JPH0120646Y2 - - Google Patents

Info

Publication number
JPH0120646Y2
JPH0120646Y2 JP1982089778U JP8977882U JPH0120646Y2 JP H0120646 Y2 JPH0120646 Y2 JP H0120646Y2 JP 1982089778 U JP1982089778 U JP 1982089778U JP 8977882 U JP8977882 U JP 8977882U JP H0120646 Y2 JPH0120646 Y2 JP H0120646Y2
Authority
JP
Japan
Prior art keywords
output
wave voltage
rectangular wave
input terminal
inverting input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982089778U
Other languages
Japanese (ja)
Other versions
JPS58191514U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8977882U priority Critical patent/JPS58191514U/en
Publication of JPS58191514U publication Critical patent/JPS58191514U/en
Application granted granted Critical
Publication of JPH0120646Y2 publication Critical patent/JPH0120646Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【考案の詳細な説明】 本考案は、被測定量に応じて容量が差動的に変
化する一対の可変コンデンサの容量変化を検出す
る回路に関し、特に容量検出方式の渦流量計に用
いて好適な容量変化検出回路に関する。
[Detailed description of the invention] The present invention relates to a circuit that detects a change in capacitance of a pair of variable capacitors whose capacitance changes differentially depending on a measured quantity, and is particularly suitable for use in a capacitance detection type vortex flow meter. The present invention relates to a capacitance change detection circuit.

容量検出方式の渦流量計においては、渦の生成
による流体振動で可動電極を変位させ、差動的に
変化する一対の可変コンデンサの容量の差を検出
して、渦周波数を求め流体の流速または流量を測
定している。この場合一対の可変コンデンサの容
量CH,CLは渦周波数をνとするとそれぞれ次式
で与えられる。
In a capacitance detection type vortex flowmeter, a movable electrode is displaced by fluid vibration caused by vortex generation, and the difference in the capacitance of a pair of variable capacitors that changes differentially is detected to determine the vortex frequency and the fluid flow velocity or Measuring flow rate. In this case, the capacitances C H and C L of the pair of variable capacitors are given by the following equations, where ν is the vortex frequency.

CH=CHO+CHMsin2πν CL=CLO+CLMsin2πν ここで、CHO,CLOは容量の固定分で100pF程度
であり、CHM,CLMは容量の変化分で0.001pF程度
と非常に小さい。しかも固定分CHOとCLOとの間に
は通常10%程度の差があり、容量の差を求めても
固定分は除去できない。そして固定分CHO,CLO
温度等の外部要因で変化し、その差(CHO−CLO
も変動するため大きなノイズとなり、容量の変化
分を精度良く検出できなかつた。
C H = C HO + C HM sin2πν C L = C LO + C LM sin2πν Here, C HO and C LO are fixed capacitances of about 100 pF, and C HM and C LM are capacitance changes of about 0.001 pF. Very small. Moreover, there is usually a difference of about 10% between the fixed portions C HO and C LO , and even if the difference in capacity is determined, the fixed portion cannot be removed. The fixed portions C HO and C LO change due to external factors such as temperature, and the difference (C HO − C LO )
Since the capacitance also fluctuates, it becomes a large noise, making it impossible to accurately detect changes in capacitance.

本考案は、非反転入力端子が基準点に接続さ
れ、帰環回路にコンデンサが接続された演算増幅
器を用い、反転入力端子に第1の矩形波電圧を第
1のコンデンサを介して加えるとともに、第2の
矩形波電圧を第2のコンデンサを介して加えて微
少容量の変化をS/N良く電圧に変換した後、こ
の演算増幅器の出力を同期整流して得た出力信号
の直流分が零になるように第2の矩形波電圧の振
幅を制御しているので、一対のコンデンサの容量
の固定分の影響を有効に除去でき、容量の変化分
を精度良く検出できる容量変化検出回路を実現し
たものである。
The present invention uses an operational amplifier in which a non-inverting input terminal is connected to a reference point and a capacitor is connected to a return circuit, and a first rectangular wave voltage is applied to the inverting input terminal via the first capacitor. After applying a second rectangular wave voltage via a second capacitor and converting minute capacitance changes into voltage with good S/N ratio, the output of this operational amplifier is synchronously rectified so that the DC component of the output signal is zero. Since the amplitude of the second rectangular wave voltage is controlled so that This is what I did.

第1図は本考案回路の一実施例を示す接続図で
ある。図において、CH,CLは被測定量に応じて
容量が差動的に変化する一対の可変コンデンサ、
OSCは周波数で発振する発振器、IV1,IV2
各々インバータで、IV1には発振器OSCの発振出
力が加えられ、IV2にはIV1の出力V1が加えられ
る。よつてIV1,IV2の出力端には第2図に示す
ように位相が180゜ずれは矩形波電圧V1,V2が生
ずる。矩形波電圧V1の振幅Vsは一定であるが、
V2の振幅Vrは後述する積分器出力で制御される。
OPは演算増幅器で、その帰環回路にコンデンサ
CPを有し、反転入力端子(−)には矩形波電圧
V1がコンデンサCHを介して加えられるとともに、
V2がCLを介して加えられる。また反転入力端子
(−)とコンデンサCH,CL,CPとを結ぶ線路には
シールドSが設けられている。シールドSはOP
の非反転入力端子(+)と同様基準点に接続され
ている。SDは同期整流回路で、OPの出力V3
発振出力で同期整流するものである。ICは積分
器で、同期整流回路出力Voを積分し、その出力
をインバータIV2の電源電圧として与え、矩形波
電圧V2の振幅を制御するものである。
FIG. 1 is a connection diagram showing an embodiment of the circuit of the present invention. In the figure, C H and C L are a pair of variable capacitors whose capacitance changes differentially depending on the measured quantity.
OSC is an oscillator that oscillates at a frequency, IV 1 and IV 2 are each inverters, the oscillation output of the oscillator OSC is added to IV 1 , and the output V 1 of IV 1 is added to IV 2 . Therefore, rectangular wave voltages V 1 and V 2 are generated at the output terminals of IV 1 and IV 2 with a phase shift of 180° as shown in FIG. The amplitude Vs of the square wave voltage V 1 is constant, but
The amplitude Vr of V 2 is controlled by the integrator output, which will be described later.
OP is an operational amplifier with a capacitor in its return circuit.
C P , and the inverting input terminal (-) has a square wave voltage.
V 1 is applied through capacitor C H and
V 2 is added via CL . Further, a shield S is provided on the line connecting the inverting input terminal (-) and the capacitors C H , C L , and C P . Shield S is OP
It is connected to the reference point as well as the non-inverting input terminal (+) of . SD is a synchronous rectifier circuit that synchronously rectifies the OP output V3 using oscillation output. The IC is an integrator that integrates the synchronous rectifier output Vo, provides the output as the power supply voltage of the inverter IV 2 , and controls the amplitude of the rectangular wave voltage V 2 .

このように構成した本考案においては、互いに
位相が180゜ずれた矩形波電圧V1,V2を用い、V1
をCHに、V2をCLに与えているので、OPの出力V3
は第2図に示すように矩形波電圧V1,V2に同期
して振幅がVs・CH/CPとVr・CL/CPと交互に切
換る。よつて同期整流回路SDで発振器OSCの発
振出力で同期整流すれば、その出力電圧Voは、 Vo=CHVs−CLVr/CP (1) となる。積分器ICは同期整流回路SDの出力Voを
積分し、Voの直流成分が零になるように矩形波
電圧V2の振幅Vrを制御するので、次式の関係が
成立する。
In the present invention configured in this way, rectangular wave voltages V 1 and V 2 whose phases are shifted by 180 degrees are used, and V 1
is given to C H and V 2 to C L , so OP's output V 3
As shown in FIG. 2, the amplitude alternately switches between Vs·C H / CP and Vr·C L / CP in synchronization with the rectangular wave voltages V 1 and V 2 . Therefore, if the synchronous rectifier circuit SD performs synchronous rectification using the oscillation output of the oscillator OSC, the output voltage Vo will be Vo=C H Vs - C L Vr/C P (1). Since the integrator IC integrates the output Vo of the synchronous rectifier circuit SD and controls the amplitude Vr of the rectangular wave voltage V2 so that the DC component of Vo becomes zero, the following relationship holds true.

CHO/CPVs−CLO/CPVr=0 よつて、同期整流回路SDの出力Voは、CHO
CLOをαと置くと Vo=CHM+αCLM/CPsin2πν・Vs となり、容量の固定分CHO,CLOの影響を有効に除
去でき、容量の変化分を精度良く検出できる。
C HO /C P Vs - C LO /C P Vr = 0 Therefore, the output Vo of the synchronous rectifier circuit SD is C HO /
When C LO is set as α, Vo=C HM + αC LM /C P sin2πν·Vs, and the influence of the fixed capacitance C HO and C LO can be effectively removed, and the capacitance change can be detected with high accuracy.

なお上述では、積分器ICを用いて同期整流回
路SDの出力の直流分を零になるように矩形波電
圧V2の振幅Vrを制御する場合を例示したが、偏
差増幅器を用いてVrを制御するようにしてもよ
い。また上述では互いに180゜位相の異なる第1、
第2の矩形波電圧を発生する手段としてインバー
タIV1,IV2を用いる場合を例示したが、その他
の論理回路を用いて構成してもよい。
Note that in the above example, an integrator IC is used to control the amplitude Vr of the rectangular wave voltage V2 so that the DC component of the output of the synchronous rectifier circuit SD becomes zero, but it is also possible to control Vr using a deviation amplifier. You may also do so. In addition, in the above, the first,
Although the case where the inverters IV 1 and IV 2 are used as means for generating the second rectangular wave voltage has been exemplified, it may be configured using other logic circuits.

以上説明したように本考案回路においては、非
反転入力端子が基準点に接続され、帰環回路にコ
ンデンサが接続された演算増幅器を用い、反転入
力端子に第1の矩形波電圧を第1のコンデンサを
介して加えるとともに、第2の矩形波電圧を第2
のコンデンサを介して加えて微少容量の変化を
S/N良く電圧に変換した後、この演算増幅器の
出力を同期整流して得た出力信号の直流分が零に
なるように第2の矩形波電圧の振幅を制御してい
るので、一対のコンデンサの容量の固定分の影響
を有効に除去でき、容量の変化分を精度良く検出
できる。したがつて本考案回路を容量検出方式の
渦流量計に適用すればきわめて効果大である。
As explained above, the circuit of the present invention uses an operational amplifier whose non-inverting input terminal is connected to the reference point and a capacitor is connected to the return circuit, and the first rectangular wave voltage is applied to the inverting input terminal. A second square wave voltage is applied via a capacitor, and a second square wave voltage is applied to the second square wave voltage.
After converting the minute capacitance change into a voltage with a good S/N ratio, the output of the operational amplifier is synchronously rectified and a second rectangular waveform is applied so that the DC component of the output signal becomes zero. Since the amplitude of the voltage is controlled, the influence of the fixed capacitance of the pair of capacitors can be effectively removed, and changes in capacitance can be detected with high accuracy. Therefore, if the circuit of the present invention is applied to a capacitance detection type vortex flow meter, it will be extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案回路の一実施例を示す接続図、
第2図はその動作説明図である。 CH,CL……一対の可変コンデンサ、OSC……
発振器、IV1,IV2……インバータ、OP……演算
増幅器、SD……同期整流回路、IC……積分器。
FIG. 1 is a connection diagram showing an embodiment of the circuit of the present invention;
FIG. 2 is an explanatory diagram of the operation. C H , C L ……Pair of variable capacitors, OSC……
Oscillator, IV 1 , IV 2 ... Inverter, OP ... Operational amplifier, SD ... Synchronous rectifier circuit, IC ... Integrator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定量に応じて容量が差動的に変化する第
1、第2のコンデンサと、発振器と、この発振器
の出力に同期して一定振幅の第1の矩形波電圧を
発生する手段と、前記発振器の出力に同期し、か
つ前記第1の矩形波電圧とは180゜位相の異なる第
2の矩形波電圧を発生する手段と、反転入力端子
と出力端子間の帰還回路にコンデンサを有し、か
つ非反転入力端子が基準点に接続されている演算
増幅器と、前記第1の矩形波電圧を前記第1のコ
ンデンサを介して前記演算増幅器の反転入力端子
に加える手段と、前記第2の矩形波電圧を前記第
2のコンデンサを介して前記演算増幅器の反転入
力端子に加える手段と、前記演算増幅器の出力を
前記発振器の出力で同期整流する同期整流回路
と、前記同期整流回路の出力の直流成分が零にな
るように前記第2の矩形波電圧の振幅を制御する
手段とを備えた容量変化検出回路。
first and second capacitors whose capacitances differentially change depending on the measured quantity; an oscillator; means for generating a first rectangular wave voltage of constant amplitude in synchronization with the output of the oscillator; means for generating a second rectangular wave voltage that is synchronized with the output of the oscillator and has a phase difference of 180 degrees from the first rectangular wave voltage, and a capacitor in the feedback circuit between the inverting input terminal and the output terminal, and a non-inverting input terminal connected to a reference point; means for applying the first rectangular wave voltage to the inverting input terminal of the operational amplifier via the first capacitor; means for applying a wave voltage to an inverting input terminal of the operational amplifier via the second capacitor; a synchronous rectifier circuit for synchronously rectifying the output of the operational amplifier with the output of the oscillator; and a DC output of the output of the synchronous rectifier circuit. and means for controlling the amplitude of the second rectangular wave voltage so that the component becomes zero.
JP8977882U 1982-06-16 1982-06-16 Capacitance change detection circuit Granted JPS58191514U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8977882U JPS58191514U (en) 1982-06-16 1982-06-16 Capacitance change detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8977882U JPS58191514U (en) 1982-06-16 1982-06-16 Capacitance change detection circuit

Publications (2)

Publication Number Publication Date
JPS58191514U JPS58191514U (en) 1983-12-20
JPH0120646Y2 true JPH0120646Y2 (en) 1989-06-21

Family

ID=30098367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8977882U Granted JPS58191514U (en) 1982-06-16 1982-06-16 Capacitance change detection circuit

Country Status (1)

Country Link
JP (1) JPS58191514U (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513749A (en) * 1978-07-17 1980-01-30 Shin Etsu Chem Co Ltd Foamable coating powder composition
JPS5690211A (en) * 1979-12-24 1981-07-22 Yokogawa Hokushin Electric Corp Displacement converter
JPS573006A (en) * 1980-06-06 1982-01-08 Koji Mitsuo Leveler
JPS5733314A (en) * 1980-08-08 1982-02-23 Yokogawa Hokushin Electric Corp Displacement converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56170768U (en) * 1980-05-20 1981-12-17

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513749A (en) * 1978-07-17 1980-01-30 Shin Etsu Chem Co Ltd Foamable coating powder composition
JPS5690211A (en) * 1979-12-24 1981-07-22 Yokogawa Hokushin Electric Corp Displacement converter
JPS573006A (en) * 1980-06-06 1982-01-08 Koji Mitsuo Leveler
JPS5733314A (en) * 1980-08-08 1982-02-23 Yokogawa Hokushin Electric Corp Displacement converter

Also Published As

Publication number Publication date
JPS58191514U (en) 1983-12-20

Similar Documents

Publication Publication Date Title
CN103162681B (en) Method and device for testing signals used for micromechanical gyroscope
JPS6026463B2 (en) AC energy measurement circuit
JP2828889B2 (en) Frequency converter, control method thereof, and motor control method using frequency converter
JPH0120646Y2 (en)
US4928045A (en) Circuit arrangement for generating a measurement signal associated with the frequency of an alternating current signal
JPH02504185A (en) Circuit to evaluate variable inductance against fixed value inductance
JPH0120649Y2 (en)
JPH0130111B2 (en)
JPH0468858B2 (en)
JPH0351748Y2 (en)
JPH049581Y2 (en)
JPH0120650Y2 (en)
RU2209421C2 (en) Facility measuring conduction of liquid media
JP2575983B2 (en) Displacement detector
JPH0412465Y2 (en)
JPH055501Y2 (en)
JPH0666854A (en) Phase difference measuring circuit for synchronous signal
US3417338A (en) Phase-sensitive gated switching means
JPS63295973A (en) Measurement of loss in induction coil
JPS5819966B2 (en) displacement converter
SU1241146A1 (en) Method of indicating quadrature phase shift
JPH0463611B2 (en)
JPH0120648Y2 (en)
SU1366952A1 (en) Current instrument transducer
SU1273821A2 (en) Instrument amplifier