JPH01204672A - Lens in eye - Google Patents

Lens in eye

Info

Publication number
JPH01204672A
JPH01204672A JP63028326A JP2832688A JPH01204672A JP H01204672 A JPH01204672 A JP H01204672A JP 63028326 A JP63028326 A JP 63028326A JP 2832688 A JP2832688 A JP 2832688A JP H01204672 A JPH01204672 A JP H01204672A
Authority
JP
Japan
Prior art keywords
intraocular lens
formula
formulas
tables
mathematical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63028326A
Other languages
Japanese (ja)
Inventor
Kazuhiko Nakada
和彦 中田
Masaru Ogasawara
賢 小笠原
Makoto Ichikawa
誠 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MENIKON KK
Menicon Co Ltd
Original Assignee
MENIKON KK
Menicon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MENIKON KK, Menicon Co Ltd filed Critical MENIKON KK
Priority to JP63028326A priority Critical patent/JPH01204672A/en
Publication of JPH01204672A publication Critical patent/JPH01204672A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To protect the retina in use from ultraviolet ray while preventing a lens from cloudiness due to the effluent of ultraviolet ray absorbent and the deposition of fibrins by applying plasma treatment to the surface of the in-eye lens made of polymer containing at least one specified radical. CONSTITUTION:This in-eye lens made of a polymer containing at least one radical represented by a formula (1) has the surface subjected to plasma treatment. This polymer is a light yellow transparent resin having imido construction in the molecule and excellent property of absorbing ultraviolet ray of 400nm or less of wave length by it self. When the plasma treatment is applied to the in-eye lens, a contact angle made between the in-eye lens and water is adjusted so as to be <=40 deg. to prevent the in-eye lens from the deposition of fibrins.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は眼内レンズに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to intraocular lenses.

[従来の技術] 従来より、たとえば白内障などのように眼の水晶体が濁
る疾病に患ったばあいには、濁った水晶体は外科的に除
去され、該水晶体が除去されたあとには視力を回復させ
るために眼鏡レンズ、コンタクトレンズや眼内レンズな
どの視力矯正用レンズが用いられている。これらの視力
矯正用レンズのなかでは眼内レンズは、眼内に埋め込ん
だとき、もっとも自然に近い視力を回復する能力にすぐ
れているので、近年脚光を浴び、種々の眼内レンズが開
発されるにいたっている。
[Prior Art] Traditionally, when a person suffers from a disease that clouds the crystalline lens of the eye, such as cataract, the cloudy lens is surgically removed, and vision is restored after the lens is removed. To correct vision, lenses such as spectacle lenses, contact lenses, and intraocular lenses are used to correct vision. Among these vision correction lenses, intraocular lenses have been in the spotlight in recent years because they have the ability to restore vision that is closest to natural when implanted into the eye, and various intraocular lenses have been developed. It has reached this point.

ところで、眼の水晶体には紫外線を吸収し、網膜を紫外
線から保護する性質があるが、水晶体が除去されたばあ
いには、本来水晶体によって吸収されるべき紫外線が網
膜に到達し、網膜が損傷を受けるおそれがあるため、眼
内レンズ中に紫外線吸収剤を含有せしめようとする試み
がなされている(特開昭60−232149号公報およ
び特開昭61−52873号公報)。
By the way, the crystalline lens of the eye has the property of absorbing ultraviolet rays and protecting the retina from ultraviolet rays, but if the crystalline lens is removed, ultraviolet rays that should normally be absorbed by the crystalline lens will reach the retina, causing damage to the retina. Therefore, attempts have been made to incorporate ultraviolet absorbers into intraocular lenses (Japanese Patent Application Laid-open Nos. 60-232149 and 61-52873).

しかしながら、かかる眼内レンズは、眼内に埋め込んで
使用した際に、紫外線吸収剤が眼内で溶出し、眼に重篤
な障害を与えることがあるため、該紫外線吸収剤の溶出
性および毒性が問題視されている。
However, when such an intraocular lens is implanted into the eye and used, the ultraviolet absorber may elute within the eye and cause serious damage to the eye. is considered a problem.

さらに従来の眼内レンズの多くは、水との接触角が約6
0″であるポリメチルメタクリレートなどの素材からな
り、かかる素材からなる眼内レンズは一般に細胞接着性
が大きく、したがって眼中のフィブリンなどが付着しや
すいものであるため、かかる素材からなる従来の眼内レ
ンズを眼内に埋め込んだばあいには、使用しているあい
だにフィブリンが該眼内レンズ表面に付着し、該眼内レ
ンズが白濁するという欠点がある。
Furthermore, most conventional intraocular lenses have a contact angle with water of approximately 6
0", and intraocular lenses made of such materials generally have high cell adhesion and are therefore prone to adhesion of fibrin in the eye. Therefore, conventional intraocular lenses made of such materials When a lens is implanted into the eye, fibrin adheres to the surface of the intraocular lens during use, causing the intraocular lens to become cloudy.

[発明が解決しようとする課題] そこで本発明者らは、眼内レンズの素材自体が紫外線を
吸収する性質を有するものであれば、わざわざ紫外線吸
収剤を眼内レンズの素材に添加する必要がなくなり、し
たがって前記した紫外線吸収剤の溶出性および毒性とい
った問題点が解決されることに着目し、素材自体が紫外
線を吸収゛する性質を有し、しかもフィブリンが付着し
ない眼内レンズをうるべく鋭意研究を重ねた結果、かか
る諸要件をすべて具備した眼内レンズをはじめて見出し
、本発明を完成するにいたった。
[Problems to be Solved by the Invention] Therefore, the present inventors discovered that if the material of the intraocular lens itself has the property of absorbing ultraviolet rays, it is not necessary to take the trouble to add an ultraviolet absorber to the material of the intraocular lens. Focusing on the fact that the above-mentioned problems such as elution and toxicity of ultraviolet absorbers can be solved, we have worked diligently to create an intraocular lens whose material itself has the property of absorbing ultraviolet rays and which does not have fibrin attached. As a result of repeated research, the inventors discovered, for the first time, an intraocular lens that meets all of these requirements and completed the present invention.

[課題を解決するための手段] すなわち、本発明は式   0 で示される基を少なくとも1つ含有したポリマーからな
る眼内レンズであって、レンズ表面にプラズマ処理を施
したことを特徴とする眼内レンズに関する。
[Means for Solving the Problems] That is, the present invention provides an intraocular lens made of a polymer containing at least one group represented by the formula 0, characterized in that the lens surface is subjected to plasma treatment. Concerning the inner lens.

[作用および実施例コ 本発明の眼内レンズは、式 0   で示される基を少なくとも1つ含をしたポリマ
ーからなる眼内レンズであって、該眼内レンズの表面に
プラズマ処理を施すことによりえられる。
[Function and Examples] The intraocular lens of the present invention is an intraocular lens made of a polymer containing at least one group represented by the formula 0, and the intraocular lens is prepared by plasma treatment on the surface of the intraocular lens. available.

前記ポリマーは、分子内にイミド構造を有し、淡黄色に
着色された透明な樹脂であり、それ自体が400nm以
下の波長の紫外線を吸収する性質にすぐれたものである
。これらの樹脂の屈折率は、従来より眼内レンズの代表
的な素材として用いられているポリメチルメタクリレー
トなどと比べて大きく、またこれらの樹脂のガラス転移
温度(160℃以上)は、たとえば、ポリメチルメタク
リレートのガラス転移温度(105℃)よりも格段に高
いので耐熱性にすぐれ、たとえばオートクレーブによる
高温滅菌処理を施すことが可能であり、また放射線に対
しても安定であることから、たとえばγ線などの放射線
による滅菌処理を施すことも可能である。
The polymer has an imide structure in its molecules, is a transparent resin colored pale yellow, and itself has an excellent property of absorbing ultraviolet rays having a wavelength of 400 nm or less. The refractive index of these resins is higher than that of polymethyl methacrylate, which has traditionally been used as a typical material for intraocular lenses, and the glass transition temperature (160°C or higher) of these resins is higher than that of, for example, polymethyl methacrylate. It has excellent heat resistance because it is much higher than the glass transition temperature (105°C) of methyl methacrylate, and can be sterilized at high temperatures using an autoclave.It is also stable against radiation, so it can be used for example with gamma rays. It is also possible to perform sterilization treatment using radiation such as.

前記式       で示される基を少なくi) 1! とも1つ含有したポリマーの具体例としては、たとえば
一般式(I): (式中、nは2以上の整数、 OR2−D (R2バーC)(2−1−C(OR3) 
2− 、−C(CH3)2−1−0= 、−Co−また
は−3O2−を示す)される基、一般式(H): (式中、nおよびR1は前記と同じ)、一般式(110
The number of groups represented by the above formula i) 1! Specific examples of polymers containing one of both include, for example, the general formula (I): (wherein, n is an integer of 2 or more,
2-, -C(CH3)2-1-0=, -Co- or -3O2-), general formula (H): (wherein n and R1 are the same as above), general formula (110
.

(式中、nおよびR1は前記と同じ)、一般式■: (式中、nおよびR1は前記と同じ)、一般式M: (式中、nおよびR1は前記と同じ)で表ゎされるポリ
マーからなる群よりえらばれた少なくとも1種のポリマ
ーを主成分としたものがあげられる。これらの基を有す
るポリマーは、ポリイミド、ポリエーテルイミドまたは
ポリアミドイミドの一種である。これらの基を有するポ
リマーのなかでは、とりわけ透明に近い、すなゎち可視
光線透過率の大きいポリマーを好適に使用しうる。
(In the formula, n and R1 are the same as above), General formula ■: (In the formula, n and R1 are the same as above), General formula M: (In the formula, n and R1 are the same as above) Examples include those whose main component is at least one kind of polymer selected from the group consisting of polymers. Polymers containing these groups are a type of polyimide, polyetherimide or polyamideimide. Among polymers having these groups, polymers that are nearly transparent, ie, have high visible light transmittance, can be preferably used.

前記式 Oで示される基を有するポリ マーは耐熱性が大きいが、かがる基が多量に含まれでい
るばあいには着色されやすくなり、また融点が高くなっ
て溶融成形し難くなるため、ポリマー中に占める割合が
大きすぎないのが望ましい。かかる観点から、たとえば
一般式(I)〜Mに示されるポリマー中のR1は、分子
量の大きいものが好ましい。
Polymers having groups represented by the formula O have high heat resistance, but if they contain a large amount of darkening groups, they tend to be colored and have a high melting point, making it difficult to melt and mold. It is desirable that the proportion in the polymer is not too large. From this point of view, R1 in the polymers represented by general formulas (I) to M, for example, preferably has a large molecular weight.

また、前記一般式(I)〜Mにおいて、ポリマーの透明
性を良好なものとするためには、R2はとくに一〇(C
F3) 2−1−3O2−、−C(CH3)2−または
−CO−であることが好ましい。
In addition, in the general formulas (I) to M, in order to improve the transparency of the polymer, R2 is particularly 10 (C
F3) 2-1-3O2-, -C(CH3)2- or -CO- is preferred.

一般式+11〜Mにおいて、n(重合度)は2以上、好
ましくは5〜10.000である。nは小さすぎると耐
薬品性や機械的性質に欠けることになり、またnはあま
りにも大きすぎるばあいには成形性が低下するようにな
る。
In general formulas +11 to M, n (degree of polymerization) is 2 or more, preferably 5 to 10.000. If n is too small, chemical resistance and mechanical properties will be lacking, and if n is too large, moldability will be reduced.

前記ポリマーから眼内レンズを成形する方法としては、
たとえば該ポリマーを加熱溶融して従来より行なわれて
いる鋳型成形法、射出成形法などにより成形する方法が
あるが、本発明はかかる成形法によって限定されるもの
ではなく、必要に応じて切削加工や研磨加工などの機械
的加工を施してもよい。
The method for molding an intraocular lens from the polymer includes:
For example, there is a method of heating and melting the polymer and molding it by conventional mold molding methods, injection molding methods, etc., but the present invention is not limited to such molding methods, and cutting processing can be performed as necessary. Mechanical processing such as polishing or polishing may also be performed.

成形された眼内レンズには、本発明においては水に対す
る接触角を小さくし、眼内でフィブリンが付着するのを
防ぐためにプラズマ処理により親水性が付与される。
In the present invention, the molded intraocular lens is given hydrophilicity by plasma treatment in order to reduce the contact angle with water and prevent fibrin from adhering within the eye.

一般にフィブリンが眼内レンズ表面にもっとも付着しや
すいときの水に対する眼内レンズの接触角はおよそ70
〜80°であり、えられた眼内レンズにプラズマ処理が
施されていないばあいには、該眼内レンズの水に対する
接触角は約74″であるため、眼内で使用しているあい
だにフィブリンが眼内レンズに付着するという危惧にさ
らされる。しかしながら、プラズマ処理を施したばあい
には、該プラズマ処理の程度にもよるが、眼内レンズの
水に対する接触角を40″にまで低下させることができ
るため、フィブリンが眼内レンズに付着しにくくなるの
である。
Generally, the contact angle of the intraocular lens with water is approximately 70 when fibrin is most likely to adhere to the surface of the intraocular lens.
~80°, and if the obtained intraocular lens is not subjected to plasma treatment, the contact angle of the intraocular lens with water is approximately 74″, so that during intraocular use, However, if plasma treatment is applied, the contact angle of the intraocular lens to water may be up to 40", depending on the degree of plasma treatment. This makes it difficult for fibrin to adhere to the intraocular lens.

本発明において、眼内レンズにプラズマ処理を施す際に
は、従来より知られている通常のプラズマ処理方法およ
びプラズマ処理装置が採用される。かかるプラズマ処理
の条件についてはとくに限定はなく、眼内レンズにフィ
ブリンが付着しないようにするために、通常、眼内レン
ズの水に対する接触角が40″以下となるように適宜調
整されるのが好ましい。
In the present invention, when performing plasma treatment on an intraocular lens, conventionally known ordinary plasma treatment methods and plasma treatment apparatuses are employed. There are no particular limitations on the conditions for such plasma treatment, and in order to prevent fibrin from adhering to the intraocular lens, it is usually adjusted as appropriate so that the contact angle of the intraocular lens with water is 40'' or less. preferable.

かかる眼内レンズにプラズマ処理を施す方法の一例をあ
げれば、眼内レンズをヘリウム、ネオン、アルゴンなど
の不活性ガスや空気、酸素、チッ素、−酸化炭素、二酸
化炭素などのガス雰囲気中、好ましくは空気、酸素、ア
ルゴンガス雰囲気中に置き、該雰囲気を約0.0001
〜数Torr、好ましくは約0.01〜3 Torrに
減圧したのち、電力数W−100W、好ましくは約10
〜60Wの条件にて数秒〜数十分間、好ましくは数分間
プラズマ処理する方法があげられる。
An example of a method for plasma-treating an intraocular lens is to place the intraocular lens in an atmosphere of an inert gas such as helium, neon, or argon, or a gas such as air, oxygen, nitrogen, carbon oxide, or carbon dioxide. Preferably, it is placed in an air, oxygen, or argon gas atmosphere, and the atmosphere is adjusted to about 0.0001
After reducing the pressure to ~ several Torr, preferably about 0.01 to 3 Torr, the power number W - 100 W, preferably about 10
A method of performing plasma treatment under conditions of ~60 W for several seconds to several tens of minutes, preferably several minutes, is mentioned.

かくしてえられるプラズマ処理が施された眼内レンズは
、眼内に装着しても紫外線が網膜にまで到達しないので
、網膜を損傷することはなく、また水に対する接触角が
40″以下と小さいので、フィブリンが付着することが
なく、シたがってレンズは白濁しないなどすぐれた性質
を有するものである。
The plasma-treated intraocular lens obtained in this way does not damage the retina because ultraviolet rays do not reach the retina even when it is placed inside the eye, and the contact angle with water is as small as 40'' or less. It has excellent properties such as no fibrin adhesion and therefore the lens does not become cloudy.

つぎに本発明を実施例および比較例をあげてさらに詳細
に説明するが、本発明は、かかる実施例のみに限定され
るものではない。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited only to these Examples.

実施例1 ポリ゛エーテルイミド(ゼネラル・エレクトリック社製
、商品名:ウルテムtooo 、一般式(I)にを存す
るポリマー)を射出成形法にて成形して板状物(厚さ:
2mm)を作製した。つぎにえられた板状物に切削加工
を施してプレート状の眼内レンズ(直径:3mm、厚さ
:  0.2rnta”)をえた。
Example 1 A plate-shaped article (thickness:
2 mm) was produced. Next, the obtained plate-like material was cut to obtain a plate-like intraocular lens (diameter: 3 mm, thickness: 0.2 rnta").

えられた眼内レンズはわずかに淡黄色に着色されていた
The obtained intraocular lens was slightly colored pale yellow.

つぎに該眼内レンズにプラズマ処理装置(■柳本製作所
製、商品名:プラズマアッシャ−、型式: LTA−2
sN)を用い、雰囲気を酸素置換したのち0.8Tor
rに減圧し、ついで電力50Wにて2分間処理してプラ
ズマ処理が施された眼内レンズ(以下、サンプルという
)を作製した。
Next, a plasma treatment device (manufactured by Yanagimoto Seisakusho, product name: Plasma Asher, model: LTA-2) is applied to the intraocular lens.
sN), and after replacing the atmosphere with oxygen, the atmosphere was heated to 0.8 Tor.
A plasma-treated intraocular lens (hereinafter referred to as a sample) was prepared by reducing the pressure to r and then treating it with a power of 50 W for 2 minutes.

えられたサンプルの物性として、接触角、紫外線の透過
率、溶出物、屈折率および耐熱性を以下の方法にしたが
って調べた。
As physical properties of the obtained sample, contact angle, ultraviolet transmittance, eluate, refractive index, and heat resistance were investigated according to the following methods.

なお、紫外線の透過率の測定結果を第1図に示す。Incidentally, the measurement results of ultraviolet ray transmittance are shown in FIG.

(接触角) サンプルの水に対する接触角をゴニオメータ−式接触角
測定器(エルマ光学■製)を用いて室温(約20℃)、
湿度50%の雰囲気中で測定した。
(Contact angle) The contact angle of the sample to water was measured at room temperature (approximately 20°C) using a goniometer type contact angle measuring device (manufactured by Elma Optical ■).
Measurements were made in an atmosphere with a humidity of 50%.

(紫外線の透過率) 波長190〜400廂における紫外線の透過率を紫外可
視光線分光光度計(■島津製作所製、UV−240)を
用いて測定した。
(Transmittance of ultraviolet rays) Transmittance of ultraviolet rays in the wavelength range of 190 to 400 was measured using an ultraviolet-visible spectrophotometer (UV-240, manufactured by Shimadzu Corporation).

(溶出物) サンプルを水50m1またはエタノール50m1中にて
3時間煮沸還流したのち、前記水またエタノールを紫外
可視光線分光光度計(■島津製作所製、品番: UV−
240)を用いて分析した。
(Eluate) After boiling and refluxing the sample in 50 ml of water or 50 ml of ethanol for 3 hours, the water or ethanol was measured using an ultraviolet-visible spectrophotometer (manufactured by Shimadzu Corporation, product number: UV-
240).

(屈折率) サンプルの屈折率(nD)をエルマ新型アツベ屈折率計
(エルマ光学■製)を用いて測定した。
(Refractive index) The refractive index (nD) of the sample was measured using a new Elma Atsube refractometer (manufactured by Elma Optical ■).

(耐熱性) サンプルをオートクレーブのなかに入れて約120℃で
1時間加熱、減菌したのち、変形などの異状がないか否
かを目視にて調べた。
(Heat resistance) The sample was placed in an autoclave and heated at about 120° C. for 1 hour to sterilize the sample, and then visually inspected for abnormalities such as deformation.

その結果、接触角は16°、紫外線(波長=400nm
以下)の透過率は0%、溶出物はエタノールまたは水の
いずれを用いたばあいであっても溶出されず、屈折率(
り)はi、ee 、耐熱性の異常は認められなかった。
As a result, the contact angle was 16°, and the ultraviolet light (wavelength = 400 nm)
The transmittance of
(i) No abnormality in heat resistance was observed.

実施例2 実施例1とまったく同様にして板状物をつくり、つぎに
切削加工を施して直径が15mm、厚さが0 、4 m
+++の眼内レンズを作製した。
Example 2 A plate-shaped product was made in exactly the same manner as in Example 1, and then cut to a diameter of 15 mm and a thickness of 0.4 m.
A +++ intraocular lens was produced.

つぎに実施例1のプラズマ処理法において、プラズマ処
理時の雰囲気ガスをアルゴンガスに、減圧を0.2To
rrに、電力を40Wに、また処理時間を3分間に変更
したほかは、実施例1と同様にしてプラズマ処理が施さ
れた眼内レンズ(サンプル)を作製した。
Next, in the plasma processing method of Example 1, the atmospheric gas during plasma processing was argon gas, and the pressure was reduced to 0.2To.
A plasma-treated intraocular lens (sample) was prepared in the same manner as in Example 1, except that the power was changed to 40 W, and the treatment time was changed to 3 minutes.

えられたサンプルの物性を実施例1と同様にして測定し
た。その結果、接触角は20″、紫外線(波長: 40
0nm以下)の透過率は0%、溶出物はエタノールまた
は水のいずれを用いたばあいであっても溶出されず、屈
折率(no )はt、ee 、加熱滅菌による異常は認
められなかった。
The physical properties of the obtained sample were measured in the same manner as in Example 1. As a result, the contact angle was 20″, and the ultraviolet light (wavelength: 40
Transmittance (below 0 nm) was 0%, eluates were not eluted whether using ethanol or water, refractive index (no) was t, ee, and no abnormality due to heat sterilization was observed. .

実施例3 実施例2でえられた眼内レンズを用い、プラズマ処理時
の雰囲気ガスを空気に、減圧を1,2Torrに、電力
を20Wに、また処理時間を5分間に変更したほかは実
施例1と同様にしてプラズマ処理が施された眼内レンズ
(サンプル)を作製した。
Example 3 The intraocular lens obtained in Example 2 was used, except that the atmospheric gas during plasma treatment was changed to air, the reduced pressure was changed to 1.2 Torr, the power was changed to 20 W, and the treatment time was changed to 5 minutes. An intraocular lens (sample) subjected to plasma treatment was prepared in the same manner as in Example 1.

えられたサンプルの物性を実施例1と同様にして測定し
た。その結果、接触角は21°1紫外線(波長: 40
0nm以下)の透過率は0%、溶出物はエタノールまた
は水のいずれを用いたばあいであっても溶出されず、屈
折率(nD)は1、ee 、加熱滅菌による異常は認め
られなかった。
The physical properties of the obtained sample were measured in the same manner as in Example 1. As a result, the contact angle was 21°1 ultraviolet light (wavelength: 40
Transmittance (below 0 nm) was 0%, eluates were not eluted whether using ethanol or water, refractive index (nD) was 1, ee, and no abnormalities due to heat sterilization were observed. .

実施例4 3.3°、4,4−ビフェニルテトラカルボン酸無水物
と4,4°−ビス(3−アミノフェノキシ)ジフェニル
スルホンとをN−メチル−2−ピロリドンを重合溶媒と
して用いて重合してポリマー内に式(一般式(It)に
おいて、R1が であるポリマー)をえた。えられたポリマーのn (重
合度)は約700であった。
Example 4 3.3°,4,4-biphenyltetracarboxylic anhydride and 4,4°-bis(3-aminophenoxy)diphenylsulfone were polymerized using N-methyl-2-pyrrolidone as a polymerization solvent. A formula (a polymer in which R1 is in the general formula (It)) was obtained in the polymer. The obtained polymer had n (degree of polymerization) of about 700.

実施例1と同様にしてこのポリマーを加熱溶融し、厚さ
 0 、3 mmの板状物とし、切削・研磨加工により
直径3mm、厚さ 0.2mmのプレート状の眼内レン
ズを作製した。えられた眼内レンズに実施例1とまった
く同様にしてプラズマ処理を施し、実施例1と同様にし
て物性を測定した。
In the same manner as in Example 1, this polymer was heated and melted to form a plate with a thickness of 0.3 mm, and a plate-shaped intraocular lens with a diameter of 3 mm and a thickness of 0.2 mm was produced by cutting and polishing. The obtained intraocular lens was subjected to plasma treatment in exactly the same manner as in Example 1, and its physical properties were measured in the same manner as in Example 1.

その結果、接触角は18’ 、紫外線(波長=400n
m以下)の透過率は0%、溶出物はエタノールまたは水
のいずれを用いたばあいであっても溶出されず、屈折率
(n、)は1.8以上、加熱滅菌による異常は認められ
なかった。
As a result, the contact angle was 18', and the ultraviolet light (wavelength = 400n)
Transmittance of 0% (less than m) is 0%, eluates are not eluted whether using ethanol or water, refractive index (n, ) is 1.8 or more, and no abnormalities due to heat sterilization are observed. There wasn't.

実施例5 3.3°、4,4°−ビフェニルテトラカルボン酸無水
物と4,4−ビス(3−アミノフェノキシ)ジフェニル
プロパンとをN−メチル−2−ピロリドンを重合溶媒と
して用いて重合してポリマー内に式(一般式(I[)に
おいて、R1が であるポリマー)をえた。えられたポリマーのn (重
合度)は約1000であった。
Example 5 3.3°,4,4°-biphenyltetracarboxylic anhydride and 4,4-bis(3-aminophenoxy)diphenylpropane were polymerized using N-methyl-2-pyrrolidone as a polymerization solvent. A formula (in general formula (I[), R1 is a polymer) was obtained in the polymer. The obtained polymer had n (degree of polymerization) of about 1000.

実施例1と同様にしてこのポリマーを加熱溶融し、厚さ
 0.4mmの板状物とし、切削・研磨加工により直径
3mm+、厚さ 0.2mmのプレート状の眼内レンズ
をえた。これを実施例1と同じ条件でプラズマ処理を施
し、同様に物性を測定した。
In the same manner as in Example 1, this polymer was heated and melted to form a plate with a thickness of 0.4 mm, and a plate-shaped intraocular lens with a diameter of 3 mm+ and a thickness of 0.2 mm was obtained by cutting and polishing. This was subjected to plasma treatment under the same conditions as in Example 1, and the physical properties were measured in the same manner.

その結果、接触角は18°1紫外線(波長二400nm
以下)の透過率は0%、溶出物はエタノールまたは水の
いずれを用いたばあいであっても溶出されず、屈折率(
n20)は1.6以上、加熱一滅菌による異常は認めら
れなかった。
As a result, the contact angle was 18°1 ultraviolet light (wavelength 2400 nm).
The transmittance of
n20) was 1.6 or higher, and no abnormality was observed due to heat sterilization.

実施例6 ポリエーテルイミド(ゼネラル・エレクトリック社製、
商品名:ウルテム1000)を用いて実施例1と同様に
して直径15mm、厚さ 1.0mmのプレート状の眼
内レンズを作製し、ついで実施例1と同様にしてプラズ
マ処理を施してサンプルを作製した。
Example 6 Polyetherimide (manufactured by General Electric Company,
A plate-shaped intraocular lens with a diameter of 15 mm and a thickness of 1.0 mm was prepared using Ultem 1000 (trade name: Ultem 1000) in the same manner as in Example 1. Then, a sample was subjected to plasma treatment in the same manner as in Example 1. Created.

えられたサンプルの物性として細胞接着性を以下の方法
にしたがって調べたところ、サンプルに付着しなかった
細胞数は1.2X 105cells/mlであった。
As a physical property of the obtained sample, cell adhesion was examined according to the following method, and the number of cells that did not adhere to the sample was 1.2×10 5 cells/ml.

(細胞接着性) 供試細胞としてマウス由来の線維芽細胞を用い、これを
以下に示す組成からなる培養液に入れて細胞濃度3.O
X 10’ cells/mlの細胞浮遊液を調製した
(Cell Adhesion) Mouse-derived fibroblasts were used as test cells and placed in a culture medium having the composition shown below to a cell concentration of 3. O
A cell suspension of X 10' cells/ml was prepared.

(培養液の組成;モル濃度)(溶媒:蒸留水)塩化ナト
リウム     1B(ミリモル)塩化カリウム   
    5.4 グルコース        5.5 塩化カルシウム     l 塩化マグネシウム     1 ヘベス(緩衝剤)     10 つぎにサンプルを24ウエルのマルチプレートの各ウェ
ルに入れ、前記細胞浮遊液を1ウエルにつき、1 ml
ずつ接種した。接種終了後、マルチプレートを37℃の
屑卵器に入れ、90分間細胞培養した。培養終了後、マ
ルチプレートを鮮卵器のなかから取り出して、ウェル内
を軽く1回攪拌し、静かに上澄み液を注意深く採取した
(Composition of culture solution; molar concentration) (Solvent: distilled water) Sodium chloride 1B (mmol) Potassium chloride
5.4 Glucose 5.5 Calcium chloride 1 Magnesium chloride 1 Hebes (buffer) 10 Next, put the sample into each well of a 24-well multiplate, and add 1 ml of the cell suspension to each well.
inoculated each. After inoculation, the multi-plate was placed in a waste container at 37°C and cells were cultured for 90 minutes. After the culture was completed, the multi-plate was removed from the egg freshener, the inside of the well was gently stirred once, and the supernatant was gently and carefully collected.

ついでこれを血球計算板にサンプリングしてサンプルに
付着しなかった細胞の数をカウントした。
This was then sampled on a hemocytometer to count the number of cells that did not adhere to the sample.

比較例1゛ 実施例5においてポリエーテルイミドのかわりにポリメ
チルメタクリレートを用いたほかは実施例5とまったく
同様にしてサンプルを作製した。えられたサンプルの物
性として細胞接着性を実施例5と同様にして調べたとこ
ろ、サンプルに付着しなかった細胞の数は0.7X 1
05cells/mlであった。
Comparative Example 1 A sample was prepared in exactly the same manner as in Example 5 except that polymethyl methacrylate was used instead of polyetherimide. When the cell adhesion properties of the obtained sample were examined in the same manner as in Example 5, the number of cells that did not adhere to the sample was 0.7×1.
It was 0.05 cells/ml.

上記の結果から、実施例5でえられたポリエーテルイミ
ドからなる眼内レンズは比較例1でえられた眼内レンズ
よりも細胞接着性が小さ(、したがってフィブリンなど
が付着しにくいことがわかる。
From the above results, it can be seen that the intraocular lens made of polyetherimide obtained in Example 5 has lower cell adhesion than the intraocular lens obtained in Comparative Example 1 (therefore, it is difficult for fibrin etc. to adhere to it). .

比較例2 実施例1において、ポリエーテルイミドのかわりに紫外
線吸収剤(共同薬品■製、商品名:VIosorb90
)を1重量%添加したポリメチルメタクリレートを用い
たほかは実施例1とまったく同様にしてサンプルを作製
した。
Comparative Example 2 In Example 1, an ultraviolet absorber (manufactured by Kyodo Yakuhin ■, trade name: VIosorb 90) was used instead of polyetherimide.
) A sample was prepared in exactly the same manner as in Example 1, except that polymethyl methacrylate containing 1% by weight of 1% by weight was used.

えられたサンプルの溶出物テストをエタノール中で実施
例1と同様にして調べたところ、添加した紫外線吸収剤
の96%が溶出していることがわかった。
When the obtained sample was tested for eluates in ethanol in the same manner as in Example 1, it was found that 96% of the added ultraviolet absorber was eluted.

実施例7 実施例1と同様にして、ポリエーテルイミド(ゼネラル
・エレクトリック社製、商品名:ウルテム1000)を
用いて、直径3關、厚さ 0.3市のプレート状の眼内
レンズを作製し、該眼内レンズに実施例1と同様にして
プラズマ処理を施し、プラズマ処理が施された眼内レン
ズ(サンプル)を作製した。
Example 7 In the same manner as in Example 1, a plate-shaped intraocular lens with a diameter of 3 mm and a thickness of 0.3 mm was produced using polyetherimide (manufactured by General Electric Company, product name: Ultem 1000). Then, the intraocular lens was subjected to plasma treatment in the same manner as in Example 1 to produce a plasma-treated intraocular lens (sample).

えられたサンプルを洗浄滅菌したのち、家兎眼の前房へ
移植し、移植翌日から8日月までのあいだ1日ごとにス
リットランプを用いて前眼部検査を行なった。その結果
、家兎眼には、角膜混濁、血管進入、前房出血、虹彩充
血、サンプルへのフィブリンの付着などの異常は8日間
経過してもまったく認められなかった。また、隅角鏡を
用いて眼前房中のサンプルを観察したが、サンプルへの
付着物は認められなかった。
After washing and sterilizing the obtained sample, it was transplanted into the anterior chamber of a rabbit eye, and the anterior segment of the eye was examined using a slit lamp every day from the day after the transplant until August 8th. As a result, no abnormalities such as corneal opacity, blood vessel invasion, anterior chamber hemorrhage, iris hyperemia, or fibrin adhesion to the sample were observed in the rabbit eyes even after 8 days had passed. In addition, the sample in the anterior chamber of the eye was observed using a gonioscope, but no deposits were observed on the sample.

つぎに家兎眼の眼球を摘出してこれを組織学的に観察し
たが、異常な所見は認められず、眼組織に及ぼす影響が
小さく、眼に対してきわめて安全な眼内レンズであるこ
とが確認された。
Next, the eyeballs of rabbit eyes were removed and examined histologically, but no abnormal findings were observed, indicating that the intraocular lens has little effect on the eye tissue and is extremely safe for the eyes. was confirmed.

[発明の効果] 本発明の眼内レンズは紫外線を吸収する性質を有する式
 Oで示される基を少なくとも1つ有するポリマーから
つくられたものであるので、使用時に網膜が紫外線から
保護され、またあえて紫外線吸収剤を添加する必要がな
いため、紫外線吸収剤の溶出といった問題がまったくな
く、目に対する安全性にすぐれたものである。
[Effects of the Invention] Since the intraocular lens of the present invention is made from a polymer having at least one group represented by the formula O that has the property of absorbing ultraviolet rays, the retina is protected from ultraviolet rays during use, and Since there is no need to intentionally add an ultraviolet absorber, there is no problem of elution of the ultraviolet absorber, and it is highly safe for the eyes.

また、本発明の眼内レンズは、プラズマ処理が施されて
いるので、眼内でフィブリンがレンズ表面に付着しにく
いため、フィブリンの付着によるレンズの白濁が生じに
くいものである。
Furthermore, since the intraocular lens of the present invention has been subjected to plasma treatment, fibrin is less likely to adhere to the lens surface within the eye, so that clouding of the lens due to fibrin adhesion is less likely to occur.

さらに、本発明の眼内レンズの屈折率は大きいので、レ
ンズの厚さを薄くすることができ、したがってレンズを
眼内に挿入する際の切開創を小さくし、手術後の切開創
の回復をはやめるとともに手術による角膜などの変形を
最小限におさえることができるという効果が奏される。
Furthermore, since the intraocular lens of the present invention has a large refractive index, the thickness of the lens can be made thin, thereby reducing the incision when inserting the lens into the eye and improving the recovery of the incision after surgery. This has the effect of minimizing deformation of the cornea and the like due to surgery.

さらに本発明の眼内レンズは、耐熱性や放射線に対する
安定性にすぐれたものであるため、たとえばオートクレ
ーブによる高温滅菌処理やたとえばγ線などの放射線に
よる滅菌処理などを施すことができる。
Furthermore, since the intraocular lens of the present invention has excellent heat resistance and stability against radiation, it can be subjected to high-temperature sterilization treatment using, for example, an autoclave or sterilization treatment using radiation such as gamma rays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1でえられた眼内レンズの光線
の透過率の測定結果を示すグラフである。 特許出願人 株式会社 メニコン
FIG. 1 is a graph showing the measurement results of the light transmittance of the intraocular lens obtained in Example 1 of the present invention. Patent applicant Menicon Co., Ltd.

Claims (1)

【特許請求の範囲】 1 式▲数式、化学式、表等があります▼で示される基
を少なくとも 1つ含有したポリマーからなる眼内レンズであって、レ
ンズ表面にプラズマ処理を施したことを特徴とする眼内
レンズ。 2 前記ポリマーが一般式( I ): ▲数式、化学式、表等があります▼( I ) (式中、nは2以上の整数、 R_1は▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼、 ▲数式、化学式、表等があります▼(R_2は▲数式、
化学式、表等があります▼、▲数式、化学式、表等があ
ります▼、 ▲数式、化学式、表等があります▼、−O−、−CO−
または−SO_2−を示す)または▲数式、化学式、表
等があります▼を示す)で表 わされる基、一般式(II): ▲数式、化学式、表等があります▼(II) (式中、nおよびR_1は前記と同じ)、一般式(III
): ▲数式、化学式、表等があります▼(III) (式中、nおよびR_1は前記と同じ)、一般式(IV)
: ▲数式、化学式、表等があります▼(IV) (式中、nおよびR_1は前記と同じ)、一般式(V)
: ▲数式、化学式、表等があります▼(V) (式中、nおよびR_1は前記と同じ)で表わされるポ
リマーからなる群よりえらばれた少なくとも1種のポリ
マーを主成分としたものである請求項1記載の眼内レン
ズ。 3 空気、アルゴン、チッ素、酸素、ヘリウム、ネオン
、一酸化炭素および二酸化炭素からなる群よりえらばれ
た少なくとも1種の気体を使用し、0.01〜3Tor
rの圧力下でプラズマ処理を施してなる請求項1記載の
眼内レンズ。
[Claims] 1. An intraocular lens made of a polymer containing at least one group represented by the formula ▲A mathematical formula, a chemical formula, a table, etc.▼, characterized in that the lens surface is subjected to plasma treatment. intraocular lens. 2 The polymer has the general formula (I): ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, n is an integer of 2 or more, R_1 is ▲There are mathematical formulas, chemical formulas, tables, etc.▼, ▲Mathematical formulas, There are chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R_2 is ▲ mathematical formula,
There are chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, -O-, -CO-
or -SO_2-) or ▲There are mathematical formulas, chemical formulas, tables, etc.▼) Groups represented by general formula (II): ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (In the formula, n and R_1 are the same as above), general formula (III
): ▲Mathematical formulas, chemical formulas, tables, etc.▼(III) (In the formula, n and R_1 are the same as above), General formula (IV)
: ▲There are mathematical formulas, chemical formulas, tables, etc.▼(IV) (in the formula, n and R_1 are the same as above), general formula (V)
: ▲There are mathematical formulas, chemical formulas, tables, etc.▼(V) (In the formula, n and R_1 are the same as above) The main component is at least one polymer selected from the group consisting of polymers expressed as above. The intraocular lens according to claim 1. 3 Using at least one gas selected from the group consisting of air, argon, nitrogen, oxygen, helium, neon, carbon monoxide, and carbon dioxide, and at a temperature of 0.01 to 3 Torr.
The intraocular lens according to claim 1, which is subjected to plasma treatment under a pressure of r.
JP63028326A 1988-02-09 1988-02-09 Lens in eye Pending JPH01204672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63028326A JPH01204672A (en) 1988-02-09 1988-02-09 Lens in eye

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028326A JPH01204672A (en) 1988-02-09 1988-02-09 Lens in eye

Publications (1)

Publication Number Publication Date
JPH01204672A true JPH01204672A (en) 1989-08-17

Family

ID=12245490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028326A Pending JPH01204672A (en) 1988-02-09 1988-02-09 Lens in eye

Country Status (1)

Country Link
JP (1) JPH01204672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128060A (en) * 1989-10-13 1991-05-31 Menikon:Kk Contact lens material
WO2021019307A1 (en) * 2019-07-29 2021-02-04 Menicon Co., Ltd. Systems and methods for forming ophthalmic lens including meta optics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128060A (en) * 1989-10-13 1991-05-31 Menikon:Kk Contact lens material
WO2021019307A1 (en) * 2019-07-29 2021-02-04 Menicon Co., Ltd. Systems and methods for forming ophthalmic lens including meta optics
JP2022542164A (en) * 2019-07-29 2022-09-29 株式会社メニコン Systems and methods for forming ophthalmic lenses containing meta-optics

Similar Documents

Publication Publication Date Title
US5814680A (en) Soft intraocular lens
AU751208B2 (en) Biocompatible, optically transparent, ultraviolet light absorbing, polymeric material based upon collagen and method of making
Hartmann et al. Toward the development of an artificial cornea: improved stability of interpenetrating polymer networks
Huang et al. Surface modification of intraocular lenses
JPH03236853A (en) Eyeball filling material applicable by internal operation into lens case in eyeball
WO1992016168A1 (en) Surface-modified self-passivating intraocular lenses
George et al. Effect of the sterilization method on the properties of Bombyx mori silk fibroin films
Li et al. Cyclodextrin-containing hydrogels as an intraocular lens for sustained drug release
US6030554A (en) Method of sterilizing intraocular lens by electron beam
JP2672974B2 (en) Intraocular lens
JPS60232149A (en) Ultraviolet ray absorbable intraocular implant substance
US5049156A (en) Intra-ocular lens
JPH01204672A (en) Lens in eye
US20130035414A1 (en) High refractive index polymer composition for opthalmic applications
JP3100972B2 (en) Intraocular lens
JPH0928785A (en) Ophthalmological lens
Haldar et al. Development of a hydrophobic polymer composition with improved biocompatibility for making foldable intraocular lenses
CN111315318B (en) Light-responsive deformable polymer composition for colored optical lenses
CN115433327B (en) Artificial crystal material and preparation method and application thereof
KR101533075B1 (en) Biocompatible soft contact lens and its manufacturing method
Osborn Intraocular implant polymers: biocompatibility and physical-chemical properties
Clayman The 1985 Binkhorst Lecture: Ultraviolet-absorbing chromophores: Chemical and ultraviolet transmission characteristics
JPH067424A (en) Intraocular implant material
JPS63252159A (en) Intraocular lens
Babizhayev et al. Tinting effect of ultraviolet radiation on intraocular lenses of polymethyl methacrylate