JPH01206280A - Detection of submerged position - Google Patents

Detection of submerged position

Info

Publication number
JPH01206280A
JPH01206280A JP63031398A JP3139888A JPH01206280A JP H01206280 A JPH01206280 A JP H01206280A JP 63031398 A JP63031398 A JP 63031398A JP 3139888 A JP3139888 A JP 3139888A JP H01206280 A JPH01206280 A JP H01206280A
Authority
JP
Japan
Prior art keywords
master station
station
wave signal
sound wave
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63031398A
Other languages
Japanese (ja)
Inventor
Ritsu Okude
奥出 律
Takao Hanada
花田 孝男
Masahiro Kuroiwa
黒岩 雅博
Kiyomi Minohara
箕原 喜代美
Toyoki Sasakura
豊喜 笹倉
Toshio Ikegawa
池川 寿雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNYUSHO DAIYON KOWAN KENSETSU KYOKUCHO
Furuno Electric Co Ltd
Original Assignee
UNYUSHO DAIYON KOWAN KENSETSU KYOKUCHO
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNYUSHO DAIYON KOWAN KENSETSU KYOKUCHO, Furuno Electric Co Ltd filed Critical UNYUSHO DAIYON KOWAN KENSETSU KYOKUCHO
Priority to JP63031398A priority Critical patent/JPH01206280A/en
Publication of JPH01206280A publication Critical patent/JPH01206280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect the position of a master station, by performing the response of a sonic wave signal between the master station provided so as to be movable in water and a plurality of sub-stations and measuring each distance on the basis of the propagation time of said sonic wave signal. CONSTITUTION:The main body part 4 of a submerged detector is provided to an investigation ship 3 and a robot 1 performs searching operation by its terminal machine while moving on the bottom of the sea. A master station 6 having a sonic wave transmitting/receiving function is provided to the robot 1 and sub-stations 8a, 8b, 8c for transmitting and receiving a sonic wave are respectively mounted on bodies 7 arranged in water. A start signal is sent out from the master station 6 and a response signal is transmitted from the sub-station 8a in response to said start signal. After the start signal is transmitted from the master station 6, the time h1 up to the reception of the response signal is detected in the master station 6 and the value 1/2 the product of said time and submerged sonic velocity V is measured as the straight distance x1 between the master station 6 and the sub-station 8a. In the same way, the straight distances x2, x3 between the master station 6 and the sub-stations 8b, 8c are measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水中位置検出方法に関し、とくには、水中に
1個の親局を移動可能に設けるとともに複数個の子局を
所定の位置に設置し、隣接する子局間のベースライン長
さをそれぞれ測定し、それらベースライン長さに基づい
て子局それぞれの設置位置を決定し、親局と子局間で音
波信号の応答を行ってその音波信号の伝播時間に基づい
て親局と子局間の各距離を測定し、移動する親局の位置
を検出する水中位置検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an underwater position detection method, and in particular, to an underwater position detection method, in which one master station is movably provided underwater and a plurality of slave stations are placed at predetermined positions. The base station is installed, the baseline length between adjacent slave stations is measured, the installation position of each slave station is determined based on the baseline length, and a sound wave signal is transmitted between the master station and the slave station. The present invention relates to an underwater position detection method that measures each distance between a master station and a slave station based on the propagation time of the sound wave signal, and detects the position of a moving master station.

(従来の技術) 最近、水中のオイル関係の調査や、海底調査等を行う際
にロボットを使用しており、そのロボットの位置検出方
法として、例えばトランスポンダ方式を採用している。
(Prior Art) Recently, robots have been used to conduct underwater oil-related surveys, seabed surveys, etc., and a transponder method, for example, has been adopted as a method for detecting the position of the robot.

トランスポンダ方式とは、音波の応答により親局とその
周辺に配置された複数の子局(トランスポンダ)との各
距離を知り、その親局の二次元的あるいは三次元的位置
を検出するもので、親局が上記ロボットに、子局が水中
設置用物体にそれぞれ取り付けられ、ロボットの位置が
検出されるようになっている。
The transponder method uses the response of sound waves to determine the distance between a master station and multiple slave stations (transponders) placed around it, and detects the two-dimensional or three-dimensional position of the master station. A master station is attached to the robot, and a slave station is attached to an object for underwater installation, so that the position of the robot can be detected.

そして検出に先立っては、上記したように各子局の設置
位置を決定するために子局間のベースライン長さを測定
する必要があり、その測定作業は、例えば下記のように
して行っている。
Prior to detection, as mentioned above, it is necessary to measure the baseline length between slave stations in order to determine the installation position of each slave station, and this measurement work can be performed, for example, as follows. There is.

すなわち、隣接する子局間のほぼ中央付近を横切るよう
に調査船を航行し、その際それぞれの子局との間で音波
信号の応答を行って調査船と子局間の直距離を求め、ま
た、子局上を航行することによりその水深を求め、それ
らデータに基づいて子局間のベースライン長さを測定し
ていた。
In other words, the survey ship is sailed so as to cross approximately the center between adjacent slave stations, and at that time, the direct distance between the survey ship and the slave stations is determined by responding with a sound wave signal to each slave station. In addition, the water depth was determined by navigating over slave stations, and the baseline length between slave stations was measured based on this data.

(発明が解決しようとする問題点) しかしながら、従来の場合、それぞれの子局間のすべて
のベースライン長さを測定するためには、調査船により
子局間及び子局上を繰り返し航行しなければならず、し
たがってその作業に非常に手間がかかるとともに日時を
要し、さらに航行する移動状態の調査船から音波信号の
送受信を行うので測定精度も低いという問題点があった
(Problem to be Solved by the Invention) However, in the conventional case, in order to measure all baseline lengths between each slave station, a research vessel must repeatedly navigate between and over the slave stations. Therefore, the work is extremely time-consuming and time-consuming, and furthermore, the measurement accuracy is low because the sonic signals are transmitted and received from a moving research vessel.

本発明は、このような事情に鑑みてなされたものであっ
て、ベースライン長さの測定が簡単かつ精度良く行える
水中位置検出方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an underwater position detection method that can easily and accurately measure the baseline length.

(問題点を解決するための手段) 本発明は、このような目的を達成するために、冒頭に記
載した水中位置検出方法において、前記ベースライン長
さそれぞれの測定を、前記親局と前記子局の互いに隣接
する2つの子局それぞれとの間の直距離を、前記親局と
前記子局それぞれと間で音波信号の応答を行ってその音
波信号の伝播時間に基づいて測定し、 前記親局から前記隣接する子局の一方の子局に第一音波
信号を送信し、前記第一音波信号に応答して前記一方の
子局から隣接する他方の子局に第二音波信号を送信し、
前記第二音波信号に応答して前記他方の子局から前記親
局に第三音波信号を送信して、前記親局における第一音
波信号の送信から第三音波信号受信までに要する経由伝
播時間に基づいて経由距離を測定し、 前記経由距離から前記直距離それぞれを差し引くことに
よって行う構成とした。
(Means for Solving the Problems) In order to achieve such an object, the present invention, in the underwater position detection method described at the beginning, measures each of the baseline lengths at the base station and the slave station. measuring the direct distance between each of two adjacent slave stations of a station based on the propagation time of the sound wave signal by performing a sound wave signal response between the base station and each of the slave stations; A first sound wave signal is transmitted from the station to one of the adjacent slave stations, and a second sound wave signal is transmitted from the one slave station to the other adjacent slave station in response to the first sound wave signal. ,
transmitting a third sound wave signal from the other slave station to the master station in response to the second sound wave signal, and transit time required from transmission of the first sound wave signal to reception of the third sound wave signal at the master station; The route distance is measured based on the route distance, and each of the direct distances is subtracted from the route distance.

(作用) 上記構成によって本発明の水中位置検出方法においては
、親局から一方の子局に第一音波信号が送信されると、
一方の子局から他方の子局に第二音波信号が、さらに他
方の子局から親局に第三音波信号が送信され、全体の経
由伝播時間に基づいて経由距離Xが得られ、この経由距
離Xから親局と上記子局それぞれとの間の直距離を差し
引くことによりベースライン長さが測定されろ。
(Function) With the above configuration, in the underwater position detection method of the present invention, when the first sound wave signal is transmitted from the master station to one of the slave stations,
A second sound wave signal is transmitted from one slave station to the other slave station, and a third sound wave signal is further transmitted from the other slave station to the master station, and the route distance X is obtained based on the overall route propagation time. The baseline length is determined by subtracting the direct distance between the master station and each of the slave stations from the distance X.

(実施例) 以下、本発明の実施例を図面に基いて詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

まず本発明の水中位置検出方法を説明するに先立って、
第1図により、本発明の水中位置検出方法を行う水中位
置検出装置の全体構成について説明する。第1図は水中
位置検出装置の全体構成図である。
First, before explaining the underwater position detection method of the present invention,
With reference to FIG. 1, the overall configuration of an underwater position detection device that performs the underwater position detection method of the present invention will be explained. FIG. 1 is an overall configuration diagram of the underwater position detection device.

図において、符号lは海底上に移動可能に設けられるロ
ボットであり、ケーブル2を介して海上の調査船3に接
続されている。調査船3には水中探知装置の本体部4が
設けられ、ロボットlには磁気センサーや水中カメラ等
の水中探知装置の端末機5が設けられている。ロボット
lは海底上を移動しながらその端末jfA5で探知動作
を行い、上記ケーブル2を介してその探知信号を調査船
3の本体部4に送るようになっている。またロボットl
には音波の送受波機能を有する親局6が設けられている
。7それぞれは水中設置用物体であり、水中設置用物体
7それぞれには音波の送受波を行う子局8a 、8b 
、8cそれぞれが取り付けられている。
In the figure, reference numeral 1 indicates a robot movably installed on the seabed, and is connected to a research ship 3 on the sea via a cable 2. The research vessel 3 is provided with a main body 4 of an underwater detection device, and the robot 1 is provided with a terminal 5 of an underwater detection device such as a magnetic sensor or an underwater camera. The robot 1 performs a detection operation with its terminal jfA5 while moving on the seabed, and sends the detection signal to the main body 4 of the research vessel 3 via the cable 2. Also robot l
A master station 6 having a function of transmitting and receiving sound waves is provided. Each of 7 is an object for underwater installation, and each of the objects 7 for underwater installation has slave stations 8a and 8b that transmit and receive sound waves.
, 8c are each attached.

上記装置を使用する本発明の水中位置検出方法の一例に
ついて、以下順次説明していく。
An example of the underwater position detection method of the present invention using the above device will be sequentially explained below.

■ 子局8a 、8b 、8c及び親局6の設置調査船
3を移動して、3台の水中設置用物体7と1台のロボッ
トlを海底に配置する。
■ Installation of slave stations 8a, 8b, 8c and master station 6 The research vessel 3 is moved and three underwater installation objects 7 and one robot 1 are placed on the seabed.

水中設置用物体7それぞれは、第2図に示すように、2
次元的に略正三角形の各頂点に位置するように配置し、
その水中設置用物体7の形成する正三角形内のほぼ中央
に位置するようにロボットlを配置する。このようにし
て、子局8a 、8b 。
Each of the underwater installation objects 7 has two parts as shown in FIG.
Dimensionally placed at each vertex of an approximately equilateral triangle,
The robot 1 is positioned approximately at the center of the equilateral triangle formed by the underwater installation object 7. In this way, the slave stations 8a and 8b.

8cと親局6とを探知海底領域に設置する。8c and the master station 6 are installed in the detection seabed area.

■ ベースライン長さB L + 、 B L t 、
 B L sの測定A、親局6と子局8a 、8b 、
8cそれぞれとの間の直距離(スラントレンジ長さ)の
測定まず親局6から子局8a 、8b 、8cに起動信
号を送信する。この起動信号としては、第3図に示すよ
うなダブルパルス信号を用いる。すなわち、2ms幅の
第1パルスp1の発生後13m s後にさらに2ms幅
の第2パルスp、を発生さ仕、とらに40KIIzの搬
送波により送信する。子局8aは上記起動信号に応答し
て、50KHzを中心周波数とするリニア周波数変調波
により形成される応答信号を送信する。
■ Baseline length B L + , B L t ,
Measurement A of B L s, master station 6 and slave stations 8a, 8b,
Measurement of the direct distance (slant range length) between the master station 6 and each of the slave stations 8c First, an activation signal is transmitted from the master station 6 to the slave stations 8a, 8b, and 8c. As this starting signal, a double pulse signal as shown in FIG. 3 is used. That is, 13 ms after the generation of the first pulse p1 with a width of 2 ms, a second pulse p with a width of 2 ms is further generated and transmitted using a carrier wave of 40 KIIz. In response to the activation signal, the slave station 8a transmits a response signal formed by a linear frequency modulated wave having a center frequency of 50 KHz.

第4図は子局8aの構成図であり、子局8aは受信回路
9と起動信号検出回路10と応答モード選択回路IIと
遅延回路12と送信信号発生回路!3と送信指令回路1
4と送信回路15とから構成されている。そして受信回
路9で受信された子局起動信号は、起動信号検出回路1
0でダブルパルス間隔と第1と第2パルスの受信周波数
の検出が行われて特定の起動信号と検出され、応答モー
ド選択回路11において検出起動信号に対応する応答信
号が選択される。上記の選択された応答信号は、一方で
は遅延回路12を介して送信信号発生回路13に、他方
では送信指令回路14を介して送信信号発生回路13に
与えられ、この構成により上記の応答信号の選択から一
定時間後の送信指令回路14からのアクティブ信号出力
時に、送信信号発生回路13から上記したリニア周波数
変調波信号が出力される。このリニア周波数変調波信号
が応答信号として送信回路15から親局6に送信され、
親局6ではこのリニア周波数変調波信号の応答信号をパ
ルス圧縮処理する。
FIG. 4 is a configuration diagram of the slave station 8a, in which the slave station 8a includes a receiving circuit 9, an activation signal detection circuit 10, a response mode selection circuit II, a delay circuit 12, and a transmission signal generation circuit! 3 and transmission command circuit 1
4 and a transmitting circuit 15. The slave station activation signal received by the receiving circuit 9 is transmitted to the activation signal detection circuit 1.
0, the double pulse interval and the reception frequencies of the first and second pulses are detected and a specific activation signal is detected, and the response mode selection circuit 11 selects a response signal corresponding to the detected activation signal. The above selected response signal is given to the transmission signal generation circuit 13 via the delay circuit 12 on the one hand, and to the transmission signal generation circuit 13 via the transmission command circuit 14 on the other hand. When the active signal is output from the transmission command circuit 14 after a certain period of time from the selection, the above-mentioned linear frequency modulated wave signal is output from the transmission signal generation circuit 13. This linear frequency modulated wave signal is transmitted from the transmitting circuit 15 to the master station 6 as a response signal,
The master station 6 performs pulse compression processing on the response signal of this linear frequency modulated wave signal.

送信信号発生回路13から発生される信号のデータはR
OMに記憶されていて、選択応答信号に対応してアドレ
スが切り替えられ、対応する信号が取り出される。この
ROMを使用する信号発生方式を採用すれば、クリスタ
ルをクロックとしているので再現性が良く、安定した出
力が得られるとともに、出力信号のデータ変換も簡単に
行える利点がある。
The data of the signal generated from the transmission signal generation circuit 13 is R
The address is stored in the OM, and the address is switched in response to the selection response signal, and the corresponding signal is extracted. If this signal generation method using a ROM is adopted, since the crystal is used as a clock, reproducibility is good, a stable output can be obtained, and data conversion of the output signal can be easily performed.

また上記のように、起動信号としてダブルパルス信号を
用いて特定するようにすれば、起動信号と外部信号との
判別が確実になされて誤動作の発生が防止され、さらに
応答信号としてリニア周波数変調波により形成される信
号を使用するようにすれば、応答信号はノイズや外部信
号に影響されることなく親局6に確実に伝播されるとと
もに、パルス圧縮処理をすることにより、確実に信号検
出される。
In addition, as described above, if the double pulse signal is used as the starting signal for identification, the starting signal can be reliably distinguished from the external signal, preventing malfunctions, and the linear frequency modulated signal can be used as the response signal. By using the signal formed by Ru.

上記のようにして、親局6から起動信号が送信され、そ
れに応答して子局8aから応答信号が送信されるもので
、親局6から起動信号送信後、親局6で応答信号を受信
するまでの時間h1を検出し、その時間と水中音速Vと
の積の1/2が親局6と子局8a間の直距離XIとして
測定される。
As described above, the activation signal is transmitted from the master station 6, and in response, a response signal is transmitted from the slave station 8a.After the activation signal is transmitted from the master station 6, the response signal is received by the master station 6. 1/2 of the product of that time and the underwater sound speed V is measured as the direct distance XI between the master station 6 and the slave station 8a.

そして上記と同様にして、親局6と子局8b。Then, in the same manner as above, the master station 6 and the slave station 8b.

8c間の直距離X9、x3が測定される。子局8b。Direct distances X9 and x3 between 8c are measured. Child station 8b.

8cそれぞれからの応答信号の搬送波としては、それぞ
れ60KHz 、70KHzを中心周波数とするリニア
周波数変調波信号を用い、この周波数の相異により親局
6側においてパルス圧縮等の信号処理の後対応する子局
を特定する。
Linear frequency modulated wave signals with center frequencies of 60 KHz and 70 KHz are used as the carrier waves of the response signals from each of the 8c, and due to the difference in frequency, after signal processing such as pulse compression on the master station 6 side, the corresponding child Identify the station.

B、経由距離X5、X2、X、の測定 親局6、子局8a 、8bの経由距離の測定について、
第5図のタイムチャートを交えて説明する。
B. Measuring the transit distances X5, X2, and X Regarding the measurement of the transit distances of the master station 6 and slave stations 8a and 8b,
This will be explained with reference to the time chart shown in FIG.

まず親局6から子局8aのみの起動信号(第一音波信号
)を送信する。この起動信号としては、第1パルスP、
周波数が40KHz、第2パルス22周波数が50KH
zであるダブルパルス信号を用いる。この起動信号に応
答して子局8aでは受信回路9により受信信号P3、P
4が出力され、この受信信号P5、P4に応答して起動
信号検出回路10から起動信号検出信号P、が出力され
、この起動信号検出パルスP、に対応して子局8bのみ
の起動信号(第二音波信号)が送信回路15から送信さ
れる。この起動信号としても、第1パルスP6、第2パ
ルスP?とからなり特定周波数を有するダブルパルス信
号を用いる。この起動信号に応答して子局8bでは子局
8aと同様に動作して、受信信号Pg、Ps、検出信号
P1゜を順次出力し、圧縮パルス信号よりなる応答信号
pHを出力して送信し、親局6では、その受信信号P1
2を出力し、さらにそれに応答して検出信号PI3を出
力し、受信を完了する。
First, the master station 6 transmits an activation signal (first sound wave signal) only to the slave station 8a. This starting signal includes the first pulse P,
Frequency is 40KHz, second pulse 22 frequency is 50KH
A double pulse signal of z is used. In response to this activation signal, the receiving circuit 9 in the slave station 8a outputs the received signals P3 and P.
4 is output, and in response to the received signals P5 and P4, the activation signal detection circuit 10 outputs the activation signal detection signal P, and in response to this activation signal detection pulse P, the activation signal ( A second sound wave signal) is transmitted from the transmitting circuit 15. As this starting signal, the first pulse P6, the second pulse P? A double pulse signal with a specific frequency is used. In response to this activation signal, the slave station 8b operates in the same manner as the slave station 8a, and sequentially outputs the received signals Pg, Ps, and the detection signal P1°, and outputs and transmits a response signal pH consisting of a compressed pulse signal. , in the master station 6, the received signal P1
2, and in response, outputs a detection signal PI3 to complete the reception.

C,ベースライン長さBL、1Bl、、B L zの算
出 そして、親局6での起動信号の送信後、子局8bからの
応答信号の受信までの経由伝播時間T1を検出し、その
経由伝播時間T、から子局8a、8bにおける遅延時間
t +、j tを差し引いた時間と水中音速Vとの積に
より親局6→子局8a−子局8b−親局6の経由距離X
1が測定される。
C. Calculation of baseline lengths BL, 1Bl, , B L z Then, detect the transit propagation time T1 from the transmission of the activation signal at the master station 6 to the reception of the response signal from the slave station 8b, and By multiplying the time obtained by subtracting the delay time t+,jt at the slave stations 8a and 8b from the propagation time T and the underwater sound speed V, the route distance from the master station 6 to the slave station 8a to the slave station 8b to the master station 6 is
1 is measured.

そして、子局8a 、8b間のベースライン長さBL、
の測定は、経由距離X1から直距離X +、X 1それ
ぞれをを差し引いて行う。
Then, the baseline length BL between slave stations 8a and 8b,
The measurement is performed by subtracting the direct distances X+ and X1 from the route distance X1.

経由距離X t 、 X 3の測定も上記X+と同様に
行い、子局8b 、8c間のベースライン長さBL、の
測定は経由距離X、から直距離Xt+X3を差し引き、
さらに子局8c 、Ba間のベースライン長さBL3の
測定は経由距離X3から直距離X 3+X Iを差し引
いて行う。
The measurement of the transit distances X t and X 3 is also performed in the same manner as the above X+, and the baseline length BL between the slave stations 8b and 8c is measured by subtracting the direct distance X t + X 3 from the transit distance X.
Furthermore, the baseline length BL3 between the slave station 8c and Ba is measured by subtracting the direct distance X3+XI from the route distance X3.

上記の経由距離X、、X、の測定の際に親局6の送信す
る子局8b 、8cの起動信号それぞれの第1パルス信
号の搬送波周波数はともに40KHzとし、第2パルス
の搬送波周波数は60 K I−Iz 。
When measuring the above-mentioned route distances X, , K I-Iz.

70KHzとする。The frequency shall be 70KHz.

■ 子局8a 、8b 、8cそれぞれの位置決定上記
のようにそれぞれの子局8a 、8b 、8c間のベー
スライン長さBLI、BL、、BL、が測定されると、
絶対座標位置の検知可能な調査船3と子局8a 、8b
 、8cとの間で音波信号の応答を行ってその間の直距
離を測定し、幾何学的に子局8a。
■ Position determination of each slave station 8a, 8b, 8c When the baseline lengths BLI, BL, BL, between each slave station 8a, 8b, 8c are measured as described above,
Research vessel 3 and slave stations 8a and 8b capable of detecting absolute coordinate positions
, 8c and measure the direct distance therebetween, geometrically determining the direct distance between the slave stations 8a and 8c.

8b、8.cそれぞれの絶対座標位置を決定する。8b, 8. Determine the absolute coordinate position of each c.

■ 親局6と子局8a 、8b 、8c間の各距離を測
定による親局6の位置検出 そして、それら子局8a 、8b 、8c間を移動する
親局6とそれぞれの子局8a 、8b 、8c間で音波
信号の応答を行い、親局6とそれぞれの子局8a 、8
b 、80間の距離を逐次測定して、親局6の絶対座標
位置を子局8a 、8b 、8cそれぞれの位置から相
対的に検出する。
■ Detection of the position of the master station 6 by measuring the distances between the master station 6 and the slave stations 8a, 8b, 8c, and the master station 6 moving between the slave stations 8a, 8b, 8c and the respective slave stations 8a, 8b. , 8c, and the master station 6 and each slave station 8a, 8
The absolute coordinate position of the master station 6 is detected relative to the position of each of the slave stations 8a, 8b, and 8c by sequentially measuring the distance between them.

ここにおける上記の親局6と子局8a 、8b 、8c
間の距離の測定方法は、用いる信号の種類は異なるが、
上記した■のベースライン長さの測定において行ったA
における親局6と子局8a 、8b 。
Here, the above-mentioned master station 6 and slave stations 8a, 8b, 8c
The method of measuring the distance between
A performed in measuring the baseline length in (■) above.
The master station 6 and slave stations 8a and 8b.

8cそれぞれとの間の直距離の測定方法と同様である。The method of measuring the direct distance between each of the points 8c and 8c is the same.

(発明の効果) 以上のように、本発明によれば、水中位置検出のために
必要な各子局間のベースライン長さの測定が、親局から
子局へ第一音波信号が送信され、その第一音波信号に基
づいて子局から他方の子局に第二音波信号が送信され、
さらに他方の子局から親局に第三音波信号が送信され、
そのそれぞれの音波信号の全体の経由伝播時間に基づい
て経由距離が得られ、この経由距離から親局と」二記子
局それぞれとの間の直距離を差し引くことによりなされ
るので、従来のようにベースライン長さ測定のために調
査船を航行させる必要がなく、親局、子局の設置後手間
をかけることなく短時間でベースライン長さの測定が行
え、全体の調査期間も大幅に短縮される。
(Effects of the Invention) As described above, according to the present invention, the baseline length between each slave station required for underwater position detection can be measured by transmitting the first sound wave signal from the master station to the slave station. , a second sound wave signal is transmitted from the slave station to the other slave station based on the first sound wave signal,
Furthermore, a third sound wave signal is transmitted from the other slave station to the master station,
The route distance is obtained based on the total route propagation time of each sound wave signal, and it is calculated by subtracting the direct distance between the master station and each of the two slave stations from this route distance. There is no need to sail the survey vessel to measure the baseline length, and the baseline length can be measured in a short time without any effort after installing the master station and slave stations, significantly shortening the overall survey period. be done.

また、停止状態の親局、子局間での音波信号の応答によ
りその測定動作が行われるので、ベースラインの測定精
度も向上される。
Further, since the measurement operation is performed based on the response of the sound wave signal between the master station and the slave station in the stopped state, the baseline measurement accuracy is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明の実施例に係り、第1図は
水中位置検出装置の全体構成図、第2図は親局、子局の
配置図、第3図は用いる信号を示す図、第4図は子局の
ブロック構成図、第5図は動作説明のためのタイムチャ
ートである。 6は親局、8a 、8b 、8c子局。 代理人 弁 理 士 岡 1)和 秀 第1図 第2図 二一一一一一一一一
Figures 1 to 5 relate to embodiments of the present invention, with Figure 1 showing the overall configuration of the underwater position detection device, Figure 2 showing the arrangement of the master station and slave stations, and Figure 3 showing the signals used. 4 is a block diagram of the slave station, and FIG. 5 is a time chart for explaining the operation. 6 is a master station, and 8a, 8b, 8c are slave stations. Agent Patent Attorney Oka 1) Hide Kazu Figure 1 Figure 2 211111111

Claims (1)

【特許請求の範囲】[Claims] (1)水中に1個の親局を移動可能に設けるとともに複
数個の子局を所定の位置に設置し、隣接する子局間のベ
ースライン長さをそれぞれ測定し、それらベースライン
長さに基づいて子局それぞれの設置位置を決定し、親局
と子局間で音波信号の応答を行ってその音波信号の伝播
時間に基づいて親局と子局間の各距離を測定し、移動す
る親局の位置を検出する水中位置検出方法において、前
記ベースライン長さそれぞれの測定を、 前記親局と前記子局の互いに隣接する2つの子局それぞ
れとの間の直距離を、前記親局と前記子局それぞれと間
で音波信号の応答を行ってその音波信号の伝播時間に基
づいて測定し、 前記親局から前記隣接する子局の一方の子局に第一音波
信号を送信し、前記第一音波信号に応答して前記一方の
子局から隣接する他方の子局に第二音波信号を送信し、
前記第二音波信号に応答して前記他方の子局から前記親
局に第三音波信号を送信して、前記親局における第一音
波信号の送信から第三音波信号受信までに要する経由伝
播時間に基づいて経由距離を測定し、 前記経由距離から前記直距離それぞれを差し引くことに
よって行うことを特徴とする水中位置検出方法。
(1) Install one master station movably underwater, install multiple slave stations at predetermined positions, measure the baseline lengths between adjacent slave stations, and adjust the baseline lengths to Based on this, the installation position of each slave station is determined, a sound wave signal is responded between the master station and the slave station, each distance between the master station and the slave station is measured based on the propagation time of the sound wave signal, and the distance between the master station and the slave station is measured and moved. In an underwater position detection method for detecting the position of a master station, each of the baseline lengths is measured, the direct distance between the master station and each of two adjacent slave stations is measured, and the direct distance between the base station and each of two adjacent slave stations is measured. transmitting a sound wave signal response between the master station and each of the slave stations, measuring the sound wave signal based on the propagation time of the sound wave signal, and transmitting a first sound wave signal from the master station to one of the adjacent slave stations; transmitting a second sound wave signal from the one slave station to the other adjacent slave station in response to the first sound wave signal;
transmitting a third sound wave signal from the other slave station to the master station in response to the second sound wave signal, and transit time required from transmission of the first sound wave signal to reception of the third sound wave signal at the master station; An underwater position detection method characterized by: measuring a route distance based on the route distance, and subtracting each of the direct distances from the route distance.
JP63031398A 1988-02-12 1988-02-12 Detection of submerged position Pending JPH01206280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63031398A JPH01206280A (en) 1988-02-12 1988-02-12 Detection of submerged position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63031398A JPH01206280A (en) 1988-02-12 1988-02-12 Detection of submerged position

Publications (1)

Publication Number Publication Date
JPH01206280A true JPH01206280A (en) 1989-08-18

Family

ID=12330154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63031398A Pending JPH01206280A (en) 1988-02-12 1988-02-12 Detection of submerged position

Country Status (1)

Country Link
JP (1) JPH01206280A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240442A (en) * 2006-03-10 2007-09-20 Ntt Facilities Inc Photographing position specifying system, device, and method
JP2007240440A (en) * 2006-03-10 2007-09-20 Ntt Facilities Inc Photographing position specifying system, device, and method
JP2007240441A (en) * 2006-03-10 2007-09-20 Ntt Facilities Inc Photographing position specifying system, device, and method
JP2007240439A (en) * 2006-03-10 2007-09-20 Ntt Facilities Inc Photographing position specifying system, device, and method
JP2019168291A (en) * 2018-03-22 2019-10-03 沖電気工業株式会社 Positioning system, data processing device, data processing method, program, positioning target device, and peripheral device
WO2024174327A1 (en) * 2023-02-23 2024-08-29 深圳市思傲拓科技有限公司 Underwater robot positioning method, underwater positioning system, and readable storage medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240442A (en) * 2006-03-10 2007-09-20 Ntt Facilities Inc Photographing position specifying system, device, and method
JP2007240440A (en) * 2006-03-10 2007-09-20 Ntt Facilities Inc Photographing position specifying system, device, and method
JP2007240441A (en) * 2006-03-10 2007-09-20 Ntt Facilities Inc Photographing position specifying system, device, and method
JP2007240439A (en) * 2006-03-10 2007-09-20 Ntt Facilities Inc Photographing position specifying system, device, and method
JP2019168291A (en) * 2018-03-22 2019-10-03 沖電気工業株式会社 Positioning system, data processing device, data processing method, program, positioning target device, and peripheral device
WO2024174327A1 (en) * 2023-02-23 2024-08-29 深圳市思傲拓科技有限公司 Underwater robot positioning method, underwater positioning system, and readable storage medium

Similar Documents

Publication Publication Date Title
EP0447783B1 (en) Hydroacoustic ranging system
US4532617A (en) System for locating a towed marine object
US4070671A (en) Navigation reference system
US4845686A (en) Method and device for determining the position of immersed objects with respect to the ship which tows them
WO2003023446A1 (en) High resolution bathymetric sonar system and measuring method for measuring the physiognomy of the seabed
JP2007500348A (en) Distance measuring method and apparatus using ultrasonic waves
JPH01206280A (en) Detection of submerged position
KR20120096690A (en) Apparatus for measuring position of underwater robot
KR20160057533A (en) Nosie detecting device of ultrasonic sensor for vehicle and noise detecting method thereof
Shoval et al. Measurement of angular position of a mobile robot using ultrasonic sensors
JP2004138481A (en) Position measuring device and robot using it
CN205941897U (en) Reduce indoor positioning system of blind area
KR0164888B1 (en) System for measuring position of moving object
JPH11231039A (en) Multi-user underwater positioning device
JPH05302974A (en) Acoustic positioning apparatus
JPH0720223A (en) Device for measuring position of unmanned carrying vehicle
KR20190112494A (en) The buried object's depth and position maesureement method and device using acoustic wave
JPH06118172A (en) Acoustic position measuring device
CN112558003B (en) Underwater acoustic network topology sensing method based on vector orientation and ranging
JPS61271484A (en) Buried object detector
JP2820311B2 (en) Acoustic navigation measurement system for submersibles
Yata et al. Using one bit wave memory for mobile robots' new sonar-ring sensors
JPS60233579A (en) Position measuring method and its device
CN118209970A (en) Method, system, vehicle and storage medium for eliminating synchronous interference of ultrasonic radar
JPH07333318A (en) Device for measuring three-dimensional submerging attitude of linear towed body