JPH01207389A - Purification of hydrocarbon and treating agent therefor - Google Patents

Purification of hydrocarbon and treating agent therefor

Info

Publication number
JPH01207389A
JPH01207389A JP3004788A JP3004788A JPH01207389A JP H01207389 A JPH01207389 A JP H01207389A JP 3004788 A JP3004788 A JP 3004788A JP 3004788 A JP3004788 A JP 3004788A JP H01207389 A JPH01207389 A JP H01207389A
Authority
JP
Japan
Prior art keywords
nitrogen compounds
hydrocarbon
phosphoric acid
treating agent
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3004788A
Other languages
Japanese (ja)
Other versions
JPH0480076B2 (en
Inventor
Akira Sugimoto
明 杉本
Kazuo Ishii
和夫 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP3004788A priority Critical patent/JPH01207389A/en
Publication of JPH01207389A publication Critical patent/JPH01207389A/en
Publication of JPH0480076B2 publication Critical patent/JPH0480076B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To accomplish the purification of hydrocarbon by bringing a hydrocarbon containing nitrogen compounds into contact with a treating agent prepared by carrying phosphoric acid on a carrier to remove said nitrogen compounds in high efficiency without influencing the compounds readily reactive with hydrogen present in said hydrocarbon. CONSTITUTION:Firstly, a treating agent is prepared by carrying e.g., 5-75wt.% of phosphoric acid (e.g., phosphorus pentoxide) on a carrier. Secondly, a hydrocarbon containing nitrogen compounds is brought into contact with said treating agent, thus enabling said nitrogen compounds to be removed without influencing the compounds readily reactive with hydrogen (e.g., olefins, aromatics) contained in said hydrocarbon irrespective of basic or nonbasic, or water-soluble or water- insoluble state.

Description

【発明の詳細な説明】 仁発明の目的 m−の1 ノ 炭化水素原料中にはアミン類、アニリン類、ピリジン類
、キノリン類、アミド類、ジアザ類等の塩基性の窒素化
合物、或はピロール類、カルバゾール類、ニトリル類等
の非塩基性の窒素化合物か含まれており、これを原料と
して接触反応を行わせる場合には触媒の劣化や反応生成
物の収率の低下をもたらし、また炭化水素製品の青色や
ガム質生成等の原因となる。
[Detailed description of the invention] Object of the invention (m-1) The hydrocarbon raw material contains basic nitrogen compounds such as amines, anilines, pyridines, quinolines, amides, diazas, or pyrrole. Contains non-basic nitrogen compounds such as carbazoles, nitriles, etc., and when a catalytic reaction is performed using these as raw materials, it may cause deterioration of the catalyst and a decrease in the yield of the reaction product, and carbonization may occur. It causes blue color and gummy formation of hydrogen products.

本発明は窒素化合物を含有する炭化水素から窒素化合物
を除去して精製する方法及び精製用処理剤に関するもの
である。
The present invention relates to a method for purifying hydrocarbons by removing nitrogen compounds from the hydrocarbons containing nitrogen compounds, and a treatment agent for purification.

【え立且遣 炭化水素中に含有されている窒素化合物を除去するため
に従来最も行われている方法は、高圧水素を作用させて
窒素化合物をアンモニア化して除去する方法である。
[The method most commonly used in the past to remove nitrogen compounds contained in hydrocarbons is to use high-pressure hydrogen to ammonify and remove nitrogen compounds.

しかしこの方法は、原料炭化水素中にオレフィン、芳香
族等の水素と反応し易い化合物が含まれている場合、そ
れらも水素添加するため、それらの有効利用か計れず、
また水素が無用に消費されるという欠点かある。また一
部の炭化水素は水素化分解してメタン、エタン等の付加
価値の低いガスを生成する。
However, in this method, if the raw material hydrocarbon contains compounds that easily react with hydrogen, such as olefins and aromatics, they are also hydrogenated, so it is difficult to measure whether they can be used effectively.
Another drawback is that hydrogen is consumed unnecessarily. In addition, some hydrocarbons undergo hydrocracking to produce gases with low added value such as methane and ethane.

その他の除去方法として、木や酸溶液を用いる洗浄によ
り窒素化合物を除去する方法もあるか。
Are there other removal methods such as cleaning with wood or acid solutions to remove nitrogen compounds?

この方法は塩基性又は水溶性の窒素化合物には適用でき
るか、非塩ノフ性又は難水溶性の窒素化合物には適用て
きない。
This method can be applied to basic or water-soluble nitrogen compounds, or cannot be applied to non-salt nof or poorly water-soluble nitrogen compounds.

窒素化合物を吸着除去する方法としては、ゼオライト類
による方法(特開昭5O−18578) 、酸化チタン
/シリカによる方法(特開昭6O−40195)等が知
られているが、塩基性の窒素化合物のみしか除去できな
いとか、非塩基性の窒素化合物に対する吸着容量が小さ
いため窒素濃度が十分に下げられず処理剤の再生頻度を
高くせざるを得ないなどの欠点を有する。
As methods for adsorbing and removing nitrogen compounds, methods using zeolites (Japanese Patent Application Laid-open No. 5O-18578) and methods using titanium oxide/silica (Japanese Patent Application Laid-open No. 6O-40195) are known, but basic nitrogen compounds However, since the adsorption capacity for non-basic nitrogen compounds is small, the nitrogen concentration cannot be lowered sufficiently and the treatment agent must be regenerated more frequently.

か  じよ゛と  。 占 本発明は、原料炭化水素中に含まれているオレフィンや
芳香族等の水素と反応し易い化合物に影響を与えること
なく、炭化水素中に含有されている窒素化合物を塩基性
又は非塩基性、或は水溶性又は非水溶性のいずれにも拘
らず、効率よく除去して精製する方法及び精製用処理剤
を提供することを目的とする。
Kajiyo. According to the present invention, nitrogen compounds contained in hydrocarbons can be converted into basic or non-basic compounds without affecting compounds that easily react with hydrogen, such as olefins and aromatics contained in raw material hydrocarbons. It is an object of the present invention to provide a method for efficiently removing and purifying a substance, regardless of whether it is water-soluble or water-insoluble, and a purification treatment agent.

口1発明の構成 、      るための 。1. Structure of the invention , in order to.

本発明に係る炭化水素の精製方法は、窒素化合物を含有
する炭化水素を、リン酸を担体に担持してなる処理剤に
接触させることを特徴とする。
The method for purifying hydrocarbons according to the present invention is characterized in that a hydrocarbon containing a nitrogen compound is brought into contact with a treatment agent comprising phosphoric acid supported on a carrier.

担持されたリン酸は使用温度により変態を起こし、オル
トリン酸、ピロリン酸又はメタリン酸の形態となるが、
いずれの形態においても使用可1克てあり、特に限定さ
れない。
The supported phosphoric acid undergoes transformation depending on the temperature at which it is used, becoming orthophosphoric acid, pyrophosphoric acid, or metaphosphoric acid.
Any form can be used and is not particularly limited.

担体としては、触媒や処理剤の担体として通常使用され
ているシリカ、珪藻土、アルミナ、シリカアルミナ、ゼ
オライト、活性炭等の多孔性物質を用いることが好まし
いが、これらに限定されるものではない。
As the carrier, it is preferable to use porous substances such as silica, diatomaceous earth, alumina, silica alumina, zeolite, and activated carbon, which are commonly used as carriers for catalysts and processing agents, but are not limited to these.

リン酸は上記のような担体上に固定化して担持されてい
ればよく、相持量か多いほど窒素化合物の吸着量が多く
なる。使用する担体により担持量は異なるが、一般に五
酸化リンとして5〜75重量%程度担持される。
It is sufficient that phosphoric acid is immobilized and supported on the carrier as described above, and the larger the amount of phosphoric acid supported, the larger the amount of nitrogen compounds adsorbed. The amount supported varies depending on the carrier used, but generally about 5 to 75% by weight of phosphorus pentoxide is supported.

担持方法は含浸法、混錬法等が一般的に用いられるが、
etに限定されるものではない。
Impregnation methods, kneading methods, etc. are generally used as supporting methods.
It is not limited to et.

窒素化合物を含有する炭化水素処理温度としては室温〜
400°Cが適当である。温度が高いほど窒素化合物の
除去率は向上するか、窒素化合物以外の化合物が反応を
起こす可能性がある。
The processing temperature for hydrocarbons containing nitrogen compounds is room temperature ~
400°C is suitable. The higher the temperature, the higher the removal rate of nitrogen compounds, or the possibility that compounds other than nitrogen compounds may react.

LH3Vによっても窒素化合物の除去率は変化するか、
実用上100〜0.1/hrが使用できる範囲である。
Does the removal rate of nitrogen compounds change depending on LH3V?
Practically, the usable range is 100 to 0.1/hr.

装置としては通常の固定床吸着器が好ましく使用される
が、流動床、移動床、攪拌槽等を使用することもできる
As the apparatus, a conventional fixed bed adsorption device is preferably used, but a fluidized bed, a moving bed, a stirring tank, etc. can also be used.

本発明方法において使用されるリン酸を担体に担持して
なる炭化水素中の窒素化合物の除去処理剤は、活性炭を
除く担体を用いた場合には、使用後の処理剤を酸素含有
ガスで高温処理することにより窒素化合物を燃焼、除去
して再生し、再使用することかできる。
When using a carrier other than activated carbon, the treatment agent used in the method of the present invention, which is made by supporting phosphoric acid on a carrier, for removing nitrogen compounds from hydrocarbons, is heated to a high temperature with an oxygen-containing gas. Through treatment, nitrogen compounds can be burned, removed, regenerated, and reused.

本発明方法が適用される炭化水素としては窒素化合物を
含有するものならば特に制限はないが、好ましくは、直
留油、FCC油等の接触分解油、熱分解油、或はナフタ
レン等の石炭から得られる炭化水素油が挙げられる。
The hydrocarbons to which the method of the present invention is applied are not particularly limited as long as they contain nitrogen compounds, but are preferably straight-run oils, catalytic cracking oils such as FCC oils, pyrolysis oils, or coals such as naphthalene. Examples include hydrocarbon oils obtained from.

本発明が好ましく適用されるプロセスとしては下記のよ
うなものが例示される。
Examples of processes to which the present invention is preferably applied include the following.

■原料の改質を行う時の前処理として:ナフタレン混合
物をアルキル化剤と反応させて種々のアルキルナフタレ
ンを製造するとき、その触媒としてシリカアルミナ、結
晶性シリケート、ゼオライト、イオン交換樹脂、ヘテロ
ポリ酸等の固体酸や塩化アルミニウム、無機酸等の液体
酸が用いられるか、これらはいずれも窒素化合物に被毒
され活性を失うため触媒の交換や再生をIn繁に行う必
要がある。ナフタレン類を水素で処理するとナフタレン
環の一部がテトラリン環となるため原料の損失、水素消
費量の増大を招き好ましくない0本発明方法によれば、
原料の形態を変えることなく容易に窒素化合物の除去を
行うことかできる。
■As a pretreatment when modifying raw materials: When reacting a naphthalene mixture with an alkylating agent to produce various alkylnaphthalenes, silica alumina, crystalline silicate, zeolite, ion exchange resin, heteropolyacid can be used as a catalyst. A solid acid such as aluminum chloride or a liquid acid such as an inorganic acid is used, but since these are all poisoned by nitrogen compounds and lose their activity, it is necessary to frequently replace or regenerate the catalyst. When naphthalenes are treated with hydrogen, a portion of the naphthalene rings become tetralin rings, which is undesirable as it leads to loss of raw materials and an increase in hydrogen consumption.According to the method of the present invention,
Nitrogen compounds can be easily removed without changing the form of the raw material.

■原料のη蔵を安定化させる方法として:接触分解油は
、その中に含まれる窒素化合物等が重合、酸化するため
にガム賀を生じたり、着色することがある0通常の水素
処理法では水素消費μが多くなり経済的でない。本発明
方法では水素を消費することなく容易に窒;R化合物の
除去な行うことかでき、貯蔵安定性を向上させることか
できる。
■As a method of stabilizing the content of raw materials: Catalytic cracking oil may form gums or become colored due to the nitrogen compounds contained therein polymerizing and oxidizing. Hydrogen consumption μ increases, making it uneconomical. In the method of the present invention, nitrogen and R compounds can be easily removed without consuming hydrogen, and storage stability can be improved.

炭化水素原料中のアミン類、アニリン類、ピリジン類、
キノリン類、アミド類、ジアザ類等の塩基性の窒素化合
物は酸・II!基中和反応により担持されたリン酸と反
応してリン酸化合物として担体上に固定化される。一方
、非塩基性窒素化合物の挙動は必ずしも明らかでないが
、ビロール類、カルバゾール類は担持リン酸上で重合し
て樹脂状となり、またニトリル類は担す一シリン酸上で
原料中の微量水分により加水分解してアンモニア、アミ
ド等の塩基性窒素化合物に転換されて除去されるものと
推定される。
Amines, anilines, pyridines in hydrocarbon raw materials,
Basic nitrogen compounds such as quinolines, amides, and diazas are acids/II! It reacts with the supported phosphoric acid through a group neutralization reaction and is immobilized on the carrier as a phosphoric acid compound. On the other hand, although the behavior of non-basic nitrogen compounds is not necessarily clear, virols and carbazoles polymerize on supported phosphoric acid to form resins, and nitriles polymerize on monosyric acid supported by trace amounts of moisture in the raw materials. It is presumed that it is hydrolyzed and converted into basic nitrogen compounds such as ammonia and amide, and then removed.

実施例1〜8 石版のリン酸を蒸留水で稀釈してリン酸濃度を80重量
%とした。これを所定量の担体に含浸。
Examples 1 to 8 Phosphoric acid on a lithographic plate was diluted with distilled water to give a phosphoric acid concentration of 80% by weight. This is impregnated into a predetermined amount of carrier.

乾燥後、350℃で焼成して処理剤を調製した。After drying, it was baked at 350°C to prepare a processing agent.

得られた処理剤100n!Lを内径16.1mmの5U
S5!吸着器に充填して、窒素化合物なN濃度て410
重量ppm<うち330 ffi m p p m b
<塩基性、残りが非塩基性の窒素化合物)を含む95重
量%ナフタレン油を流して生成油中のNei度を測定し
た。結果を第1表に示す、なお何れの処理においてもナ
フタレンの転化は全く認められなかった。
The resulting treatment agent was 100n! L is 5U with inner diameter 16.1mm
S5! Fill the adsorber and reduce the nitrogen compound N concentration to 410
Weight ppm<330 ffi m p p m b
A 95% by weight naphthalene oil containing <basic nitrogen compounds, the rest being non-basic nitrogen compounds) was poured to measure the Nei degree in the produced oil. The results are shown in Table 1. No conversion of naphthalene was observed in any of the treatments.

比較例1〜5 リン酸を担持していない場合の処理剤についても上記の
実施例と同様に処理を行い処理油のN6度を測定した。
Comparative Examples 1 to 5 Processing agents not carrying phosphoric acid were also treated in the same manner as in the above examples, and the N6 degree of the treated oil was measured.

結果を第1表に示す。The results are shown in Table 1.

(以下余白) 第1表 比較例6 通常の水素化精製の効果を調べるため、実施例1て使用
したナフタレン油を、Go−Mo系触媒の存在下、35
0℃、20kg/am2G、LH3V=0.5(1/h
r)で水素25立/ h rを流入しながら処理した。
(Margin below) Table 1 Comparative Example 6 In order to investigate the effect of ordinary hydrorefining, the naphthalene oil used in Example 1 was treated with 35%
0℃, 20kg/am2G, LH3V=0.5 (1/h
The treatment was carried out while flowing hydrogen at 25 t/hr.

得られた生成油に含まれる窒素化合物のN濃度はlO重
量ppmであったか、原料ナフタレンの32重量%はテ
トラリンに転換していた。
The N concentration of nitrogen compounds contained in the obtained product oil was 10 ppm by weight, or 32% by weight of the raw material naphthalene had been converted to tetralin.

実施例9〜13 120重量ppmのN(うち11011ppが塩基性、
残りが非塩基性の窒素化合物)を含む接触分解油(LC
Oニライトサイクルオイル留分)を実施例1と同様に流
して生成油中のN濃度を測定した。結果を第2表に示す
Examples 9-13 120 ppm by weight of N (of which 11011 ppm is basic,
Catalytic cracking oil (LC
The N concentration in the produced oil was measured by flowing it in the same manner as in Example 1. The results are shown in Table 2.

第2表 実施例14 実施例1て用いた処理剤の焼成温度を変えた以外は実施
例1と同様な試験を行った。結果を第3表に示す。
Table 2 Example 14 The same test as in Example 1 was conducted except that the firing temperature of the treatment agent used in Example 1 was changed. The results are shown in Table 3.

第  3  表 比較例7 10重量%のリン酸水溶液100m文を、実施例9で用
いたLCO留分100 m lに加え、室温で1時間振
盪した後、LCO留分に含まれるN濃度を測定した。N
濃度は113重量ppmであった。
Table 3 Comparative Example 7 100ml of a 10% by weight phosphoric acid aqueous solution was added to 100ml of the LCO fraction used in Example 9, and after shaking at room temperature for 1 hour, the N concentration contained in the LCO fraction was measured. did. N
The concentration was 113 ppm by weight.

実施例16 実施例1で用いた処理剤を実施例1と同じ条件で600
時間通油した時の生成油中のN5度は410重Jipp
mであった。この処理剤を550°Cて空気により再生
した。再生後の処理剤を実施例1と同様に試験して、1
00時間後に得られた生成油中のN濃度を測定したとこ
ろ23重量ppmてあり、再生か回走であることかわか
った。
Example 16 The treatment agent used in Example 1 was treated at 600% under the same conditions as Example 1.
N5 degree in the produced oil when oil is passed for an hour is 410 heavy Jipp
It was m. This treatment agent was regenerated with air at 550°C. The treatment agent after regeneration was tested in the same manner as in Example 1, and 1
When the N concentration in the produced oil obtained after 00 hours was measured, it was found to be 23 ppm by weight, indicating that it was due to regeneration or circulation.

実施例17 ベンゼンにビロール、カルバゾール及びインドールをN
e度として各20重量ppm加えた模擬原料を調製して
実施例1と同様に試験した。
Example 17 Adding virol, carbazole and indole to benzene with N
Simulated raw materials were prepared and tested in the same manner as in Example 1, to which 20 ppm by weight of E was added.

100時間後に得られた生成油中のN濃度を測定したと
ころ3重量ppmであり、非塩基性窒素化合物の除去に
も効果があった。
The N concentration in the produced oil obtained after 100 hours was measured and found to be 3 ppm by weight, indicating that it was also effective in removing non-basic nitrogen compounds.

比較例8 リン酸を担持していない5iOzを用いて実施例17と
同様な試験を行った。20時間後に得られた生成油中の
N濃度を測定したところ、58重にppmであった。
Comparative Example 8 A test similar to Example 17 was conducted using 5iOz that did not support phosphoric acid. When the N concentration in the produced oil obtained after 20 hours was measured, it was found to be 58 ppm.

へ0発明の効果 ■炭化水素中の窒素化合物を、塩基性又は非塩基性或は
水溶性又は非水溶性の如何を問わず、高度に除去できる
Effects of the Invention ■ Nitrogen compounds in hydrocarbons, regardless of whether they are basic or non-basic, water-soluble or water-insoluble, can be removed to a high degree.

■水素を使用する必要かない。■No need to use hydrogen.

■炭化水素を分解したり水添したりすることか殆ど無く
、各種の炭化水素の前処理又は貯蔵安定化処理として有
効である。
■There is almost no decomposition or hydrogenation of hydrocarbons, and it is effective as a pretreatment or storage stabilization treatment for various hydrocarbons.

■比較的温和な条件で処理することができ、ユーティリ
ティ消費が少ない。
■Can be processed under relatively mild conditions and consumes little utility.

■吸着容量が極めて大きいので、設備費が少なくて済む
■Since the adsorption capacity is extremely large, equipment costs are low.

Claims (1)

【特許請求の範囲】 1 窒素化合物を含有する炭化水素を、リン酸を担体に
担持してなる処理剤に接触させることを特徴とする炭化
水素の精製方法。 2 リン酸を担体に担持してなる炭化水素の精製用処理
剤。
[Scope of Claims] 1. A method for purifying hydrocarbons, which comprises bringing a hydrocarbon containing a nitrogen compound into contact with a treatment agent comprising phosphoric acid supported on a carrier. 2. A hydrocarbon purification treatment agent comprising phosphoric acid supported on a carrier.
JP3004788A 1988-02-13 1988-02-13 Purification of hydrocarbon and treating agent therefor Granted JPH01207389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3004788A JPH01207389A (en) 1988-02-13 1988-02-13 Purification of hydrocarbon and treating agent therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3004788A JPH01207389A (en) 1988-02-13 1988-02-13 Purification of hydrocarbon and treating agent therefor

Publications (2)

Publication Number Publication Date
JPH01207389A true JPH01207389A (en) 1989-08-21
JPH0480076B2 JPH0480076B2 (en) 1992-12-17

Family

ID=12292909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3004788A Granted JPH01207389A (en) 1988-02-13 1988-02-13 Purification of hydrocarbon and treating agent therefor

Country Status (1)

Country Link
JP (1) JPH01207389A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139989A (en) * 1991-08-28 1992-08-18 Uop Amorphous silica/alumina/phosphate composition and uses thereof
US5230789A (en) * 1991-08-28 1993-07-27 Uop Hydrocarbon conversion process using an amorphous silica/alumina/phosphate composition
JP2004010897A (en) * 2002-06-07 2004-01-15 Inst Fr Petrole Method for producing hydrocarbon having low sulfur and nitrogen content
JP2008527089A (en) * 2004-12-30 2008-07-24 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Method for removing sulfur from ingredients in transportation fuels
WO2013006527A1 (en) * 2011-07-07 2013-01-10 Exxonmobil Research And Engineering Company Method for increasing thermal stability of a fuel composition using a solid phosphoric acid catalyst
JP2016000807A (en) * 2014-05-20 2016-01-07 Jx日鉱日石エネルギー株式会社 Method for removing anilines by adsorption from catalytically-cracked gasoline

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139989A (en) * 1991-08-28 1992-08-18 Uop Amorphous silica/alumina/phosphate composition and uses thereof
US5230789A (en) * 1991-08-28 1993-07-27 Uop Hydrocarbon conversion process using an amorphous silica/alumina/phosphate composition
JP2004010897A (en) * 2002-06-07 2004-01-15 Inst Fr Petrole Method for producing hydrocarbon having low sulfur and nitrogen content
JP2008527089A (en) * 2004-12-30 2008-07-24 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Method for removing sulfur from ingredients in transportation fuels
WO2013006527A1 (en) * 2011-07-07 2013-01-10 Exxonmobil Research And Engineering Company Method for increasing thermal stability of a fuel composition using a solid phosphoric acid catalyst
US9028675B2 (en) 2011-07-07 2015-05-12 Exxonmobil Research And Engineering Company Method for increasing thermal stability of a fuel composition using a solid phosphoric acid catalyst
JP2016000807A (en) * 2014-05-20 2016-01-07 Jx日鉱日石エネルギー株式会社 Method for removing anilines by adsorption from catalytically-cracked gasoline

Also Published As

Publication number Publication date
JPH0480076B2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
US2962435A (en) Hydrocarbon cracking process and catalyst
KR19990062881A (en) Catalyst and adsorbent regeneration method
JPS62275192A (en) Catalytic cracking of nitrogen-containing raw oil
JPH0330837A (en) Method for reactivation of waste catalyst containing zeolite
JPH01207389A (en) Purification of hydrocarbon and treating agent therefor
US4268376A (en) Cracking catalyst rejuvenation
US7651550B2 (en) Method for sulfur compounds removal from contaminated gas and liquid streams
JPS59169539A (en) Method of improving activity of catalyst of aluminosilicate zeolite
US2484828A (en) Production of contact materials
US4214978A (en) Catalytic cracking
US4171286A (en) Catalytic cracking
US4601815A (en) Passivation of FCC catalysts
US2636845A (en) Reactivation of conversion catalysts
CN108126751B (en) Multi-stage pore molecular sieve supported heteropoly acid alkylation desulfurization catalyst and preparation method thereof
JP4409996B2 (en) Process for producing low sulfur catalytic cracking gasoline
JPH0853678A (en) Conversion of hydrocarbon feedstock
US2937142A (en) Removal of phenolic compounds from aqueous solutions
US3673108A (en) Hydrocracking catalyst activation treatment
JPH04198139A (en) Production of alkylbenzene
US3015368A (en) Treatment of desiccants
CA1055921A (en) Reactivation of particulate catalyst masses
JPH0543484A (en) Production of aromatic hydrocarbon
JPH0259020A (en) Pretreatment of waste gas
US3437709A (en) Disproportionation of alkyl aromatics with a crystalline aluminosilicate and oxygen
CN114570413B (en) Material for desulfurization, preparation method and application thereof