JPH01204482A - Dewar vessel for liquid hydrogen - Google Patents

Dewar vessel for liquid hydrogen

Info

Publication number
JPH01204482A
JPH01204482A JP63028082A JP2808288A JPH01204482A JP H01204482 A JPH01204482 A JP H01204482A JP 63028082 A JP63028082 A JP 63028082A JP 2808288 A JP2808288 A JP 2808288A JP H01204482 A JPH01204482 A JP H01204482A
Authority
JP
Japan
Prior art keywords
tank
liquid hydrogen
liq
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63028082A
Other languages
Japanese (ja)
Inventor
Masashi Nagao
長尾 政志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63028082A priority Critical patent/JPH01204482A/en
Publication of JPH01204482A publication Critical patent/JPH01204482A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To prevent air from entering a liquid hydrogen tank by providing the tank for dipping an element to be cooled by liquid hydrogen, a liquid hydrogen temperature regulator, a tube for introducing helium gas to the tank and a tube for discharging gas in the tank through pressure regulating valves. CONSTITUTION:A liquid hydrogen tank 4 for storing liquid hydrogen 5 to dip an element 7 to be cooled in the hydrogen 5, liquid hydrogen temperature regulators 14-16, a tube 13 for introducing helium gas to the tank 4 through a pressure regulating valve 11, and a tube 12 for discharging gas in the tank through a pressure regulating valve 9 are provided. Accordingly, the ratio of the helium gas discharge from the tank 4 to the hydrogen gas of the mixture gas can be controlled by regulating the temperature of the hydrogen 5 and the internal pressure of the tank 4. Thus, the internal pressure in the tank can be held at positive pressure while the temperature of the hydrogen remains low, thereby preventing air from entering the tank.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、液体水素を貯蔵する液体水素用デユワ−E
こ関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is directed to a liquid hydrogen dewar-E for storing liquid hydrogen.
This is related to this.

〔従来の技術〕[Conventional technology]

第3図は液体ヘリウム(以下Liq、H,p  と略す
)や液体水素(以下Liq、H2と略す]等を貯蔵する
ために用いられるデユワ−であり、例えば文献(電気学
会、ジョセフソン効果〈基礎と応用) P303〜p3
07 ) fこ示されている。図において、(1)は真
空槽、(2)はLiq、N2タンク、α力はこのLiq
、Nzタンク(2)の中に貯えられるLiq、N2、(
4)はLiq、Nzタンク、(5)はLiQ、Hz−(
61はLiq、Hz(53をタンク(4)に導入する導
入管、■は水素ガス(以下Ga5H2と略す)をタンク
(4)から導出する導出管、(8)はLiq、H2導入
バルブ、(9)はGa5H2導出バルブ、σOはGa5
Hz、(7)はLiq、N2中に浸漬された被冷却体で
ある。
Figure 3 shows a dewar used to store liquid helium (hereinafter abbreviated as Liq, H, p), liquid hydrogen (hereinafter abbreviated as Liq, H2), etc. Basics and Applications) P303-p3
07) f is shown. In the figure, (1) is a vacuum tank, (2) is a Liq, N2 tank, and α force is this Liq
, Liq, N2, (
4) is Liq, Nz tank, (5) is LiQ, Hz-(
61 is an introduction pipe that introduces Liq, Hz (53) into the tank (4), ■ is an outlet pipe that leads out hydrogen gas (hereinafter abbreviated as Ga5H2) from the tank (4), (8) is a Liq, H2 introduction valve, ( 9) is Ga5H2 derivation valve, σO is Ga5
Hz, (7) is the object to be cooled immersed in Liq, N2.

次に一動作について説明する。真空槽(1)の内部は真
空になっている。まずLiq、N2導入管叫からLiq
Next, one operation will be explained. The inside of the vacuum chamber (1) is evacuated. First, Liq, from the N2 introduction pipe cry
.

N20をLiq、N2タンク(2)#ζ導入〜する。L
iq、N2σηの温度は大気圧で約−195,9℃であ
り、タンク(2)もこの温度に冷却される。次にLiq
、H2導入管(6)からLiq。
Introduce N20 into Liq and N2 tank (2) #ζ. L
The temperature of iq, N2ση is approximately −195.9° C. at atmospheric pressure, and the tank (2) is also cooled to this temperature. Next, Liq
, Liq from the H2 inlet tube (6).

Hz(5)をLiq、N2タンク(4)に導入する。L
iq、Hz(5)の温度は大気圧で約−253℃であり
、被冷却体(7)は、この温度まで冷却される。被冷却
体(7)は例えば、酸化物超伝導体を用いた超伝導マグ
ネットである。
Hz (5) is introduced into the Liq, N2 tank (4). L
The temperature of iq, Hz (5) is approximately -253° C. at atmospheric pressure, and the object to be cooled (7) is cooled to this temperature. The object to be cooled (7) is, for example, a superconducting magnet using an oxide superconductor.

Liq、N2タンク(2〕は、 Liq、Nzタンク(
4)への放射lこよる熱侵入を防ぐ働きをする。Liq
、N2タンク(4)への侵入熱や、被冷却体(7)の発
熱等によって、L、iq、Hz(5)は蒸発してGas
 Hz CGとなり、密封状態ではLiq。
Liq, N2 tank (2) is Liq, Nz tank (
4) Works to prevent heat from entering due to radiation. Liq
, L, iq, and Hz (5) evaporate and become Gas due to heat entering the N2 tank (4) and heat generated by the object to be cooled (7).
Hz CG, Liq in sealed state.

H2タンク(4)内の圧力が上昇するので、Ga5Hz
導出バルブ(9)を開きGa5Hz導出管a3を通して
Ga5H2を外部に取りだし、Liq、H2タンク(4
)内の圧力を一定]こ保つ。Ga5H2は爆発性がある
ので取扱いには十分な注意が必要である。Liq、Hz
(5)の温度を下げて実験する場合には、Ga5Hz導
出管(6)の先に真空ポンプ(図示せず)を取り付け、
Liq、Hzタンク(4)内の圧力を減圧する。この場
合1こはフランジシール面からの空気の混入に十分注意
して行なう。
As the pressure inside the H2 tank (4) increases, Ga5Hz
Open the outlet valve (9) and take out Ga5H2 to the outside through the Ga5Hz outlet pipe a3.
) to keep the pressure constant. Ga5H2 is explosive and must be handled with great care. Liq, Hz
When experimenting by lowering the temperature of (5), attach a vacuum pump (not shown) to the end of the Ga5Hz outlet pipe (6),
Reduce the pressure in the Liq, Hz tank (4). In this case, be careful to prevent air from entering from the flange seal surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の液体水素用デユワ−は以上のように構成されてい
るので、100%の濃度のGa5H2を外部に取り出す
必要があり、爆発事故等が生じる危険が太きいという問
題があった。また減圧して用いる場合には空気の混入に
よる爆発の危険性もある。
Since the conventional dewar for liquid hydrogen is constructed as described above, it is necessary to take out Ga5H2 at a concentration of 100% to the outside, which poses a problem in that there is a great risk of an explosion or the like. Furthermore, when used under reduced pressure, there is a risk of explosion due to air being mixed in.

この発明は上記のような問題点を解消するためになされ
たもので−取り出すGa5H2の濃度を低くで゛きると
ともfこ、減圧時においてもLiq、H2タンクへの空
気の混入を防止することができる安全な液体水素用デユ
ワ−を得ることを目的とする。
This invention was made to solve the above-mentioned problems; it is possible to lower the concentration of Ga5H2 taken out, and it is also possible to prevent air from entering the Liq and H2 tanks even when the pressure is reduced. The purpose is to obtain a safe dewar for liquid hydrogen.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る液体水素用デユワ−は、液体水素を貯蔵
し、この液体水素中に被冷却体を浸漬する液体水素タン
ク、上記液体水素の温度を制御する温度調整器、圧力調
整弁を介して上記液体水素タンクにヘリウムガスを導入
する管、および圧力調整弁を介して上記液体水素タンク
内のガスを導出する一管を備えたものである。
The dewar for liquid hydrogen according to the present invention stores liquid hydrogen, and includes a liquid hydrogen tank for immersing an object to be cooled in the liquid hydrogen, a temperature regulator for controlling the temperature of the liquid hydrogen, and a pressure regulating valve. It is equipped with a pipe for introducing helium gas into the liquid hydrogen tank, and a pipe for leading out the gas in the liquid hydrogen tank via a pressure regulating valve.

〔作用〕[Effect]

この発明における液体水素゛ガスタンクから導出される
排気ガスはHeガスとH2ガスとの混合ガスであり、そ
の比率はLiq、Hzの温度と、Liq、H2タンク内
圧を調整することCζよって制御できるので、H2ガス
の濃度を極めて薄(できる。また、Ga5Heを導入す
ることによりHzの分圧をそのままにLiq、H2タン
ク内圧を上げることができるので、Liq、Hzの温度
を低くしたままでタンク内圧を正圧に保つことが可能で
Liq、H2タンク内への空気の混入を防止できる。
The exhaust gas derived from the liquid hydrogen gas tank in this invention is a mixed gas of He gas and H2 gas, and the ratio can be controlled by adjusting the temperature of Liq, Hz and the internal pressure of the Liq, H2 tank. In addition, by introducing Ga5He, it is possible to increase the internal pressure of the Liq, H2 tank without changing the partial pressure of Hz. It is possible to maintain a positive pressure and prevent air from entering the Liq and H2 tanks.

〔実施例〕〔Example〕

り下、この発明の一実施例を図について説明する。第1
図において、(1)は真空槽であり内部を真空断熱する
1こめのちのである。(2)はGM小型冷凍機Q41の
第1段で約−200℃に冷却される放射シールドである
。(3)はGM小型冷凍機σ4の第2段で約−260℃
まで冷却される伝導ブロックで、このブロックを介して
Liq、H2タンク(4)を冷却する。qejは温度セ
ンサー、μsは温度を上昇させるための電気ヒーターで
ある。(6)はL i q 、Hz (51の導入管で
、(8)はLiq、H2導入用のバルブである。側はG
a5He導入管、(6)はこの流量を調整し、タンク(
4)内圧を一定に保つ圧力調整弁すなわち入口側タンク
内圧調整弁、艶はタンク(4)内のガスを導出する導出
管、(9)はこの流量を調整しタンク内圧を一定に保つ
圧力調整弁すなわち出口側タンク内圧調整弁である。(
7)はLiq。
An embodiment of the present invention will now be described with reference to the drawings. 1st
In the figure, (1) is a vacuum chamber whose interior is vacuum insulated. (2) is a radiation shield that is cooled to about -200°C in the first stage of the GM small refrigerator Q41. (3) is approximately -260℃ at the second stage of GM small refrigerator σ4.
The conduction block is cooled to a temperature of 100 mL, through which the Liq, H2 tank (4) is cooled. qej is a temperature sensor, and μs is an electric heater for increasing the temperature. (6) is the introduction pipe for Liq, Hz (51), and (8) is the valve for introducing Liq and H2.
The a5He introduction pipe (6) adjusts this flow rate and connects the tank (
4) Pressure regulating valve that keeps the internal pressure constant, that is, the tank internal pressure regulating valve on the inlet side, the outlet pipe that takes out the gas in the tank (4), and the pressure regulator (9) that adjusts this flow rate and keeps the tank internal pressure constant. This valve is an outlet side tank internal pressure regulating valve. (
7) is Liq.

Hzによって冷却される被冷却体であり、例えば酸化物
超伝導体を用い1こ超伝導マグネットである。
It is a cooled body that is cooled by Hz, and is, for example, a superconducting magnet using an oxide superconductor.

iはGa5HzとGas Heの混合ガスである。なお
、この例では、冷凍機σ尋、ヒーター(イ)、および温
度センサーaθにより液体水素の温度を制御する温度調
整器が構成されている。
i is a mixed gas of Ga5Hz and Gas He. In this example, a temperature regulator that controls the temperature of liquid hydrogen is configured by a refrigerator σ, a heater (A), and a temperature sensor aθ.

次に動作について説明する。まず始めにGM小型冷凍機
α4を運転し放射シールド(2)を約−200℃と伝導
ブロック(3)を所定の温度、例えば15Kに冷却する
。伝導でLiq、H2タンク(4)の下部も15Kに冷
却される。次にLiq、H2導入バルブ(8]を開きL
iq、H2導入管(6)を通してLiq、Hz(5)を
タンク(4)内Eこ導入する。
Next, the operation will be explained. First, the GM small refrigerator α4 is operated to cool the radiation shield (2) to about -200°C and the conduction block (3) to a predetermined temperature, for example, 15K. The lower part of the Liq and H2 tank (4) is also cooled to 15K by conduction. Next, open the Liq, H2 introduction valve (8) and
Liq, Hz (5) is introduced into the tank (4) through the iq, H2 introduction pipe (6).

Liq、Hz(51はタンク(4)壁面で冷却され15
Kになる。
Liq, Hz (51 is cooled on the wall of tank (4) and 15
Become K.

タンク(4)の温度は温度センサー0句でモニターし、
これより下った場合には温調−用ヒーター(至)を用い
て温度を15Kに保つ。この時Liq、H2タンク(4
)内の圧力は15Kにおける蒸気圧となる。第2図にH
zの蒸気圧を示す。15にでは約0.13ata (約
132mbar)になる。ここで入口側タンク内圧調整
弁口を開きHzより蒸気圧の高いGa5Heを導入し、
Liq、H2タンク内圧力を大気圧(約1013m10
l3もしくは1、lata(1114mbar)程度に
する。こうして被冷却体(7)を15Kに冷却する。タ
ンク内圧が所定の圧力より上昇した場合には、出口側タ
ンク内圧調整弁(9)を開いてGa5HeとGa5Hz
の混合ガスを排気する。この時、Ga5H2の比率が1
3%程度であるので爆発の危険性は少ない。まtこ、内
圧を大気圧より高くできるので空気の混入もない。
The temperature of the tank (4) is monitored with a temperature sensor 0,
If the temperature drops below this level, use a temperature control heater to maintain the temperature at 15K. At this time, Liq, H2 tank (4
) is the vapor pressure at 15K. H in Figure 2
Indicates the vapor pressure of z. 15, it becomes about 0.13 ata (about 132 mbar). Here, the inlet side tank internal pressure adjustment valve port was opened and Ga5He, which has a vapor pressure higher than Hz, was introduced.
Liq, H2 tank internal pressure to atmospheric pressure (approximately 1013 m10
The pressure should be about 13 or 1, lata (1114 mbar). In this way, the object to be cooled (7) is cooled to 15K. When the tank internal pressure rises above the predetermined pressure, open the outlet side tank internal pressure regulating valve (9) and adjust the Ga5He and Ga5Hz.
Exhaust the mixed gas. At this time, the ratio of Ga5H2 is 1
Since it is about 3%, there is little risk of explosion. Also, since the internal pressure can be made higher than atmospheric pressure, there is no mixing of air.

なお、上記実施例では冷却にGM小型冷凍機σ4を用い
たが、スターリングサイクル冷凍機や、ヴイルマイヤー
冷凍機等の他の小型冷凍機を用いても良い。またマグネ
ットが大きくなればクロードサイクル等の他の大型冷凍
機を用いても良い。
In the above embodiment, a GM small refrigerator σ4 was used for cooling, but other small refrigerators such as a Stirling cycle refrigerator or a Willmeyer refrigerator may be used. Further, if the magnet is large, other large refrigerators such as a Claude cycle may be used.

まtこ温度が15にの場合について示したが他の温度で
も動作可能であることはもちろんである。
Although the case where the core temperature is 15 is shown, it is of course possible to operate at other temperatures.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、液体水素を貯蔵し、
この液体水素中に被冷却体を浸漬する液体水素タンク、
上記液体水素の温度を制御する温度調整器、圧力調整弁
を介して上記液体水素タンクにヘリウムガスを導入する
管、および圧力調整弁を介して上記液体水素タンク内の
ガスを導出する管を備えたので、ガス導出管より導出さ
れるガスの水素ガス濃度を低くできると共に、減圧時に
おいても液体水素タンク内への空気の混入を防止できる
ような安全な液体水素用デユワ−が得られる効果がある
As described above, according to the present invention, liquid hydrogen is stored,
A liquid hydrogen tank in which the object to be cooled is immersed in this liquid hydrogen;
A temperature regulator for controlling the temperature of the liquid hydrogen, a pipe for introducing helium gas into the liquid hydrogen tank via a pressure regulation valve, and a pipe for leading out the gas in the liquid hydrogen tank via the pressure regulation valve. As a result, the hydrogen gas concentration of the gas discharged from the gas outlet pipe can be lowered, and a safe dewar for liquid hydrogen can be obtained that can prevent air from entering the liquid hydrogen tank even during depressurization. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による液体水素デユワ−を
模式的に示す構成図、第2図はH2ガスの蒸気圧を示す
グラフ、第3図は従来の液体水素デユワ−を模式的に示
す構成図である。 図Eとおいて、(4)はLiq、H2タンク、(5)は
Liq、H2、(7)は被冷却体、(91、Qlは圧力
調整弁、□□□は混合ガス導出管、(2)はヘリウムガ
ス導入管、σ4は小型冷凍機1.四は温調用ヒーター、
αGは温度センサーである。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
Fig. 1 is a schematic configuration diagram of a liquid hydrogen dewar according to an embodiment of the present invention, Fig. 2 is a graph showing the vapor pressure of H2 gas, and Fig. 3 is a schematic diagram of a conventional liquid hydrogen dewar. FIG. In Figure E, (4) is Liq, H2 tank, (5) is Liq, H2, (7) is the object to be cooled, (91, Ql is the pressure regulating valve, □□□ is the mixed gas outlet pipe, (2 ) is a helium gas introduction pipe, σ4 is a small refrigerator 1.4 is a temperature control heater,
αG is a temperature sensor. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  液体水素を貯蔵し、この液体水素中に被冷却体を浸漬
する液体水素タンク、上記液体水素の温度を制御する温
度調整器、圧力調整弁を介して上記液体水素タンクにヘ
リウムガスを導入する管、および圧力調整弁を介して上
記液体水素タンク内のガスを導出する管を備えた液体水
素用デュワー。
A liquid hydrogen tank that stores liquid hydrogen and immerses an object to be cooled in the liquid hydrogen, a temperature regulator that controls the temperature of the liquid hydrogen, and a pipe that introduces helium gas into the liquid hydrogen tank via a pressure regulating valve. , and a dewar for liquid hydrogen, comprising a pipe for leading out the gas in the liquid hydrogen tank through a pressure regulating valve.
JP63028082A 1988-02-09 1988-02-09 Dewar vessel for liquid hydrogen Pending JPH01204482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63028082A JPH01204482A (en) 1988-02-09 1988-02-09 Dewar vessel for liquid hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028082A JPH01204482A (en) 1988-02-09 1988-02-09 Dewar vessel for liquid hydrogen

Publications (1)

Publication Number Publication Date
JPH01204482A true JPH01204482A (en) 1989-08-17

Family

ID=12238858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028082A Pending JPH01204482A (en) 1988-02-09 1988-02-09 Dewar vessel for liquid hydrogen

Country Status (1)

Country Link
JP (1) JPH01204482A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123200U (en) * 1990-03-28 1991-12-16
US5293750A (en) * 1991-11-27 1994-03-15 Osaka Gas Company Limited Control system for liquefied gas container
WO2017195657A1 (en) * 2016-05-10 2017-11-16 国立研究開発法人産業技術総合研究所 Low temperature cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123200U (en) * 1990-03-28 1991-12-16
US5293750A (en) * 1991-11-27 1994-03-15 Osaka Gas Company Limited Control system for liquefied gas container
WO2017195657A1 (en) * 2016-05-10 2017-11-16 国立研究開発法人産業技術総合研究所 Low temperature cooling system

Similar Documents

Publication Publication Date Title
US4967564A (en) Cryostatic temperature regulator with a liquid nitrogen bath
US3485054A (en) Rapid pump-down vacuum chambers incorporating cryopumps
US4848093A (en) Apparatus and method for regulating temperature in a cryogenic test chamber
US5386708A (en) Cryogenic vacuum pump with expander speed control
JPH02245232A (en) High-vacuum apparatus
US3442091A (en) Delivery of coolant to cryostats
GB945223A (en) Improvements in or relating to refrigerators
US5417072A (en) Controlling the temperature in a cryogenic vessel
US3585807A (en) Method of and apparatus for pumping gas under cryogenic conditions
CA2056691C (en) Control system for liquefied gas container
US4599247A (en) Semiconductor processing facility for providing enhanced oxidation rate
JPH01204482A (en) Dewar vessel for liquid hydrogen
US3216210A (en) Cryostat apparatus
JPH0633854B2 (en) Evaporation prevention device
US4138854A (en) Freezing apparatus and method
JPH0497538A (en) Cryostat
JP2760858B2 (en) Cryostat for superconducting device
US3910064A (en) Method and apparatus for producing variable temperature with the aid of a cryoliquid
US3353365A (en) Cryogenic devices
US3330125A (en) Cryogenic method
GB1396507A (en) Cryostat
SU1180640A1 (en) Cryostat
US3126902A (en) Method and apparatus for producing high vacuum
JPS609659Y2 (en) Low temperature constant temperature device
SU972484A1 (en) Device for stabilizing pressure in cryostat