JPH01207310A - Macromolecular material absorbing short-wave light - Google Patents

Macromolecular material absorbing short-wave light

Info

Publication number
JPH01207310A
JPH01207310A JP62261045A JP26104587A JPH01207310A JP H01207310 A JPH01207310 A JP H01207310A JP 62261045 A JP62261045 A JP 62261045A JP 26104587 A JP26104587 A JP 26104587A JP H01207310 A JPH01207310 A JP H01207310A
Authority
JP
Japan
Prior art keywords
monomer
methacrylate
etching
polymerization
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62261045A
Other languages
Japanese (ja)
Other versions
JPH0636082B2 (en
Inventor
Takeshi Shimomura
猛 下村
Toru Takahashi
徹 高橋
Masataka Murahara
正隆 村原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP62261045A priority Critical patent/JPH0636082B2/en
Priority to EP19880908743 priority patent/EP0380667A4/en
Priority to US07/469,476 priority patent/US5157091A/en
Priority to PCT/JP1988/001028 priority patent/WO1989003402A1/en
Publication of JPH01207310A publication Critical patent/JPH01207310A/en
Publication of JPH0636082B2 publication Critical patent/JPH0636082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • G03F7/2043Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means with the production of a chemical active agent from a fluid, e.g. an etching agent; with meterial deposition from the fluid phase, e.g. contamination resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/36Imagewise removal not covered by groups G03F7/30 - G03F7/34, e.g. using gas streams, using plasma

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To obtain the title material absorbing excimer laser beam capable of etching with a short time exposure and having resistances to etching, consisting of methacrylate, fluoromonomer and a specific aromatic monomer. CONSTITUTION:The aimed material expressed by the formula (R1, R3 and R5 are H, methyl and ethyl, respectively; R2 is 1-5C alkyl; R4 is fluoroalkyl at least one H is substituted with F within 1-8C alkyl) R6 is a group containing aromatic chain such as naphthalene ring, anthracene ring; l, m and n >=1, respectively and 30<=(l+m)/n<=200). The material is preferably obtained by copolymerization with plasma polymerization method of the three; methacrylate such as methyl methacrylate, fluoro-monomer such as trifluoroethyl acrylate and a monomer such as vinyl naphthalene which has a group containing aromatic chain, simultaneously.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は400nm以下の短波長の光(紫外線、電子線
、X線)、特にに−Fレーザー光(249nm)を吸収
し、且つ、HF液やHFガス等のエツチング剤に対して
耐性を有する短波長光吸収高分子材料に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention absorbs short wavelength light of 400 nm or less (ultraviolet rays, electron beams, X-rays), particularly -F laser light (249 nm), and The present invention relates to a short-wavelength light-absorbing polymer material that is resistant to etching agents such as liquids and HF gas.

(従来の技術及び解決すべき問題点) 従来、レジスト材料に対する光源としては356nmの
高圧水銀ランプなどのような水銀ランプやキセノンラン
プなどが用いられ5〜10分のような長時間露光が行わ
れていた。このように長時間露光を行うと焦点がずれた
り計測中に計測台の震動を受ける等の影響のために鮮明
な像を得ることが困難であった。最近、短時間露光とし
てエキシマレーサー照射法によるフォトレジスト即ち微
細加工(10μI以下)が注目されている。しかし、こ
の方法に適したフォトレジスト用高分子材料が未だ開発
されていない。特に、エキシマレーザ−のように紫外線
領域(短波長208nm−193nn+)の短波長化で
高レンズ開口数NA(Numbereoal Aper
ture)化すると焦点深度が浅くなる問題がある。こ
のためフォトレジスト高分子材料を1μm以下、好まし
くは5000Å以下の4瞑にする必要があるが、このよ
うな薄膜化に適した材料設計は未だ見当らない。
(Prior art and problems to be solved) Conventionally, a mercury lamp such as a 356 nm high-pressure mercury lamp or a xenon lamp is used as a light source for resist materials, and long-time exposure of 5 to 10 minutes is performed. was. When such a long exposure is performed, it is difficult to obtain a clear image due to effects such as a shift in focus and vibrations of the measuring table during measurement. Recently, photoresists, that is, microfabrication (10 μI or less) using an excimer laser irradiation method have been attracting attention as short-time exposure. However, a polymeric material for photoresist suitable for this method has not yet been developed. In particular, short wavelengths in the ultraviolet region (208 nm - 193 nn+), such as excimer lasers, allow for high lens numerical apertures (NA).
ture), there is a problem that the depth of focus becomes shallow. For this reason, it is necessary to make the photoresist polymer material 1 μm or less, preferably 5000 Å or less, but a material design suitable for such thin film formation has not yet been found.

本発明は、フォトリングラフィの解像力を上げるための
高分子材料の改良に関する。ところで、フォトリソグラ
フィの解像力Rは次の式によって決まる。
The present invention relates to improvements in polymeric materials for increasing the resolution of photolithography. By the way, the resolution R of photolithography is determined by the following equation.

λ R=に− NA ここで、λは光源(縮小投影露光装置ニスチッパ)の波
長、NAは開口係数、kはレジストやそのプロセスで決
まる定数である。
λ R=−NA Here, λ is the wavelength of the light source (reduction projection exposure device Nischiper), NA is the aperture coefficient, and k is a constant determined by the resist and its process.

この式から、解像力Rを上げるには(1)光源の短波長
化(λを小さくする)(2)光学レンズの開口係数(N
A)を大きくする。(3)レジスト材料とプロセスの改
良(kを小さくする)が考えられる。
From this equation, we can see that in order to increase the resolving power R, (1) shorten the wavelength of the light source (decrease λ), (2) aperture coefficient of the optical lens (N
A) Increase. (3) Improvements in resist materials and processes (reducing k) can be considered.

短波長化の最近の傾向はエキシマレーザ−ステッパの開
発が活発化しはじめている。しかし、短波長化し高NA
化して行うと焦点深度(DOF)が浅くなる欠点が生じ
る。ステッパを使用した場合の焦DOF= 2Nハ・ 
  °°゛゛°°°゛°゛(2)Φ期P で表される。とりわけNAを大きくすることは2乗で効
いてくるので大きな問題である。本件特許ではこの問題
に対処するためにレンズの開口数(NA)を絞っても効
果的にエキシマレーザ−光が高分子リゾグラフィー材料
中を透過出来るよう超薄膜化した(例数千人程度)こと
により大きな特徴としている。そして、この超薄膜化は
超高分子量にすることで達成できた。
The recent trend toward shorter wavelengths has led to active development of excimer laser steppers. However, with shorter wavelength and higher NA
If this is done in a similar manner, there will be a drawback that the depth of focus (DOF) will be shallow. Focus DOF when using a stepper = 2N
°°゛゛°°°゛°゛(2) It is expressed as Φ period P. In particular, increasing the NA is a big problem because the effect is squared. In order to deal with this problem, this patent has developed an ultra-thin film that allows excimer laser light to effectively pass through the polymer lithography material even if the numerical aperture (NA) of the lens is narrowed down (for example, on the order of several thousand people). This makes it a major feature. This ultra-thin film was achieved by making the film ultra-high molecular weight.

焦点深度が浅いと、部分的歪(焦点が合わない)が出来
る現象が出てそれだけプロセスマージンが減ることに繋
がる0通常±1μmかそれ以下の薄膜にすることが望ま
しい。しかし、これまでのレジスト材料ではこのような
薄膜にするとピンホールが出来たり、耐エツチング性低
下の原因を招くので厚膜化の方向にあった。
If the depth of focus is shallow, a phenomenon of partial distortion (out of focus) will occur, which will lead to a corresponding reduction in process margin.It is desirable to use a thin film of typically ±1 μm or less. However, with conventional resist materials, making such a thin film causes pinholes and a decrease in etching resistance, so the trend has been to make the film thicker.

本発明ではこれらの問題を(1)メタクリレート化合物
の重合度を106〜107オーダーの超高分子量化によ
り超薄膜(数千人程度)化出来る。 (2) (1)の
化合物に弗素化合物を付与することにより耐性(HF液
やHFガス)をもたせることができる、(3)エキシマ
レーザ−(紫外光領域)XeC1(308nm)、Kr
F(249nm)、ArF(193nm)など、400
nm以下の短波長光(紫外線、電子線、X線)、特にK
rF(249nm)レーザー光を高吸収する増感剤を化
学結合させることによって解決したのであって、本発明
の目的は特にエキシマレーザ−照射(紫外線吸収)域に
適し、耐エツチング性を有する短波長光吸収高分子材料
を提供するにある。本発明は上記の問題点を解決し、短
時間の露光でエツチングが可能なエキシマレーザ−光(
紫外線吸収光)、特にに−Fレーザー光(249nm)
を吸収し、HF液やHFガス等のエツチング剤に対して
耐性を有する高分子リゾグラフィー材料を提供するにあ
る。
In the present invention, these problems can be solved by (1) increasing the degree of polymerization of the methacrylate compound to an ultra-high molecular weight of the order of 106 to 107, thereby making it possible to form an ultra-thin film (on the order of several thousand). (2) By adding a fluorine compound to the compound in (1), resistance (HF liquid or HF gas) can be imparted. (3) Excimer laser (ultraviolet light region) XeC1 (308 nm), Kr
F (249nm), ArF (193nm), etc. 400
Short wavelength light of nm or less (ultraviolet rays, electron beams, X-rays), especially K
This problem was solved by chemically bonding a sensitizer that highly absorbs rF (249 nm) laser light. The purpose of the present invention is to provide light-absorbing polymeric materials. The present invention solves the above problems and uses excimer laser light (
(ultraviolet absorption light), especially -F laser light (249nm)
The object of the present invention is to provide a polymer lithography material that absorbs HF and has resistance to etching agents such as HF liquid and HF gas.

(問題点を解決するための手段) すなわち、本発明は一般式 %式%() で表される短波長光吸収高分子材料である。(Means for solving problems) That is, the present invention is based on the general formula %formula%() It is a short-wavelength light-absorbing polymer material represented by

この一般式において(Ω十m)/nの値が3071以下
では重合が十分に起こらず、レーザー光照射時に膜の内
部まで光が到達し難く、他方10010.5以上ではレ
ーザー光照射時に吸収しても反応が遅くなるからである
。しかして、これらのポリマーを形成するために(1)
構造を有するメタアクリル酸エステルに共重合する(I
I)構造の七ツマ−としては:ヘキサフロロイソプロピ
ルメタクリレートCH。
In this general formula, if the value of (Ω10m)/n is less than 3071, polymerization will not occur sufficiently and it will be difficult for the light to reach the inside of the film during laser light irradiation, while on the other hand, if it is more than 10010.5, it will not be absorbed during laser light irradiation. This is because the reaction will be delayed. Therefore, in order to form these polymers (1)
Copolymerized to a methacrylic acid ester having the structure (I
I) As a seven-member structure: hexafluoroisopropyl methacrylate CH.

CH,=C 「 C00C)I (CF3)。CH,=C " C00C) I (CF3).

トリフロロエチルメタクリレート Cl−13 CH2=C ■ C00CH,CF。trifluoroethyl methacrylate Cl-13 CH2=C ■ C00CH, CF.

トリフロロエチルアクリレート CH2=CH−C00CH2CF3 ヘキサフロロイソプロピルアクリレートCH,=CH−
C00CH(CF、 )2などの含弗素ビニル七ツマ−
である。或はヘキサフロロブテン CF3C=CCF。
Trifluoroethyl acrylate CH2=CH-C00CH2CF3 Hexafluoroisopropyl acrylate CH,=CH-
Fluorine-containing vinyl salts such as C00CH(CF, )2
It is. Or hexafluorobutene CF3C=CCF.

ヘキサフロロブタジェン1.3  CF2=CFCF=
CF。
Hexafluorobutadiene 1.3 CF2=CFCF=
C.F.

ヘキサフロロプロパン CF、 CF=CF、等の含弗
素オレフイン化合物等である。
These include fluorine-containing olefin compounds such as hexafluoropropane CF and CF=CF.

しかしてメチルメタアクリレートと弗素原子含有モノマ
ーとは先に述べた範囲内の所望の割合で共重合させれば
よい。
Therefore, methyl methacrylate and the fluorine atom-containing monomer may be copolymerized in a desired ratio within the above-mentioned range.

また、ナフタレン環、アントラセン、ビフェニル、フル
オレンを有する基を含有する(m)構造のモノマーとし
ては、ビニルナフタレン、ビニルアントラセン、ビニル
ビフェニル、ビニルフルオレンなどが挙げられる。その
他、多核芳香核を有する化合物としてフェナントレン、
トリフェニレン、クリセン、ピレン等の化合物があげら
れる。チルフェン)Li÷+←)連鎖を側鎖にもつもの
で上記アクリレートと弗素原子含有モノマーと共重合体
を形成するものであってもよい。そして、これらモノマ
ーを先に述べた範囲内で共重合させればよく、その際王
者を同時に共重合させるか、或は先ず王者を共重合させ
、次いで残りのモノマーを添加共重合させてもよいが前
者の王者を同時結合するモノマー共重合体の方法が好ま
しい、共重合手段としては通常のビニル化合物の共重合
手段の何れもが適用できるが、特にラジカル重合開始剤
存在下にプラズマを照射するプラズマ重合法が最も好ま
しい。ラジカル重合開始剤としては一般的ラジカル重合
に使用されるものであれば何れでもよいが例えば過酸化
ベンゾイル、ジクミルパーオキサイド、アゾビスイソブ
チロニトリルである。ラジカル重合開始剤の七ツマ−へ
の添加量はモノマーの種類、重合温度、得ようとするポ
リマーの重合等に異なり一部にはいえないが必要以上の
ラジカル重合開始剤を添加すると重合開始剤が生成した
ポリマー中に残存し好ましくない。
Furthermore, examples of the monomer having the (m) structure containing a group having a naphthalene ring, anthracene, biphenyl, and fluorene include vinylnaphthalene, vinylanthracene, vinylbiphenyl, and vinylfluorene. Other compounds with polynuclear aromatic nuclei include phenanthrene,
Examples include compounds such as triphenylene, chrysene, and pyrene. It may have a side chain having a (chilphen)Li÷+←) chain and form a copolymer with the above-mentioned acrylate and a fluorine atom-containing monomer. Then, these monomers may be copolymerized within the above-mentioned range, and in this case, the king may be copolymerized at the same time, or the king may be copolymerized first, and then the remaining monomers may be added and copolymerized. The method of monomer copolymerization in which the former king is simultaneously bonded is preferred.As the copolymerization method, any of the usual copolymerization methods for vinyl compounds can be applied, but in particular plasma irradiation in the presence of a radical polymerization initiator is preferred. Most preferred is plasma polymerization. As the radical polymerization initiator, any initiator used in general radical polymerization may be used, such as benzoyl peroxide, dicumyl peroxide, and azobisisobutyronitrile. The amount of radical polymerization initiator added to the seven polymers varies depending on the type of monomer, polymerization temperature, polymerization of the polymer to be obtained, etc., but if you add more radical polymerization initiator than necessary, the polymerization initiator will remains in the produced polymer, which is undesirable.

又、プラズマ重合法において使用されるプラズマとして
は非平衡プラズマ、特にグロー放電による低温プラズマ
が好ましく、該低温プラズマは減圧下例えば0.1〜l
OHHgの圧力下にある気体に20〜100υ好ましく
は30〜50Illの電圧を加えることによって得られ
る。使用される電極としては外部または内部平行平板電
極あるいはコイル状電極等があり、好ましくは外部平行
平板電極である。プラズマ発生源の気体は水素、メタン
、窒素、アルゴン、エチレン等の任意の気体あるいはモ
ノマーガス自体であってもよい。
In addition, the plasma used in the plasma polymerization method is preferably non-equilibrium plasma, especially low-temperature plasma generated by glow discharge, and the low-temperature plasma is used under reduced pressure, e.g.
It is obtained by applying a voltage of 20 to 100 υ, preferably 30 to 50 Ill, to a gas under a pressure of OHHg. The electrodes used include external or internal parallel plate electrodes or coiled electrodes, preferably external parallel plate electrodes. The plasma source gas may be any gas such as hydrogen, methane, nitrogen, argon, ethylene, or the monomer gas itself.

得られた共重合体は、その重合度を10’〜107オー
ダーの超高分子量化することにより超薄膜(数千人)化
することができ、また、弗素原子を含有していることに
よって耐性(11F液や14Fガス)を有し、更にエキ
シマレーザ−(紫外光領域)例えばXe−CQ(308
nm)、 Kr−F(249nm)、 Ar−Fなどを
吸収する。
The resulting copolymer can be made into an ultra-thin film (thousands of layers) by increasing its degree of polymerization to an ultra-high molecular weight of the order of 10' to 107, and is also highly resistant by containing fluorine atoms. (11F liquid or 14F gas), and excimer laser (ultraviolet light region) such as Xe-CQ (308
(nm), Kr-F (249 nm), Ar-F, etc.

以下、実施例をもって本発明を更に詳細に述べるが本発
明はこれら実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(実験例1) 内径15Io11のパイレックスガラス製重合管(容量
42mQ)にメタクリル酸メチル(HMA)2.67+
a Q (2,50X 10”” no Q )、ヘキ
サフロロイソプロピルメタクリレートCHFIPHA)
4.54m m (2,50X 10−2ffloQ)
、2−ビニルナフタレン(2VNP)0.096g(6
,25X 10″′4IIIoQ)、及び過酸化ヘンシ
イ/L/ (BPO)O,OOVg(4,13X 10
−’mo Q /g)を入れ、重合管を真空ラインに接
続し、液体窒素で凍結した。この糸を10−’Torr
以下で脱気し、系内のMMを送りだし再び融解した。こ
の操作を3回繰り返した後コックを閉じ、重合管中のモ
ノマーの一部が溶解しはじめた時点で気相中にプラズマ
を発生させた。13.56MHzの高周波発生装置によ
り、501i1.60秒間プラズマ処理を行った。
(Experiment Example 1) Methyl methacrylate (HMA) 2.67+ was placed in a Pyrex glass polymerization tube (capacity 42 mQ) with an inner diameter of 15 Io11.
a Q (2,50X 10”” no Q), hexafluoroisopropyl methacrylate CHFIPHA)
4.54mm (2,50X 10-2ffloQ)
, 2-vinylnaphthalene (2VNP) 0.096g (6
,25
-'mo Q /g), the polymerization tube was connected to a vacuum line, and frozen with liquid nitrogen. This thread is 10-'Torr
After degassing, the MM in the system was sent out and melted again. After repeating this operation three times, the cock was closed, and when a portion of the monomer in the polymerization tube began to dissolve, plasma was generated in the gas phase. 501i plasma treatment was performed for 1.60 seconds using a 13.56 MHz high frequency generator.

重合管を封管し、25℃で静置し、10日間後重合を行
った。得られた重合反応物をアセトン1ooIIIQに
溶解しエタノール2.0Qで再沈殿させてN製し、白色
ポリマーを得た。得られたポリマーの重量は0.70g
(収率は8.2重量%)であった。また、このポリマー
をアセトンに溶解し、25℃で測定した極限粘度[η]
は3.70 X 10”であった。なお、マーク、ホー
ウィンク式[η]=KMαにおいてポリメタクリル酸に
関する係数に=7.5 X 10−3、α=0.70を
代入し、[η]より求めた平均分子量は5.12 X 
10’であった。
The polymerization tube was sealed and allowed to stand at 25°C, and post-polymerization was carried out for 10 days. The obtained polymerization reaction product was dissolved in 1ooIIIQ of acetone and reprecipitated with 2.0Q of ethanol to prepare N to obtain a white polymer. The weight of the obtained polymer is 0.70g
(The yield was 8.2% by weight). In addition, the intrinsic viscosity [η] was measured at 25°C by dissolving this polymer in acetone.
was 3.70 x 10''. In addition, in the Mark and Horwink equation [η] = KMα, by substituting = 7.5 x 10-3 and α = 0.70 for the coefficient regarding polymethacrylic acid, [η] The average molecular weight determined from
It was 10'.

(実施例1) 実験例1で得られたポリマーの1重量%メチルイソブチ
ルケトン溶液をスピンコーター(ミカサ(株)製IH−
02型)を用いてシリコンウェハー上に厚さ300nm
ポリマーの薄膜のコーティングを行い、そして、ベーキ
ング(170℃、30分間)を行ったのち、フッ酸によ
る耐エツチング性を調べた。(参考図1)耐エツチング
性は50%フッ酸水溶液を該ウェハー上に綿棒にて滴下
し、25℃5分間静置した。水洗後表面を観察したが、
変性、侵食などはみとめられなかった。
(Example 1) A 1% by weight methyl isobutyl ketone solution of the polymer obtained in Experimental Example 1 was coated with a spin coater (IH-
02 type) to a thickness of 300 nm on a silicon wafer.
After coating with a thin polymer film and baking (170° C. for 30 minutes), the etching resistance with hydrofluoric acid was examined. (Reference Figure 1) Etching resistance was determined by dropping a 50% hydrofluoric acid aqueous solution onto the wafer using a cotton swab, and leaving it at 25°C for 5 minutes. I observed the surface after washing with water, but
No degeneration or erosion was observed.

(実施例2) 実施例1で得られたポリマート九t%MIBK溶液を実
施例1と同様にスピンナーでシリコンウェハー板上に厚
さ約3000人にポリマージジス1−膜を被覆した。
(Example 2) The 9t% MIBK solution obtained in Example 1 was coated onto a silicon wafer plate using a spinner in the same manner as in Example 1 to a thickness of approximately 3000 mm.

この膜基板を110℃、30分間プレベーキングしたも
のを、KFエキシマレーザ−(249nm)照射(5パ
ルス照射、1パルス約IO+1秒)した。次いで、17
0℃30分間アフターベーキングを行い更に、フロン基
板用現像症(90%ニブロバノール含有現像液:ダイフ
ロンFBMIIOダイキン(株)製)で25℃5分間現
像処理して得られた微細ラインアンドスペース線幅1.
0μmのリソグラフィーパターンが得られた(参考図−
3)。この結果鮮明な繊細パターンを描画出来ることが
明らかになった。
This film substrate was prebaked at 110° C. for 30 minutes and then irradiated with a KF excimer laser (249 nm) (5 pulses, 1 pulse approximately IO+1 second). Then 17
Fine line and space line width 1 obtained by after-baking at 0°C for 30 minutes and then developing for 5 minutes at 25°C with a development solution for Freon substrates (developing solution containing 90% nibrobanol: Daiflon FBIMIO manufactured by Daikin Co., Ltd.). ..
A 0 μm lithography pattern was obtained (reference figure -
3). As a result, it became clear that clear and delicate patterns could be drawn.

該リソグラフィー高分子材料の紫外吸収スペクトルは第
1図■であり、比較例1の(HMA−2ビニルナフタレ
ン)共重合体のそれと酷似したスペクトルであり、ちな
みににγ−Fエキシマレーザ−(249nm)付近の透
過率は約2.0%で、この線領材の吸収は極めて優れた
リソグラフィー高分子材料である。
The ultraviolet absorption spectrum of the lithographic polymer material is shown in Figure 1 (■), which is a spectrum very similar to that of the (HMA-2 vinylnaphthalene) copolymer of Comparative Example 1. The transmittance in the vicinity is about 2.0%, and the absorption of this line material is extremely excellent for lithography polymer materials.

(実験例2) メタクリル酸メチル 2.67m Q   2.50X 10−2+o Qヘ
キサフロロイソプロピルメタクリレート4.54+Q2
.50X10−”woQ2−ビニルナフタレン 0.129g  8.33X10−’o+oQ開始剤(
BPO)   0.005g  4.13X10−3a
+o12/Qの仕込み条件以外は実験例1と同様にプラ
ズマ開始重合反応を行った。
(Experimental Example 2) Methyl methacrylate 2.67m Q 2.50X 10-2+o Q Hexafluoroisopropyl methacrylate 4.54+Q2
.. 50X10-'woQ2-vinylnaphthalene 0.129g 8.33X10-'o+oQ initiator (
BPO) 0.005g 4.13X10-3a
A plasma-initiated polymerization reaction was carried out in the same manner as in Experimental Example 1 except for the charging conditions of +o12/Q.

収量 0.54g(収率6.41%) [711= 3.41 X 10” ([77] = 
7.5 X 10−’MO,70)よりMV = 4.
51 X 10’ 形状   白色粉末 (実施例3) 実験例2より得た高分子材料を実施例1同様ベーキング
(170℃、 30分間)を行った後、50%HF溶液
にて25℃、5分間ベーキングを行った。その結果、参
考図2に示すように該レジスト膜の変性、腐蝕は認めら
れず、耐性を有することが分かった。また、該リソグラ
フィー高分子材料の紫外吸収スペクトルは第1図■であ
る。
Yield 0.54g (yield 6.41%) [711= 3.41 X 10” ([77] =
7.5 x 10-'MO, 70), MV = 4.
51 x 10' Shape White powder (Example 3) The polymer material obtained from Experimental Example 2 was baked in the same manner as in Example 1 (170°C, 30 minutes), and then baked in a 50% HF solution at 25°C for 5 minutes. I did some baking. As a result, as shown in Reference FIG. 2, no denaturation or corrosion of the resist film was observed, and it was found that the resist film had resistance. Further, the ultraviolet absorption spectrum of the lithographic polymer material is shown in FIG.

(実験比較例1) メタクリル酸メチル 2.67m Q  2.50 X 10″−”ll1o
n2−ビニルナフタレン 0.064g  7.17 X 10″″’moQ開始
剤(BPO)   0.005g  4.13X10−
3moQ/(1の仕込み条件以外は実験例1と同様にプ
ラズマ開始重合反応を行った。
(Experimental Comparative Example 1) Methyl methacrylate 2.67m Q 2.50 X 10"-"ll1o
n2-vinylnaphthalene 0.064g 7.17 X 10''''moQ initiator (BPO) 0.005g 4.13X10-
A plasma-initiated polymerization reaction was carried out in the same manner as in Experimental Example 1 except for the charging conditions of 3moQ/(1).

収量 0.18g(収量75%) [η] = 5.99 X 10” ([η]=5.2
X10−’MO,76)よりMV=4.57X10’ 形状   白色粉末 ≠ (実施例会) メタクリル酸メチル 2.67mQ2.50X10−2moQトリフロロエチ
ルメタクリレート 3.56m Q   2.50 X 10−”IIIo
 n2−ビニルナフタレン 0.129g   8.36X10−’+oQ開始剤(
BPO)   0.005g  4.13XIO−3m
oQ/ Qの仕込み条件以外は実験例1と同様にプラズ
マ開始重合反応を行った。MV = 4.57 X 1
0’であった。
Yield 0.18g (yield 75%) [η] = 5.99 x 10” ([η] = 5.2
MV=4.57X10' from
n2-vinylnaphthalene 0.129g 8.36X10-'+oQ initiator (
BPO) 0.005g 4.13XIO-3m
A plasma-initiated polymerization reaction was carried out in the same manner as in Experimental Example 1 except for the oQ/Q charging conditions. MV = 4.57 x 1
It was 0'.

この高分子材料を実施例1と同様ベーキング(170℃
This polymer material was baked (170°C) in the same manner as in Example 1.
.

30分間)を行なった後、50%)IF溶液にて25℃
、5分間ベーキングをおこなった。実施例2と同様レジ
スト膜の変性、腐食は認められず耐食性を有することが
分かった。また、このリゾグラフィー高分子材料の紫外
線吸収スペクトルは第1−■図である。
30 minutes), then 50%) IF solution at 25°C.
, baking was performed for 5 minutes. Similar to Example 2, no denaturation or corrosion of the resist film was observed, indicating that the resist film had corrosion resistance. Further, the ultraviolet absorption spectrum of this lithographic polymer material is shown in Figure 1-2.

(比較例1) 実験比較例1より得た高分子材料を実施例1と同様ベー
キング(170℃、30分間)を行った。次いで50%
HF溶液にて25℃、5分間ベーキングを行ったところ
該レジスト膜は損傷を受けることが分かった。
(Comparative Example 1) The polymer material obtained in Experimental Comparative Example 1 was baked (170° C., 30 minutes) in the same manner as in Example 1. then 50%
It was found that the resist film was damaged when it was baked in an HF solution at 25° C. for 5 minutes.

(効果) 以上述べたように、本発明の短波長光吸収高分子材料は
特ににr−Fレーザー(249n111)照射に適し且
つ、PMMAのウェットエツチング(耐酸、耐アルカリ
処理)の膜損傷や溶解の欠点を弗素原子を保有する化合
物を化学結合させて解決でき、しかも、従来膜形成によ
るピンホール、耐エツチング性の良くない欠点を超高分
子量PMMAで解決でき、膜厚数千人の薄膜形成が可能
となったため焦点震動、操作が容易で、照射回数1〜数
回で高分解能微細パターン(1μm以下微細パターン)
の描画が可能なエキシマレーザ−照射高分子リゾグラフ
ィ材料を提供することができる等の効果を奏する。
(Effects) As described above, the short-wavelength light-absorbing polymer material of the present invention is particularly suitable for r-F laser (249n111) irradiation, and is suitable for preventing film damage and dissolution during wet etching (acid-resistant and alkali-resistant treatment) of PMMA. This problem can be solved by chemically bonding a compound containing a fluorine atom, and the problems of pinholes and poor etching resistance caused by conventional film formation can be solved with ultra-high molecular weight PMMA. It is now possible to perform focal vibration, easy operation, and produce high-resolution fine patterns (fine patterns of 1 μm or less) with one to several irradiation times.
It is possible to provide an excimer laser-irradiated polymer lithography material that allows drawing of images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る実施例1,2及び3の紫外線吸収
スペクトル図である。
FIG. 1 is an ultraviolet absorption spectrum diagram of Examples 1, 2, and 3 according to the present invention.

Claims (1)

【特許請求の範囲】 1、一般式 ▲数式、化学式、表等があります▼ 〔ただし、R_1、R_3、R_5は水素原子、メチル
基またはエチル基を示し、R_2は炭素数1〜5個のア
ルキル基を示し、R_4は炭素数1〜8個のアルキル基
の中、少なくとも1個の水素原子を弗素原子で置換した
フロオロアルキル基を示し、R_6はナフタレン環、ア
ントラセン環又はビフェニルのような芳香族連鎖を有す
る基であり、l、m、n、は1以上の整数で、30≦(
l+m)/n≦200である。〕 で表される短波長光吸収高分子材料
[Claims] 1. General formula ▲ Numerical formulas, chemical formulas, tables, etc. R_4 represents a fluoroalkyl group in which at least one hydrogen atom is substituted with a fluorine atom among alkyl groups having 1 to 8 carbon atoms, and R_6 represents an aromatic group such as a naphthalene ring, anthracene ring or biphenyl. It is a group having a group chain, l, m, n are integers of 1 or more, and 30≦(
l+m)/n≦200. ] A short-wavelength light-absorbing polymer material represented by
JP62261045A 1987-10-07 1987-10-16 Short wavelength light absorbing polymer material Expired - Lifetime JPH0636082B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62261045A JPH0636082B2 (en) 1987-10-16 1987-10-16 Short wavelength light absorbing polymer material
EP19880908743 EP0380667A4 (en) 1987-10-07 1988-10-07 Ultraviolet-absorbing polymer material and photoetching process
US07/469,476 US5157091A (en) 1987-10-07 1988-10-07 Ultraviolet-absorbing polymer material and photoetching process
PCT/JP1988/001028 WO1989003402A1 (en) 1987-10-07 1988-10-07 Ultraviolet-absorbing polymer material and photoetching process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62261045A JPH0636082B2 (en) 1987-10-16 1987-10-16 Short wavelength light absorbing polymer material

Publications (2)

Publication Number Publication Date
JPH01207310A true JPH01207310A (en) 1989-08-21
JPH0636082B2 JPH0636082B2 (en) 1994-05-11

Family

ID=17356290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62261045A Expired - Lifetime JPH0636082B2 (en) 1987-10-07 1987-10-16 Short wavelength light absorbing polymer material

Country Status (1)

Country Link
JP (1) JPH0636082B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262152A (en) * 1989-03-31 1990-10-24 Terumo Corp Photoresist material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619060A (en) * 1979-07-26 1981-02-23 Ricoh Co Ltd Electrophotographic liquid developer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619060A (en) * 1979-07-26 1981-02-23 Ricoh Co Ltd Electrophotographic liquid developer

Also Published As

Publication number Publication date
JPH0636082B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
JP2715881B2 (en) Photosensitive resin composition and pattern forming method
JP4346560B2 (en) Polymer of top anti-reflective coating (TARC), method for producing the same, and composition of top anti-reflective coating including the same
JP5573578B2 (en) Pattern forming method and resist material
TWI597575B (en) Resist composition and patterning process
JP5565293B2 (en) Positive resist material and pattern forming method using the same
US5157091A (en) Ultraviolet-absorbing polymer material and photoetching process
JP4694230B2 (en) Polymer of top anti-reflective coating (TARC), method for producing the same, and composition of top anti-reflective coating including the same
JP2010237662A (en) Positive resist material and patterning process using the same
TW200540190A (en) Polymer for resist, resist composition, method of fabricting pattern, and material compound of polymer for resist
TWI311235B (en)
JP2010160463A (en) Patterning process
JP2012018198A (en) Patterning process
JP5819810B2 (en) Negative resist material and pattern forming method using the same
TWI315026B (en) Top anti-refelctive coating polymer, its preparation method and top anti-reflective coating composition comprising the same
JP2004529245A (en) Polymers suitable for photoresist compositions
JP2008303315A (en) New vinyl ether copolymer
TWI303252B (en) Top anti-reflective coating polymer, its preparation method and top anti-reflective coating composition comprising the same
JP2001296662A (en) Resist composition
JP7327387B2 (en) Positive resist composition for EUV lithography and resist pattern forming method
WO2001096963A1 (en) Resist composition
JPS63156812A (en) Copolymer having o-nitrocarbinol ester group and its production
CN111095106B (en) Pattern forming method, ion implantation method, laminate, kit, and method for manufacturing electronic device
TW574605B (en) Maleimide-photoresist monomers containing halogen, polymers thereof and photoresist compositions comprising the same
JP2001350265A (en) Resist composition
JPH01207310A (en) Macromolecular material absorbing short-wave light