読み取る。
With this configuration, the sample 10 is irradiated with a parallel beam of infrared light 16 emitted from the interferometer of the infrared optical system, the reflected light is collected by the condenser mirror 8, and the intensity of the light is detected by the infrared detector 9. Detect. In this process, the plane mirror 4 on the movable side is
is translated in the direction of the arrow to change the optical path difference of the interferometer, and each optical path difference is read by a laser interferometer as follows.

すなわちレーザ発振器11より出射したレーザ光17は
赤外光と平行にレーザ干渉計に入り、キューブ半透明鏡
13で二光腺束に分割されてそれぞれ平面鏡3.4で反
射した後に再びキューブ半透明鏡13で再結合して干渉
し、この干渉光がレーザ検出器15より干渉信号として
出力される。またこの干渉信号18はサンプル回路19
で2(Ii化処理された上、サンプル信号20としてA
/Dコンバータ21に入力される。さらにA/Dコンバ
ータ21はサンプル信号20のタイミングで赤外系干渉
計における赤外検出器9の出力を取り込み、A/D変換
した上でコンピュータ22に出力し、ここスペクトル解
析して試料lOに付けた薄膜の膜厚を演算により求める
。なお前記のレーザ検出器15より出力された干渉信号
18.および2値化処理されたサンプル信号20のタイ
ミングチャートは第5図のごとくであり、サンプル信号
の各パシレス間隔はレーザ光17の1波長分λに対応し
たピッチとなる。
That is, the laser beam 17 emitted from the laser oscillator 11 enters the laser interferometer in parallel with the infrared light, is split into two beams by the cube semi-transparent mirror 13, each reflected by the plane mirror 3.4, and then returns to the cube semi-transparent beam. The light beams are recombined and interfered by the mirror 13, and this interference light is output from the laser detector 15 as an interference signal. Also, this interference signal 18 is transmitted to the sample circuit 19.
2 (after being processed to Ii, the sample signal 20 is A
/D converter 21. Furthermore, the A/D converter 21 takes in the output of the infrared detector 9 in the infrared interferometer at the timing of the sample signal 20, performs A/D conversion, and outputs it to the computer 22, where the spectrum is analyzed and the sample IO is The thickness of the attached thin film is determined by calculation. Note that the interference signal 18. outputted from the laser detector 15. The timing chart of the binarized sample signal 20 is as shown in FIG. 5, and each pathless interval of the sample signal has a pitch corresponding to one wavelength λ of the laser beam 17.

かかる膜厚計により、膜厚測定時には赤外検出器9より
第6図に示した出力信号が得られる。すなわち第6図に
おいて、中央に現れた大きな信号のセンタバーストは光
束分割光学系における固定側の平面鏡3を経由する光路
長と可動側の平面鏡4を経由する光路長との間の光路差
が零の位置を示し、このセンタバーストを中心とした対
象位置には試料10の薄膜表面で反射した赤外光と薄膜
を透過して薄膜とウェハ基板との境界で反射した赤外光
の干渉によりサイドバーストが現れる。ここで試料lO
の薄膜の膜厚dは第6図におけるセンタバーストとサイ
ドバースト間の光路差しの関数であり、試料10につけ
た薄膜の屈折率をn、赤外光の入射角をθとして次式で
表される。
With such a film thickness meter, the output signal shown in FIG. 6 can be obtained from the infrared detector 9 when measuring the film thickness. In other words, in FIG. 6, the center burst of a large signal appearing in the center has an optical path difference of zero between the optical path length passing through the fixed side plane mirror 3 and the optical path length passing through the movable side plane mirror 4 in the beam splitting optical system. The target position centered on this center burst is caused by the interference of the infrared light reflected from the thin film surface of sample 10 and the infrared light transmitted through the thin film and reflected at the boundary between the thin film and the wafer substrate. A burst appears. Here sample lO
The film thickness d of the thin film is a function of the optical path difference between the center burst and the side burst in Fig. 6, and is expressed by the following equation, where n is the refractive index of the thin film attached to sample 10, and θ is the incident angle of the infrared light. Ru.

L −2d  5 ” −sin”θ曲=−=−=−=
−==−(1)この(1)式で光路長りを前記したレー
ザ干渉計で測定することにより膜厚dを演算して求める
ことができる。
L −2d 5” −sin”θ song=−=−=−=
-==- (1) Using equation (1), the film thickness d can be calculated and determined by measuring the optical path length with the laser interferometer described above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで上記した従来の構成では膜厚の測定精度面で次
記のような問題点が残る。すなわち従来の方式では、レ
ーザ発振器11より出射するレーザ光17の波長λを単
位としたサンプル信号20(第5図参照)を基準に前記
(1)式における光路差しを測定するようにしており、
このために光路差しの測定精度は、レーザ発振器より出
射するレーザ光の波長λにより決まってしまう、なお、
光路差測定用に用いるレーザには一般に安価で安定した
出力の得られるHe−Neレーザ(波長0.6238y
 m )が採用されている。
However, in the conventional configuration described above, the following problems remain in terms of film thickness measurement accuracy. That is, in the conventional method, the optical path difference in equation (1) is measured based on a sample signal 20 (see FIG. 5) whose unit is the wavelength λ of the laser beam 17 emitted from the laser oscillator 11.
For this reason, the measurement accuracy of the optical path difference is determined by the wavelength λ of the laser light emitted from the laser oscillator.
The laser used for optical path difference measurement is generally a He-Ne laser (wavelength: 0.6238y), which is inexpensive and provides stable output.
m) has been adopted.

これに対してNt、 Hzレーザのように波長の短い紫
外レーザを使用すれば第5図に示したサンプル信号のサ
ンプリング間隔が短小となって光路差測定精度を向上で
きるが、紫外レーザ発振器は高価であってフーリエ赤外
分光光度計そのものの価格よりもコスト高になる。また
光路差の測定精度向上策として、従来よりデータのソフ
ト処理により各点間のデータを補間する方法も従来より
提案されているが、第6図に示したセンタバースト、サ
イドバースト信号は被測定物の膜質、不純物、基材、測
定条件等により異なるので膜厚測定精度の向上には十分
な成果が得られない。
On the other hand, if an ultraviolet laser with a short wavelength such as a Nt, Hz laser is used, the sampling interval of the sample signal shown in Figure 5 can be shortened and the accuracy of optical path difference measurement can be improved, but ultraviolet laser oscillators are expensive. Therefore, the cost is higher than the price of the Fourier infrared spectrophotometer itself. In addition, as a measure to improve the measurement accuracy of optical path difference, a method of interpolating data between each point by data software processing has been proposed in the past, but the center burst and side burst signals shown in Figure 6 are Since it varies depending on the film quality of the material, impurities, base material, measurement conditions, etc., sufficient results cannot be obtained in improving the film thickness measurement accuracy.

この発明は上記の点にかんがみ成されたものであり、そ
の目的はレーザ干渉計に若干の改良を加えることで測定
精度の高いフーリエ変換赤外分光方式の膜厚計を提供す
ることにある。
This invention has been made in view of the above points, and its purpose is to provide a Fourier transform infrared spectroscopy film thickness meter with high measurement accuracy by slightly improving a laser interferometer.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の膜厚計においては
、フーリエ変換赤外分光光度計に光路差計測用のレーザ
干渉計を組み込み、該レーザ干渉計で検出した干渉信号
の2値化サンプル信号を基準に、試料の薄膜に照射した
赤外光の反射光出力信号より膜厚を測定するフーリエ変
換赤外分光方式の膜厚計において、レーザ干渉針の光学
系内で分割される二光線束の一方を直線偏光から円偏光
に変える手段と、直線偏光と円偏光との干渉光から互い
に位相の異なる複数の干渉信号を取出す手段とを備えて
構成するものとする。
In order to achieve the above object, in the film thickness meter of the present invention, a laser interferometer for measuring optical path difference is incorporated into a Fourier transform infrared spectrophotometer, and a binarized sample of the interference signal detected by the laser interferometer is provided. In a film thickness meter using the Fourier transform infrared spectroscopy method, which measures the film thickness from the reflected light output signal of the infrared light irradiated onto the thin film of the sample based on the signal, two beams are split within the optical system of the laser interference needle. It is configured to include means for changing one of the bundles from linearly polarized light to circularly polarized light, and means for extracting a plurality of interference signals having mutually different phases from the interference light of the linearly polarized light and the circularly polarized light.

〔作用〕[Effect]

上記の構成で直線偏光を円偏光に変える手段としては、
光線束分割光学系における一方の光線束の光軸上に八分
の一波長板(λ/8板)を介挿するか、あるいはビーム
スプリフタとして用いるキューブ半透明鏡の反射面で位
相差を与えるようにしたしたものが採用される。また直
線偏光と円偏光との干渉光から互いに位相の異なる複数
の干渉信号を取出す手段には、干渉光の光軸上に配列し
た半透明鏡としての複数のキューブサンプラと、互いに
方向角を変えて各キューブサンプラの出力側に配した検
光子とレーザ検出器とを組合せたものが使用される。
As a means of converting linearly polarized light into circularly polarized light with the above configuration,
In the beam splitting optical system, a one-eighth wavelength plate (λ/8 plate) is inserted on the optical axis of one beam, or the phase difference is created using the reflecting surface of a cube semi-transparent mirror used as a beam splitter. What you choose to give will be accepted. In addition, the means for extracting a plurality of interference signals having mutually different phases from interference light of linearly polarized light and circularly polarized light includes a plurality of cube samplers as semi-transparent mirrors arranged on the optical axis of the interference light, and a plurality of cube samplers arranged at different direction angles. A combination of an analyzer and a laser detector placed on the output side of each cube sampler is used.

かかる構成により、レーザ干渉計内では二光線束に分割
されたレーザ光の一方の光線束が直線偏光から円偏光に
変わり、他方の直線偏光の光線束と再結合して干渉を起
こした後、この干渉光が後段に配置したキューブサンプ
ラで複数に分離され、さらに分離した各干渉光はそれぞ
れ方向角の異なる検光子、およびレーザ検出器を介して
互いに位相の異なる成分として検出されるようになる。
With this configuration, within the laser interferometer, one of the laser beams split into two beams changes from linearly polarized light to circularly polarized light, and after recombining with the other linearly polarized light beam and causing interference, This interference light is separated into multiple parts by a cube sampler placed in the latter stage, and each separated interference light is detected as components with different phases through an analyzer with a different direction angle and a laser detector. .

したがって従来方式ではレーザ発振器より出射されるレ
ーザ光の一波長λ毎にしか取出せなかったサンプル信号
を、光学的にλ/n(n>1)毎に取り出すことができ
、これによりフーリエ変換赤外分光方式による膜厚計の
測定精度を従来と比べてn倍にまで高めることができる
ようになる。
Therefore, in the conventional method, a sample signal could only be extracted for each wavelength λ of the laser light emitted from a laser oscillator, but it is now possible to optically extract a sample signal for each wavelength λ/n (n>1). The measurement accuracy of a film thickness meter using a spectroscopic method can be increased to n times compared to the conventional method.

〔実施例〕〔Example〕

第1図は本発明の実施例によるフーリエ変換赤外分光光
度計に組み込まれたレーザ干渉計の光学系を示すもので
あり、第4図に対応する同一の光学素子には同じ符号が
付しである。すなわち二の発明によりレーザ光の光束分
割光学系内で固定側の平面鏡3とキューブ半透明鏡13
との間の光軸上には直線偏光を円偏光に変える手段とし
て八分の一波長板(λ/8板)23が介挿されており、
さらにキューブ半透明鏡13の後段には第4図における
平面鏡14.レーザ検出器15に置き換えて光軸上に直
列に並ぶキューブ半透明鏡としてのキューブサンプラ2
4〜26、各キューブサンプラ24〜26出力側に付設
した検光子27.28.29.30、および各検光子に
付属するレーザ検出器31.32.33.34が配備さ
れている。
FIG. 1 shows the optical system of a laser interferometer incorporated in a Fourier transform infrared spectrophotometer according to an embodiment of the present invention, and the same optical elements corresponding to FIG. 4 are given the same reference numerals. It is. That is, according to the second invention, the fixed-side plane mirror 3 and the cube semi-transparent mirror 13 are used in the laser beam beam splitting optical system.
A one-eighth wavelength plate (λ/8 plate) 23 is inserted on the optical axis between the two as a means for converting linearly polarized light into circularly polarized light.
Furthermore, a plane mirror 14 in FIG. 4 is provided after the cube semi-transparent mirror 13. Cube sampler 2 as a cube semi-transparent mirror arranged in series on the optical axis in place of the laser detector 15
4-26, analyzers 27, 28, 29, 30 attached to the output side of each cube sampler 24-26, and laser detectors 31, 32, 33, 34 attached to each analyzer.

ここで各光学素子の光軸に垂直な方向の配置例を第3図
に示す、すなわち座標系におけるX軸方向に直線偏光の
方向を合わせたとして、波長板23の光学軸はX軸に対
して±(π/ 4 ) radの方向に調整されており
、さらに各検光子27〜30の方向角はそれぞれ図示に
おけるφ1.φt、φ1.φ4の方向に設定されている
。なお図示例ではX軸を基準としてφ、は(π/ 8 
) rad、φfは(3π/8)rad+φ、は(5π
/8)rad、φ4は(7π/ 8 )radに設定さ
れている。
Here, an example of the arrangement of each optical element in a direction perpendicular to the optical axis is shown in FIG. The direction angle of each analyzer 27 to 30 is adjusted in the direction of ±(π/4) rad, and the direction angle of each analyzer 27 to 30 is φ1. φt, φ1. It is set in the direction of φ4. In addition, in the illustrated example, φ is (π/8
) rad, φf is (3π/8) rad+φ, is (5π
/8) rad, φ4 is set to (7π/8) rad.

さらに前記キューブ半透明鏡13は反射、透過の際に入
射レーザ光17のS偏光成分、p偏光成分相互の位相差
を変えず、かつ反射、透過率はS偏光成分、p偏光成分
ともに50%になるようにに材質。
Furthermore, the cube semi-transparent mirror 13 does not change the phase difference between the S-polarized light component and the p-polarized light component of the incident laser beam 17 during reflection and transmission, and has a reflection and transmittance of 50% for both the S-polarized light component and the p-polarized light component. material to match.

厚さが調整された半透膜をガラス材で挟み込んだもので
ある。またキューブサンプラ24.25の各反射・透過
比はそれぞれ1F3,1:2、キューブサンプラ26の
反射・透過比はキューブ半透明鏡13と同様に1=1で
あり、かつ各キューブサンプラ24〜26はいずれもキ
ューブ半透明鏡13と同様にS偏光成分、p偏光成分の
位相差を変えないものとする。
A semi-permeable membrane with an adjusted thickness is sandwiched between glass materials. In addition, the reflection and transmission ratios of the cube samplers 24 and 25 are 1F3 and 1:2, respectively, and the reflection and transmission ratios of the cube sampler 26 are 1=1 similarly to the cube semitransparent mirror 13, and each of the cube samplers 24 to 2 Similarly to the cube semi-transparent mirror 13, it is assumed that the phase difference between the S-polarized light component and the p-polarized light component does not change.

かかる構成で、レーザ発振器11より偏光子で直線偏光
されて出射したレーザ光17はキューブ半透明鏡13で
二光線束に分割され、それぞれ固定側の平面鏡3.可動
側の平面鏡4で反射され後に再びキューブ半透明鏡13
に戻り、再結合して干渉する。
With this configuration, the laser beam 17 linearly polarized by the polarizer and emitted from the laser oscillator 11 is split into two beams by the cube semi-transparent mirror 13, and each beam is split into two beams by the fixed plane mirror 3. After being reflected by the plane mirror 4 on the movable side, the cube semi-transparent mirror 13 is reflected again.
Return to , recombine and interfere.

ここで可動側の平面鏡4で反射したレーザ光は直線偏光
のままキューブ半透明鏡13に戻るのに対し、固定側の
平面鏡3で反射したレーザ光は八分の一波長板23を往
路と復路で2回透過し、この過程で円偏光に偏光されて
キューブ半透明鏡13に戻る。
Here, the laser beam reflected by the plane mirror 4 on the movable side returns to the cube semi-transparent mirror 13 as linearly polarized light, whereas the laser beam reflected by the plane mirror 3 on the fixed side passes through the 1/8 wavelength plate 23 in the outward and return directions. During this process, the light is circularly polarized and returns to the cube semi-transparent mirror 13.

また直線偏光と円偏光とが干渉した後に光線束は前記し
た各キューブサンプラ24〜26を通過する過程で複数
に分離されて検光子27〜30に入射される。
Further, after the linearly polarized light and the circularly polarized light interfere with each other, the light beam is separated into a plurality of light beams while passing through each of the cube samplers 24 to 26 described above, and is incident on analyzers 27 to 30.

しかもこの過程では前記した各キューブサンプラの反射
・透過比条件からキューブサンプラ24.25゜26で
はキューブ半透明鏡13より出た元の光強度の1/4ず
つ反射して分離し、さらに検光子27〜30を透過して
それぞれ異なる位相成分がレーザ検出器31〜34より
光電変換され、出力信号1 +、 I t、 I s。
Moreover, in this process, due to the reflection/transmission ratio conditions of each cube sampler described above, the cube sampler 24.25°26 reflects and separates the original light intensity by 1/4 of the original light intensity emitted from the cube semi-transparent mirror 13. 27 to 30, the different phase components are photoelectrically converted by laser detectors 31 to 34, and output signals 1+, It, and Is.

■4として出力される。■Output as 4.

ここで第3図に示した光学素子の配置における検光子2
7に付いて、該検光子27の方向角をφげad。
Here, analyzer 2 in the arrangement of optical elements shown in FIG.
7, the direction angle of the analyzer 27 is φ ad.

レーザ干渉計の光路差をδ、光の角周波数をωとし、か
つレーザ光は完全なコヒーレント光であるとして、レー
ザ検出器31の出力Itは次式で表される。なお式中の
Aは光学系、検出器に固有な常数である。
Assuming that the optical path difference of the laser interferometer is δ, the angular frequency of the light is ω, and the laser beam is completely coherent light, the output It of the laser detector 31 is expressed by the following equation. Note that A in the formula is a constant specific to the optical system and detector.

1、=A [cosφ、  ・cos(ωt   2π
δ/λ)上記(2)式の[]内における第1項は直線偏
光の寄与分であり、第2項は円偏光による寄与分である
。なお式の上に付したバーは時間的な平均値を意味して
いる。
1, = A [cosφ, ・cos(ωt 2π
δ/λ) The first term in brackets [ ] in equation (2) above is the contribution of linearly polarized light, and the second term is the contribution of circularly polarized light. The bar above the formula means the temporal average value.

ここで(2)式を変形すると、 A            λ cos (ωt −−) 6cos(ωを十φI)λ −・−・・−・−・−・・−・・−・−・・−・−・−
・−・・・(3)となる、すなわち(3)式において、
光路差δに対するレーザ検出器31の出力E+は式中の
第1項のバイアス分に第2項の交流分が重なり合った形
となり、かつ位相は検光子27の方向角φ1で設定され
る。
Here, if we transform equation (2), we get A λ cos (ωt −-) 6cos (ω = 1φI) λ −・−・・−・−・−・・−・・−・−・・−・−・−
...(3), that is, in equation (3),
The output E+ of the laser detector 31 with respect to the optical path difference δ has a form in which the bias component of the first term in the equation is superimposed on the alternating current component of the second term, and the phase is set by the direction angle φ1 of the analyzer 27.

したがって各検光子27〜30の方向角φ1〜φ4をあ
らかじめ第3図のように設定するすることにより、各レ
ーザ検出器31〜34より出力される信号h〜■1.並
びにこれら各信号をサンプル回路19で2値化処理して
得たサンプル信号は第2図のようになる。
Therefore, by setting the direction angles φ1 to φ4 of each of the analyzers 27 to 30 in advance as shown in FIG. 3, the signals h to 1. The sample signals obtained by binarizing each of these signals in the sample circuit 19 are as shown in FIG.

つまり第2図と従来方式による第5図とを比べると、サ
ンプル信号のサンプリング間隔はレーザ光の一波長λか
らλ/4ピッチに縮小されることになり、このサンプル
信号を基準に干渉計の光路差を測定することにより膜厚
の測定精度を従来方式と比べて4倍にまで高めることが
できる。また前記のキューブサンプラ、検光子、レーザ
検出器の組数を増せば測定精度をより一層高めることが
可能である。
In other words, when comparing Fig. 2 with Fig. 5 according to the conventional method, the sampling interval of the sample signal is reduced from one wavelength λ of the laser light to λ/4 pitch, and the interferometer is set based on this sample signal. By measuring the optical path difference, the accuracy of film thickness measurement can be increased to four times that of conventional methods. Further, by increasing the number of sets of the cube sampler, analyzer, and laser detector described above, it is possible to further improve the measurement accuracy.

なお前記検光子27〜30の各方向角φ1〜φ4はレー
ザ検出器31〜34の出力信号1 r−1aの相互間で
等位相差を与えるように初期設定した後に固定される。
Note that the directional angles φ1 to φ4 of the analyzers 27 to 30 are initialized and then fixed so as to give equal phase differences between the output signals 1r-1a of the laser detectors 31 to 34.

この場合に前記したレーザ検出器からの出力信号は周波
数が必ずしも一定ではないので、検光子の方向角調整に
はフーリエ変換法、Nパケット法等が採られるが、いず
れも初期設定すれば安定に動作する。また前述では直線
偏光と円偏光とが干渉するとして説明したが、実際の製
品ではキューブ半透明鏡13.各キューブサンプラ24
〜26の半透膜での位相変化が完全に零にはならないの
で直線偏光に近い楕円偏光と円偏光に近い楕円偏光との
干渉となる。しかして光学素子そのものは安定した反射
、透過特性を有するので実用的には何等の支障はない。
In this case, since the frequency of the output signal from the laser detector described above is not necessarily constant, the Fourier transform method, N-packet method, etc. are used to adjust the direction angle of the analyzer, but both of them are stable if initial settings are made. Operate. Furthermore, in the above explanation, it was explained that linearly polarized light and circularly polarized light interfere with each other, but in actual products, the cube semitransparent mirror 13. Each cube sampler 24
Since the phase change in the semi-transparent film 26 does not become completely zero, interference occurs between elliptically polarized light that is close to linearly polarized light and elliptically polarized light that is close to circularly polarized light. However, since the optical element itself has stable reflection and transmission characteristics, there is no problem in practical use.

また第2図ではレーザ検出器の各出力11〜■4に対応
するサンプル信号をレーザ光の一波長λ毎に取り出すよ
うにしているが、しきい値電圧とOクロスを併用するこ
とにより各出力信号毎にλ/2置きにサンプル信号を取
り出すことができ、これにより第2図のサンプル信号の
サンプリング間隔をλ/8まで縮めてさらに測定精度の
向上を図ることができる。
In addition, in Fig. 2, sample signals corresponding to outputs 11 to 4 of the laser detector are taken out for each wavelength λ of the laser light, but by using threshold voltage and O cross together, each output Sample signals can be taken out every λ/2 for each signal, thereby making it possible to shorten the sampling interval of the sample signals in FIG. 2 to λ/8 and further improve measurement accuracy.

さらに第1図の実施例では直線偏光を円偏光に変える手
段として、八分の一波長板23を固定側の平面鏡3とキ
ューブ半透明鏡13との間の光路に介挿した例を示した
が、逆に可動側の平面鏡4例の光路に介挿して実施する
こともできる。また波長板23を用いる替わりにキュー
ブ半透明鏡13の反射面で所望の位相差を与え、該半透
明鏡13での反射。
Furthermore, the embodiment shown in FIG. 1 shows an example in which a one-eighth wavelength plate 23 is inserted in the optical path between the fixed plane mirror 3 and the cube semitransparent mirror 13 as a means for converting linearly polarized light into circularly polarized light. However, conversely, it can also be implemented by interposing the optical path of the four movable side plane mirrors. Also, instead of using the wave plate 23, a desired phase difference is provided by the reflecting surface of the cube semi-transparent mirror 13, and the reflection by the semi-transparent mirror 13 is performed.

透過過程で直線偏光を円偏光に変えるようにすることも
可能である。
It is also possible to convert linearly polarized light into circularly polarized light during the transmission process.

〔発明の効果〕〔Effect of the invention〕

以上述べたようにこの発明によれば、フーリエ変換赤外
分光光度計に組み込まれたレーザ干渉計において、該レ
ーザ干渉計の光学系内で分割される二光線束の一方を直
線偏光から円偏光に変える手段と、直線偏光と円偏光と
の干渉光から互いに位相の異なる複数の干渉信号を取出
す手段とを備えて構成したことにより、レーザ干渉計の
出力信号を2値化して得た光路差測定基準となるサンプ
ル信号のサンプリング間隔を従来方式と比べて大幅に縮
小することができ、これによりレーザ干渉計の光学系に
僅かな光学素子を追加するだけで試料の膜厚測定精度の
大幅な向上を図ることができる。
As described above, according to the present invention, in a laser interferometer incorporated in a Fourier transform infrared spectrophotometer, one of the two beams split within the optical system of the laser interferometer is changed from linearly polarized light to circularly polarized light. and a means for extracting a plurality of interference signals with different phases from the interference light of linearly polarized light and circularly polarized light, the optical path difference obtained by binarizing the output signal of the laser interferometer The sampling interval of the sample signal, which serves as the measurement standard, can be significantly reduced compared to conventional methods, and this allows the measurement accuracy of the sample film thickness to be significantly improved by adding only a few optical elements to the optical system of the laser interferometer. You can improve your performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例によるレーザ干渉計部分の光学系
図、第2図は第1図によるサンプル信号のタイムチャー
ト、第3図は第1図における主要光学素子の光軸に対す
る配置関係図、第4図は従来におけるフーリエ変換分光
方式膜厚計の構成図、第5図は第4図によるサンプル信
号のタイムチャート、第6図は赤外検出器の出力信号波
形図である。各図において、 1:赤外光源、3:固定側の平面鏡、4:可動側の平面
鏡、9:赤外検出器、10:被測定試料、11:レーザ
発振器、13:キューブ半透明鏡、16:赤外光、17
:レーザ光、19:サンプル回路、20:サンプル信号
、23:部分の一波長板、24〜26:キューブサンプ
ラ、27〜30:検光子、31〜34:レーザ検出器、
φ1〜φ4 :検光子の方向角、■1〜I4:11トー
ア゛雀謁 1!1 図 第3図 等5図 O 第6図
FIG. 1 is an optical system diagram of a laser interferometer part according to an embodiment of the present invention, FIG. 2 is a time chart of a sample signal according to FIG. 1, and FIG. 3 is a diagram of the arrangement of the main optical elements in FIG. FIG. 4 is a configuration diagram of a conventional Fourier transform spectroscopic film thickness meter, FIG. 5 is a time chart of sample signals according to FIG. 4, and FIG. 6 is an output signal waveform diagram of an infrared detector. In each figure, 1: infrared light source, 3: flat mirror on fixed side, 4: flat mirror on movable side, 9: infrared detector, 10: sample to be measured, 11: laser oscillator, 13: cube semi-transparent mirror, 16 : Infrared light, 17
: Laser light, 19: Sample circuit, 20: Sample signal, 23: Partial single wavelength plate, 24-26: Cube sampler, 27-30: Analyzer, 31-34: Laser detector,
φ1 to φ4: Direction angle of analyzer, ■1 to I4: 11 Toa Mahjong Audience 1!1 Figure 3, etc. 5 O Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1)フーリエ変換赤外分光光度計に光路差計測用のレー
ザ干渉計を組み込み、該レーザ干渉計で検出した干渉信
号の2値化サンプル信号を基準に、試料の薄膜に照射し
た赤外光の反射光出力信号より膜厚を測定するフーリエ
変換赤外分光方式の膜厚計において、レーザ干渉計の光
学系内で分割される二光線束の一方を直線偏光から円偏
光に変える手段と、直線偏光と円偏光との干渉光から互
いに位相の異なる複数の干渉信号を取出す手段とを備え
たことを特徴とするフーリエ変換赤外分光方式の膜厚計
1) A laser interferometer for optical path difference measurement is incorporated into a Fourier transform infrared spectrophotometer, and the infrared light irradiated onto the thin film of the sample is measured based on the binary sample signal of the interference signal detected by the laser interferometer. In a film thickness meter using Fourier transform infrared spectroscopy that measures film thickness from a reflected light output signal, there is a means for changing one of the two beams split within the optical system of the laser interferometer from linearly polarized light to circularly polarized light, and A film thickness meter using Fourier transform infrared spectroscopy, comprising means for extracting a plurality of interference signals having mutually different phases from interference light of polarized light and circularly polarized light.
JP3347788A 1988-02-16 1988-02-16 Fourier transformation infrared spectral type film thickness meter Pending JPH01207606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3347788A JPH01207606A (en) 1988-02-16 1988-02-16 Fourier transformation infrared spectral type film thickness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3347788A JPH01207606A (en) 1988-02-16 1988-02-16 Fourier transformation infrared spectral type film thickness meter

Publications (1)

Publication Number Publication Date
JPH01207606A true JPH01207606A (en) 1989-08-21

Family

ID=12387625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3347788A Pending JPH01207606A (en) 1988-02-16 1988-02-16 Fourier transformation infrared spectral type film thickness meter

Country Status (1)

Country Link
JP (1) JPH01207606A (en)

Similar Documents

Publication Publication Date Title
US10895477B2 (en) Sine-cosine optical frequency encoder devices based on optical polarization properties
US5337146A (en) Diffraction-grating photopolarimeters and spectrophotopolarimeters
US3728030A (en) Polarization interferometer
US6856384B1 (en) Optical metrology system with combined interferometer and ellipsometer
US7286226B2 (en) Method and apparatus for measuring birefringence
US4176951A (en) Rotating birefringent ellipsometer and its application to photoelasticimetry
KR19990076790A (en) 8 polarization modulating optical components, a Müller polarimeter and an integrator meter including such an optical component, a process for calibrating the integrator meter, and an integrator metering process
US6738140B2 (en) Wavelength detector and method of detecting wavelength of an optical signal
US5583638A (en) Angular michelson interferometer and optical wavemeter based on a rotating periscope
WO2020049620A1 (en) Interferometer moving-mirror position measurement device, and fourier transform infrared spectrophotometer
Dignam et al. Analysis of a polarizing Michelson interferometer for dual beam Fourier transform infrared, circular dichroism infrared, and reflectance ellipsometric infrared spectroscopies
CN112033551B (en) Wavelength measuring device and method for broadband tunable laser
JP2000258124A (en) Interferometer and lattice interference type encoder
JP3311497B2 (en) Fourier transform spectral phase modulation ellipsometry
US7440108B2 (en) Imaging spectrometer including a plurality of polarizing beam splitters
US20190101380A1 (en) Frequency modulated multiple wavelength parallel phase shift interferometry
US5039222A (en) Apparatus and method for producing fourier transform spectra for a test object in fourier transform spectrographs
US3737235A (en) Polarization interferometer with beam polarizing compensator
JPH11183116A (en) Method and device for light wave interference measurement
JP2010261776A (en) Device for measuring optical interference
JPH02502939A (en) Interferometer for wavelength-independent optical signal processing
JPH01207606A (en) Fourier transformation infrared spectral type film thickness meter
JPH01184402A (en) Optical displacement measuring method and measuring instrument
Vishnyakov et al. Measuring the angle of rotation of the plane of polarization by differential polarimetry with a rotating analyzer
US3664745A (en) Interferometer