JPH01206180A - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JPH01206180A
JPH01206180A JP2881288A JP2881288A JPH01206180A JP H01206180 A JPH01206180 A JP H01206180A JP 2881288 A JP2881288 A JP 2881288A JP 2881288 A JP2881288 A JP 2881288A JP H01206180 A JPH01206180 A JP H01206180A
Authority
JP
Japan
Prior art keywords
pilot
pressure
chamber
flow path
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2881288A
Other languages
Japanese (ja)
Inventor
Kazuo Uehara
上原 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2881288A priority Critical patent/JPH01206180A/en
Publication of JPH01206180A publication Critical patent/JPH01206180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To enhance the responsiveness of a flow control valve and to enable sensible flow control by providing a variable orifice in a flow passage, and by providing an orifice valve in a first pilot circuit for the variable orifice. CONSTITUTION:A variable orifice 11 adapted to be moved by a pilot pressure in a first pilot chamber 12 and the force of a spring 13 in a direction in which an input port 14 and an output port 15 are closed, and adapted to be moved by pilot pressures in second and third pilot chambers 16, 17 in a direction in which the input port 14 and the output port 15 are communicated, is provided in a flow passage 10, and an orifice valve 25 is disposed in a first pilot circuit 20 connected to the first pilot chamber 12. With this arrangement, the flow passage may be simplified while the attaching area may be reduced, and it is sufficient to throttle a slight flow rate of fluid, thereby it is possible to enhance the responsiveness, and to control the flow of fluid at a slight value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は建設機械等の油圧回路に用いる流量制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a flow control device used in a hydraulic circuit of a construction machine or the like.

〔従来の技術〕[Conventional technology]

建設機械、例えばパワーショベルは車体にアームシリン
ダにより上下回動されるアームを枢着し、そのアームに
ブームをブームシリンダで上下回動自在に枢着すると共
に、そのブームにパケットをパケットシリンダで上下回
動自在に取付けた腕弐作業機を備えている。
Construction machinery, such as power excavators, has an arm pivoted to the vehicle body that can be moved up and down by an arm cylinder, and a boom is pivoted to the arm so that it can be moved up and down by a boom cylinder, and packets are moved up and down by a packet cylinder to the boom. Equipped with a rotatably attached two-arm work machine.

この様な腕弐作業機の油圧回路としては、例えば第3図
に示すように、ポンプ1の吐出路1aにアーム弁2、ブ
ーム弁3、パケット弁4を設けてアームシリンダ5、ブ
ームシリンダ6、パケットシリンダ7にポンプ1の吐出
圧油を供給する油圧回路が知られている。
For example, as shown in FIG. 3, the hydraulic circuit of such an arm-operating machine includes an arm valve 2, a boom valve 3, and a packet valve 4 in the discharge path 1a of the pump 1, and the arm cylinder 5, boom cylinder 6 , a hydraulic circuit that supplies pressure oil discharged from the pump 1 to the packet cylinder 7 is known.

このような油圧回路においてアームシリンダ5とブーム
シリンダ6を同時操作する場合には負荷の軽いシリンダ
にポンプ1の圧油が供給されるので、例えば、アーム弁
2の入口側流路2aに流量絞り弁8と逆止弁9を直列に
設け、アームシリンダ5とブームシリンダ6を同時操作
する時には流量絞り弁8を制御動作してアーム弁2へ流
れる流量を制限してアームシリンダ5とブームシリンダ
6が負荷の大小に関係なしに同一速度で作動するように
すると共に、逆止弁9によりアーム弁2側から逆流しな
いようにしている。
In such a hydraulic circuit, when the arm cylinder 5 and boom cylinder 6 are operated simultaneously, the pressure oil of the pump 1 is supplied to the cylinder with a light load. A valve 8 and a check valve 9 are provided in series, and when the arm cylinder 5 and boom cylinder 6 are operated simultaneously, the flow rate restricting valve 8 is controlled and the flow rate flowing to the arm valve 2 is restricted, and the flow rate between the arm cylinder 5 and boom cylinder 6 is controlled. is operated at the same speed regardless of the magnitude of the load, and the check valve 9 prevents backflow from the arm valve 2 side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

かかる油圧回路であると、流量を制御する流路、つまり
アーム弁2の入口側流路2aに流量絞り弁8と逆止弁9
を直列に設けているので、流路が複雑で取付は面積が大
となると共に、流量絞り弁8に制御信号を入力して流路
を流れる流量を制御するので応答性が悪くなるばかりか
、制御信号は大流量を制御する流量絞り弁8を制御動作
できる大きな値となって微少に流量を制御できないこと
がある。
In such a hydraulic circuit, a flow rate restricting valve 8 and a check valve 9 are provided in the flow path for controlling the flow rate, that is, the inlet side flow path 2a of the arm valve 2.
Since these are installed in series, the flow path is complicated and the mounting area is large, and since a control signal is input to the flow rate restricting valve 8 to control the flow rate flowing through the flow path, not only does the responsiveness deteriorate, The control signal may have a value large enough to control the flow rate restricting valve 8 that controls a large flow rate, and may not be able to control the flow rate minutely.

そこで、本発明は上記の問題点を解決できるようにした
流量制御装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a flow rate control device that can solve the above problems.

〔課題を解決するための手段及び作用〕流路10に、第
2パイロット室16の圧力により流路10の上流側と下
流側の連通面積を増大する方向に作動し、第1パイロッ
ト室12の圧力で流路10の上流側と下流側を遮断する
方向に作動し、かつ前記流路10の上流側に接続した補
助パイロット回路21を絞り作動する可変絞り11を設
け、前記補助パイロット回路21に前記流路10の下流
側より上流側への流通を阻止する逆止弁24を設けると
共に、その補助パイロット回路21を前記第1パイロッ
ト室12に接続した第1パイロット回路20に接続し、
該第1パイロット回路20を制御可能な絞り弁25を介
して前記流路10の下流側に接続すると共に、前記第2
パイロット室16を前記流路10の上流側に接続して、
絞り弁25で第1パイロット回路20の流量を制御する
ことで流路10の上流側より下流側への流量を制御でき
るようにしたものである。
[Means and effects for solving the problem] The pressure of the second pilot chamber 16 acts in the flow path 10 in the direction of increasing the communication area between the upstream side and the downstream side of the flow path 10, and the pressure of the first pilot chamber 12 increases. A variable throttle 11 is provided which operates in a direction to block the upstream and downstream sides of the flow path 10 by pressure, and which throttles the auxiliary pilot circuit 21 connected to the upstream side of the flow path 10. A check valve 24 is provided to prevent flow from the downstream side to the upstream side of the flow path 10, and its auxiliary pilot circuit 21 is connected to the first pilot circuit 20 connected to the first pilot chamber 12,
The first pilot circuit 20 is connected to the downstream side of the flow path 10 via a controllable throttle valve 25, and the second
Connecting the pilot chamber 16 to the upstream side of the flow path 10,
By controlling the flow rate of the first pilot circuit 20 with the throttle valve 25, the flow rate from the upstream side to the downstream side of the flow path 10 can be controlled.

〔実 施 例〕〔Example〕

第1図に示すように、流路10には可変絞り11が設け
られ、この可変絞り11は第1パイロット室12のパイ
ロット圧とバネ13の力で入口ボート14と出口ポート
15を遮断する方向に移動されると共に、第2、第3パ
イロット室16.17内のパイロット圧で入口ボート1
4と出口ボート15を連通ずる方向に移動され、第2パ
イロット室16には第2パイロット回路18で流路10
の上流圧P1が供給されると共に、第3パイロット室1
7には第3パイロット回路19で流路10の下流圧P2
が供給され、第1パイロット室12には第1パイロット
回路20で流路10の下流圧P2が供給され、かつ補助
パイロット路21で流路10の上流圧P。
As shown in FIG. 1, a variable throttle 11 is provided in the flow path 10, and this variable throttle 11 is directed in a direction that blocks the inlet boat 14 and the outlet port 15 by the pilot pressure of the first pilot chamber 12 and the force of the spring 13. At the same time, the pilot pressure in the second and third pilot chambers 16 and 17
4 and the outlet boat 15, and the second pilot chamber 16 is connected to the flow path 10 by the second pilot circuit 18.
The upstream pressure P1 is supplied, and the third pilot chamber 1
7, the third pilot circuit 19 controls the downstream pressure P2 of the flow path 10.
is supplied to the first pilot chamber 12, the downstream pressure P2 of the flow path 10 is supplied to the first pilot chamber 12 through the first pilot circuit 20, and the upstream pressure P2 of the flow path 10 is supplied through the auxiliary pilot path 21.

が供給され、この補助パイロット路21は前記可変絞り
11の補助出口ボート22、補助入口ポート23、逆止
弁24を経て流路10の上流側に接続し、この補助パイ
ロット回路21を通って下流圧P2が上流側に逆流しな
いようにしであると共に、前記補助入口ポート23と補
助出口ポート24は入口ポート14と出口ポート15が
遮断していると時には僅かに連通して大きく絞られ、入
口ポート14と出口ポート15が順次連通されると順次
連通面積が増大するようにしである。
The auxiliary pilot path 21 is connected to the upstream side of the flow path 10 via the auxiliary outlet boat 22 of the variable throttle 11, the auxiliary inlet port 23, and the check valve 24, and is connected to the downstream side through the auxiliary pilot circuit 21. In order to prevent the pressure P2 from flowing back to the upstream side, the auxiliary inlet port 23 and the auxiliary outlet port 24 are sometimes slightly communicated and greatly constricted when the inlet port 14 and the outlet port 15 are blocked, and the inlet port 14 and the outlet port 15 are successively communicated with each other, the communication area increases successively.

前記第1パイロット回路20には絞り弁25が設けられ
、この絞り弁25はソレノイド25aに供給される電流
値の大きさに比例して絞り作動する電磁制御可能な絞り
弁となっている。
The first pilot circuit 20 is provided with a throttle valve 25, which is an electromagnetically controllable throttle valve that operates to throttle in proportion to the magnitude of the current value supplied to the solenoid 25a.

なお、逆止弁24は補助パイロット回路21側に設けて
も良い。
Note that the check valve 24 may be provided on the auxiliary pilot circuit 21 side.

しかして、ソレノイド25aに通電されない時には絞り
弁25は絞り作動せずに連通面積が最大となると共に、
流路10の上流側の圧力P1が第2パイロット回路18
より第2パイロット室16に供給され、かつ補助パイロ
ット回路21、第1パイロット回路20より第1パイロ
ット室12に供給されるが、前述のように絞り弁25の
連通面積が最大であるから、その圧力P1は流路10の
下流側に流れるので、可変絞り弁11は入口ボート14
と出口ボート15の連通面積が最大となる位置に移動し
、流路10の上流側より下流側に圧油が多量に流れる。
Therefore, when the solenoid 25a is not energized, the throttle valve 25 does not throttle, and the communication area is maximized.
The pressure P1 on the upstream side of the flow path 10 is the second pilot circuit 18
It is supplied to the second pilot chamber 16 from the auxiliary pilot circuit 21 and the first pilot chamber 12 from the auxiliary pilot circuit 21 and the first pilot circuit 20. However, as mentioned above, since the communication area of the throttle valve 25 is the largest, Since the pressure P1 flows downstream of the flow path 10, the variable throttle valve 11 is connected to the inlet boat 14.
The outlet boat 15 moves to a position where the communication area is maximized, and a large amount of pressure oil flows from the upstream side to the downstream side of the flow path 10.

これと同時に補助入口ポート23と補助出口ボート22
の連通面積が増大して第1パイロット回路20に流入す
る上流圧P1が増大する。
At the same time, the auxiliary inlet port 23 and the auxiliary outlet boat 22
The communication area increases, and the upstream pressure P1 flowing into the first pilot circuit 20 increases.

ソレノイド25aに通電して絞り弁25を絞り作動する
と連通面積が減少し、第1パイロット回路20の圧力が
上昇して第1パイロット室12内の圧力が高(なり、そ
れにより可変絞り11は入口ボート14と出口ボート1
5の連通面積を減少する方向に移動して流路10の上流
側より下流側に流れる圧油が減少する。
When the solenoid 25a is energized and the throttle valve 25 is throttled, the communication area decreases, the pressure in the first pilot circuit 20 increases, and the pressure in the first pilot chamber 12 becomes high, which causes the variable throttle 11 to close at the inlet. Boat 14 and exit boat 1
5, the pressure oil flowing from the upstream side to the downstream side of the flow path 10 is reduced.

これと同時に補助入口ボート23と補助出口ボート22
の連通面積が減少して第1パイロット回路20に流入す
る上流圧P1が減少する。
At the same time, the auxiliary entrance boat 23 and the auxiliary exit boat 22
As a result, the upstream pressure P1 flowing into the first pilot circuit 20 decreases.

また、補助パイロット回路21に逆止弁24が設けられ
ているから、下流圧P2が上流圧P。
Further, since the check valve 24 is provided in the auxiliary pilot circuit 21, the downstream pressure P2 is equal to the upstream pressure P.

より高くなっても補助パイロット回路21を経て下流圧
P2が上流側に作用することがなく、可変絞り11は第
1パイロット室12の圧力とバネ13によって入口ポー
ト14と出口ボート15を遮断する位置に移動するから
、下流側より上流側に逆流することがない。
Even if the pressure becomes higher, the downstream pressure P2 does not act on the upstream side via the auxiliary pilot circuit 21, and the variable throttle 11 is at a position where the pressure in the first pilot chamber 12 and the spring 13 block the inlet port 14 and the outlet boat 15. Because the water moves from the downstream side to the upstream side, there is no backflow.

第2図は前述の流量制御装置を具体的に示した断面図で
あり、以下その詳細を説明する。
FIG. 2 is a sectional view specifically showing the aforementioned flow rate control device, and the details thereof will be explained below.

弁本体30に入口孔31、大径孔32、スプール孔33
、透孔34を同一中心上に連続して穿孔し、入口孔31
を上流ポート35に連通ずると共に、大径孔32に出口
孔36を穿孔し、かつポペット37を嵌挿し、そのポペ
ット37の円錐面37aをシート座38に圧接して人口
孔31と大径孔32を遮断すると共に、第1室39を形
成する。
The valve body 30 has an inlet hole 31, a large diameter hole 32, and a spool hole 33.
, the through holes 34 are continuously drilled on the same center, and the inlet holes 31
is communicated with the upstream port 35, an outlet hole 36 is bored in the large diameter hole 32, a poppet 37 is inserted, and the conical surface 37a of the poppet 37 is pressed against the seat seat 38 to connect the artificial hole 31 and the large diameter hole. 32 and forms a first chamber 39.

前記ポペット37の軸心に小径穴40、大径穴41、軸
孔42を連続して穿孔すると共に、その軸孔42にスプ
ール43を嵌挿し、このスプール43のフランジ44で
前記スプール孔33を閉塞し、かつ切欠き44aを形成
し、前記スプール43に油通路45、括れ部46、切欠
き47を形成すると共に、前記小径穴40に針弁48を
バネ49で押しつけて小径穴40と大径穴41を遮断す
る逆止弁とし、前記スプール孔33にスプール50を嵌
合して第2室51を形成すると共に、このスプール50
をバネ52で下方に移動し、かつ比例ソレノイド53に
当接し、さらにスプール50に第2室51と透孔34を
連通するキリ穴54を穿孔すると共に、弁本体30に第
2室51と出口孔36を連通ずる通路55が穿孔しであ
る。
A small diameter hole 40, a large diameter hole 41, and a shaft hole 42 are continuously drilled in the axial center of the poppet 37, and a spool 43 is inserted into the shaft hole 42, and the spool hole 33 is inserted into the spool hole 33 with the flange 44 of this spool 43. The oil passage 45, the constricted part 46, and the notch 47 are formed in the spool 43, and the needle valve 48 is pressed against the small diameter hole 40 by a spring 49 to separate the small diameter hole 40 and the large diameter hole 44a. A check valve that shuts off the diameter hole 41 is used, and a spool 50 is fitted into the spool hole 33 to form a second chamber 51.
is moved downward by a spring 52 and comes into contact with the proportional solenoid 53. Furthermore, a drilled hole 54 is bored in the spool 50 to communicate the second chamber 51 and the through hole 34, and a hole 54 is formed in the valve body 30 to connect the second chamber 51 and the outlet. A passage 55 communicating with the hole 36 is perforated.

以上の構成において、入口孔31と出口孔3Bとにより
前記流路10を構成し、ポペット37が可変絞り11と
なり、スプール50と比例ソレノイド53で絞り弁25
を構成していると共に、第1室39が第1パイロット室
12となり、ポペット37の円錐面37aが第2パイロ
ット室16となり、ポペット37の軸心に穿孔した各式
、軸孔42、スプール43が補助パイロット回路21を
構成している。
In the above configuration, the inlet hole 31 and the outlet hole 3B constitute the flow path 10, the poppet 37 serves as the variable throttle 11, and the spool 50 and the proportional solenoid 53 constitute the throttle valve 25.
At the same time, the first chamber 39 becomes the first pilot chamber 12, the conical surface 37a of the poppet 37 becomes the second pilot chamber 16, and each type of hole bored in the axis of the poppet 37, the shaft hole 42, and the spool 43 constitutes the auxiliary pilot circuit 21.

次に作動を説明する。Next, the operation will be explained.

比例ソレノイド53へ通電しない時。When the proportional solenoid 53 is not energized.

スプール50がバネ52で図中下方に移動されるので、
そのスプール50によって決定される第2室51と通路
55の連通面積A3が最大となると共に、第1室39が
切欠き44a1第2室51、通路55を経て出口孔36
に連通ずる。
Since the spool 50 is moved downward in the figure by the spring 52,
The communication area A3 between the second chamber 51 and the passage 55 determined by the spool 50 is maximized, and the first chamber 39 passes through the notch 44a1, the second chamber 51, the passage 55, and the outlet hole 36.
It will be communicated to.

このために、第1室39の圧力が低くなってポペット3
7は円錐面37aに作用する上流圧P、によって下方に
移動し、円錐面37aがシート座38より離れて入口孔
31の圧油は出口孔36に流出する。
For this reason, the pressure in the first chamber 39 becomes low and the poppet 3
7 is moved downward by the upstream pressure P acting on the conical surface 37a, the conical surface 37a is separated from the seat seat 38, and the pressure oil in the inlet hole 31 flows out to the outlet hole 36.

この際、入口孔31の圧油の一部は針弁48を押し下げ
て小径穴40、大径孔41、切欠き47、括れ部46、
油通路45及び第1室39、切欠き44a1第2室51
、通路55より出口孔36に流れるが、ポペット37が
下方に移動して切欠き47と大径穴41の開口面積が大
となっているので、その流量は最大となる。
At this time, a part of the pressure oil in the inlet hole 31 pushes down the needle valve 48, and the small diameter hole 40, the large diameter hole 41, the notch 47, the constricted part 46,
Oil passage 45, first chamber 39, notch 44a1, second chamber 51
, flows from the passage 55 to the outlet hole 36, but since the poppet 37 moves downward and the opening area of the notch 47 and the large diameter hole 41 becomes large, the flow rate becomes maximum.

比例ソレノイド53に通電した時。When the proportional solenoid 53 is energized.

スプール50は、比例ソレノイド53の推力でバネ52
に抗して上方に移動し、前記連通面積A3が減少する。
The spool 50 is moved by the spring 52 by the thrust of the proportional solenoid 53.
, and the communication area A3 decreases.

このために、第1室39内の圧油が出口孔3Bに流れ難
くなって第1室39内の圧力P3が高くなり、ポペット
37の押し下げストロークが規制される。つまり、第2
室51と通路55の連通がスプール50で絞られて第1
室39内の圧力P3が上昇するので、上流圧P、×受圧
面積A、と第1室圧力pjX受圧面積A2とのバランス
によってポペット37が押し下げられる。
For this reason, the pressure oil in the first chamber 39 becomes difficult to flow to the outlet hole 3B, the pressure P3 in the first chamber 39 increases, and the downward stroke of the poppet 37 is restricted. In other words, the second
The communication between the chamber 51 and the passage 55 is narrowed by the spool 50 and the first
Since the pressure P3 in the chamber 39 increases, the poppet 37 is pushed down due to the balance between the upstream pressure P, x pressure receiving area A, and the first chamber pressure pj x pressure receiving area A2.

この時、切欠き47と大径穴41の開口面積は減少する
At this time, the opening areas of the notch 47 and the large diameter hole 41 are reduced.

これにより、入口孔31と出口孔36の連通面積が決定
され、入口孔31より出口孔36に流れる流量が比例ソ
レノイド53への通電量に比例した値となる。
As a result, the communication area between the inlet hole 31 and the outlet hole 36 is determined, and the flow rate flowing from the inlet hole 31 to the outlet hole 36 becomes a value proportional to the amount of current supplied to the proportional solenoid 53.

この状態においてポペット37が入口孔31の圧力P、
で押し下げられると切欠き47と大径穴41の開口面積
が増大し、第1室39に流れる流量が増大して第1室3
9内の圧力P3が高くなり、ポペット37は押し下げら
れるので、入口孔31と出口孔36の連通面積は比例ソ
レノイド53への通電量に見合う値となる。
In this state, the poppet 37 maintains the pressure P of the inlet hole 31,
When pressed down, the opening area of the notch 47 and the large diameter hole 41 increases, the flow rate flowing into the first chamber 39 increases, and the first chamber 3
Since the pressure P3 inside the proportional solenoid 53 increases and the poppet 37 is pushed down, the communication area between the inlet hole 31 and the outlet hole 36 becomes a value commensurate with the amount of current supplied to the proportional solenoid 53.

また、比例ソレノイド53へ通電される電流が増加する
とスプール50は更に上方にストロークして前述の連通
面積A3を更に小さく絞るので、第1室39内の圧力P
3が更に高くなってポペット37が更に押し上げられて
入口孔31と出口孔36の連通面積が更に減少する。
Furthermore, when the current applied to the proportional solenoid 53 increases, the spool 50 further strokes upward and further narrows the communication area A3, so that the pressure inside the first chamber 39 is P
3 becomes higher, the poppet 37 is further pushed up, and the communication area between the inlet hole 31 and the outlet hole 36 is further reduced.

このように、比例ソレノイド53への電流の大小に応じ
て出口孔36に流れる流量を制御できる。
In this way, the flow rate flowing into the outlet hole 36 can be controlled depending on the magnitude of the current to the proportional solenoid 53.

また、出口孔36の圧力P2が入口孔31の圧力P1よ
り高い時には、出口孔36の圧油が通路55、第2室5
1、切欠き44a1第1室39、油通路45、括れ部4
6、切欠き47、大径穴41、小径穴40より入口孔3
1に流れようとするが、大径穴41より小径穴40への
流れが針弁48で阻止されるので前述の流れがなく、し
かも出口孔36の圧力P2が第1室39に作用してポペ
ット37を押し上げて円錐面37aをシート座38に圧
接するので、出口孔36の圧油が入口孔31に逆流する
ことがない。
Furthermore, when the pressure P2 in the outlet hole 36 is higher than the pressure P1 in the inlet hole 31, the pressure oil in the outlet hole 36 flows through the passage 55 and into the second chamber 5.
1. Notch 44a1, first chamber 39, oil passage 45, constriction 4
6. Inlet hole 3 from notch 47, large diameter hole 41, and small diameter hole 40
1, but since the flow from the large diameter hole 41 to the small diameter hole 40 is blocked by the needle valve 48, the aforementioned flow does not occur, and moreover, the pressure P2 of the outlet hole 36 acts on the first chamber 39. Since the poppet 37 is pushed up and the conical surface 37a is brought into pressure contact with the seat seat 38, the pressure oil in the outlet hole 36 does not flow back into the inlet hole 31.

また、入口孔31の圧力P、と出口孔36の圧力P2の
差圧が大きくなると第1室39に流れる流量が増大し、
この第1室39より出口孔36に流れる流量はスプール
50で絞られているが、第2室51に流れる流量が増大
とするとその流れの力(噴流)によりスプール50に流
体力がより大きく作用し、その流体力によってスプール
50が上方に移動されて前記連通面積A3を減少するの
で、第1室39内の圧力P3が高くなり、ポペット37
を押し上げて入口孔31と出口孔36の連通面積を減少
して出口孔36の流量を一定に維持できる。
Further, when the pressure difference between the pressure P of the inlet hole 31 and the pressure P2 of the outlet hole 36 increases, the flow rate flowing into the first chamber 39 increases,
The flow rate flowing from the first chamber 39 to the outlet hole 36 is throttled by the spool 50, but if the flow rate flowing to the second chamber 51 increases, the force of the flow (jet) causes a greater fluid force to act on the spool 50. The fluid force moves the spool 50 upward and reduces the communication area A3, so the pressure P3 in the first chamber 39 increases and the poppet 37
By pushing up the flow rate, the communication area between the inlet hole 31 and the outlet hole 36 can be reduced, and the flow rate of the outlet hole 36 can be maintained constant.

つまり、入口孔31と出口孔36の差圧が変化しても出
口孔36の流量を一定とする圧力補償機能を有する。
That is, it has a pressure compensation function that keeps the flow rate of the outlet hole 36 constant even if the differential pressure between the inlet hole 31 and the outlet hole 36 changes.

〔発明の効果〕〔Effect of the invention〕

流路10に可変絞り弁11を設けるだけで良いから、流
路が簡単で取付は面積を小さくできる。
Since it is only necessary to provide the variable throttle valve 11 in the flow path 10, the flow path is simple and the installation area can be reduced.

また、第1パイロット回路20に絞り弁25を設けたの
で、受流量を絞り弁25で絞り作動すれば良いから応答
性が向上するばかりか、絞り弁25の制御信号を小さい
値とすることができて微少な流量制御ができる。
Furthermore, since the throttle valve 25 is provided in the first pilot circuit 20, the received flow can be throttled by the throttle valve 25, which not only improves responsiveness, but also allows the control signal for the throttle valve 25 to be set to a small value. This allows for minute flow control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す回路図、第2図は具体例
の断面図、第3図は従来の回路図である。 10は流路、11は可変絞り、12は第1パイロット室
、16は第2パイロット室、20は第1パイロット回路
、21は補助パイロット回路、24は逆止弁、25は絞
り弁。 第2図
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a sectional view of a specific example, and FIG. 3 is a conventional circuit diagram. 10 is a flow path, 11 is a variable throttle, 12 is a first pilot chamber, 16 is a second pilot chamber, 20 is a first pilot circuit, 21 is an auxiliary pilot circuit, 24 is a check valve, and 25 is a throttle valve. Figure 2

Claims (1)

【特許請求の範囲】[Claims]  流路10に、第2パイロット室16の圧力により流路
10の上流側と下流側の連通面積を増大する方向に作動
し、第1パイロット室12の圧力で流路10の上流側と
下流側を遮断する方向に作動し、かつ前記流路10の上
流側に接続した補助パイロット回路21を絞り作動する
可変絞り11を設け、前記補助パイロット回路21に前
記流路10の下流側より上流側への流通を阻止する逆止
弁24を設けると共に、その補助パイロット回路21を
前記第1パイロット室12に接続した第1パイロット回
路20に接続し、該第1パイロット回路20を制御可能
な絞り弁25を介して前記流路10の下流側に接続する
と共に、前記第2パイロット室16を前記流路10の上
流側に接続したことを特徴とする流量制御装置。
The pressure in the second pilot chamber 16 acts to increase the communication area between the upstream and downstream sides of the flow path 10 , and the pressure in the first pilot chamber 12 acts to increase the communication area between the upstream and downstream sides of the flow path 10 . A variable throttle 11 is provided that operates in a direction to block the flow and throttles an auxiliary pilot circuit 21 connected to the upstream side of the flow path 10, and the auxiliary pilot circuit 21 is operated from the downstream side of the flow path 10 to the upstream side. A check valve 24 is provided to prevent the flow of water, and the auxiliary pilot circuit 21 thereof is connected to a first pilot circuit 20 connected to the first pilot chamber 12, and a throttle valve 25 capable of controlling the first pilot circuit 20 is provided. A flow rate control device characterized in that the second pilot chamber 16 is connected to the downstream side of the flow path 10 via the flow path 10, and the second pilot chamber 16 is connected to the upstream side of the flow path 10.
JP2881288A 1988-02-12 1988-02-12 Flow control valve Pending JPH01206180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2881288A JPH01206180A (en) 1988-02-12 1988-02-12 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2881288A JPH01206180A (en) 1988-02-12 1988-02-12 Flow control valve

Publications (1)

Publication Number Publication Date
JPH01206180A true JPH01206180A (en) 1989-08-18

Family

ID=12258822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2881288A Pending JPH01206180A (en) 1988-02-12 1988-02-12 Flow control valve

Country Status (1)

Country Link
JP (1) JPH01206180A (en)

Similar Documents

Publication Publication Date Title
US5137254A (en) Pressure compensated flow amplifying poppet valve
US5097746A (en) Metering valve
US3770007A (en) Dual direction flow control valve
US5474145A (en) Hydraulic power steering apparatus
JPH01206180A (en) Flow control valve
JPH05202858A (en) Closed loop control circuit for variable head pump
US5876184A (en) Electrohydraulic pressure regulating valve
JPH01206183A (en) Flow control valve
JPH01206182A (en) Flow control valve
JP2002276607A (en) Hydraulic control device
JPH01206184A (en) Flow control valve
JPH04194403A (en) Hydraulic driving device for construction machine
JP2649817B2 (en) Flow control valve
JPH01206181A (en) Valve device
JP2557047Y2 (en) Pressure oil supply device
US5140815A (en) Valve apparatus
JP2561819B2 (en) Flow control valve
JPH07174102A (en) Unloading device
JPS6347583A (en) Holding valve
JP3298899B2 (en) Load-sensitive control device
JPH0332803Y2 (en)
JPH10299708A (en) Flow regulating valve
JPH0419204Y2 (en)
JP2649818B2 (en) Flow control valve
JP3444506B2 (en) Pressure oil supply device