JPH01204021A - Optical variable attenuator - Google Patents

Optical variable attenuator

Info

Publication number
JPH01204021A
JPH01204021A JP63029348A JP2934888A JPH01204021A JP H01204021 A JPH01204021 A JP H01204021A JP 63029348 A JP63029348 A JP 63029348A JP 2934888 A JP2934888 A JP 2934888A JP H01204021 A JPH01204021 A JP H01204021A
Authority
JP
Japan
Prior art keywords
light
superconducting coil
optical fiber
optical
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63029348A
Other languages
Japanese (ja)
Inventor
Tatsuo Hatta
竜夫 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63029348A priority Critical patent/JPH01204021A/en
Publication of JPH01204021A publication Critical patent/JPH01204021A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control the quantity of light attenuation without any mechanical movable part by magnetizing a magnetooptical element by a superconducting coil, and varying the quantity of a current supplied to the coil and thus adjusting the quantity of light attenuation. CONSTITUTION:The magnetooptical element 7 is arranged between a polarized wave maintaining optical fiber 10 and a 2nd optical fiber 5, and the superconducting coil 12 is provided to a cylinder 11 made of a ferromagnetic body surrounding the element. The light from the optical fiber 10 is entered into the magnetooptical element 7, attenuated by an analyzer 9, and coupled with a 2nd optical fiber 5. At this time, the current flowing to the superconducting coil 12 is adjusted to adjust the quantity of light attenuation. Consequently, there is no mechanical movable part, so there is not any deterioration in characteristics due to the wear of a component and the life of the device can be prolonged. Further, the power consumption is made extremely small because of the superconducting coil 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光路中に配置して光を減衰させる装置にお
いて、光減衰量を変化させることができる光可変減衰器
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a variable optical attenuator that is arranged in an optical path to attenuate light and is capable of changing the amount of optical attenuation.

〔従来の技術〕[Conventional technology]

第2図は従来の光可変減衰器を示す図であ〕。 FIG. 2 is a diagram showing a conventional variable optical attenuator.

図において(1)は光を出射する第1の光ファイバ。In the figure, (1) is a first optical fiber that emits light.

(2)は第1の光ファイバ+11より出射された光をコ
リメート光に変換する第1のレンズ、(3)は第1のレ
ンズ(2)側よシ送られてきた光束を減衰させる光減衰
板、(41は光減衰板を透過した光を集光させる第2の
レンズ、(5)は第2のレンズ141 Kよって集光さ
れた光と光学的に結合する光ファイバである。
(2) is the first lens that converts the light emitted from the first optical fiber +11 into collimated light, and (3) is the optical attenuation that attenuates the light beam sent from the first lens (2) side. plate, (41 is a second lens that focuses the light transmitted through the light attenuation plate, and (5) is an optical fiber that optically couples the light focused by the second lens 141K.

次に動作について説明する。第1の光ファイバ(1)よ
シ出射された光は第1のレンズ(2)によってコリメー
ト光に変換される。このコリメート光は次に光減衰板(
3)によって減衰し、第2のレンズ(4)で収束光とな
シ、第2の光ファイバ(51と光学的に結合する。この
とき、光減衰板(3)は通常複数の減衰率のものを入れ
換えることができるようになっておシ、それによシ光の
減衰量が可変となる。この光減衰板(3)を入れ換える
機構としては、第3図に示すように光減衰板を円板状に
し1円板を放射状に分割し2分割された各々の部分は異
なった減衰率となるようにした複合減衰板(6)の利用
が一般的である。
Next, the operation will be explained. The light emitted from the first optical fiber (1) is converted into collimated light by the first lens (2). This collimated light is then passed through a light attenuation plate (
3), the light is attenuated by the second lens (4), and is optically coupled to the second optical fiber (51).At this time, the light attenuation plate (3) usually has multiple attenuation factors. It has become possible to replace the light attenuation plate (3), and the amount of attenuation of the light becomes variable.As shown in Figure 3, the mechanism for replacing the light attenuation plate (3) is It is common to use a composite damping plate (6) which is shaped like a plate and is divided radially into two parts, each of which has a different attenuation rate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の光可変減衰器社以上のように構成されているので
、光減衰板(3)を取シ換える機構が心壁であった。ま
た第3図に示すような機構を持つ光可変減衰器において
は複合減衰板(61を回転させる動力が必要であった。
Since the conventional optical variable attenuator is constructed as described above, the mechanism for replacing the optical attenuation plate (3) was a core wall. Further, in the optical variable attenuator having a mechanism as shown in FIG. 3, power is required to rotate the composite attenuation plate (61).

この発明は上記のような問題点を解消するためになされ
たもので、可動部分なくして光減衰量を変化させること
ができる光可変減衰器を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a variable optical attenuator that can change the amount of optical attenuation without moving parts.

〔課電を解決するための手段〕[Means to solve the charge]

この発明に係る光可変減衰器はファラデー回転子を超電
導コイルで磁化し、この超電導コイルを流れる電流蓋を
変えることによ〕、ファラデー回転子中を通る偏光の偏
波面回転量を変化させ、それによシ、その後段に設置さ
れた検光子の透過光量を調節するものである。
The variable optical attenuator according to the present invention magnetizes a Faraday rotator with a superconducting coil and changes the amount of polarization plane rotation of polarized light passing through the Faraday rotator by changing the current cap flowing through the superconducting coil. This is to adjust the amount of transmitted light from the analyzer installed at the subsequent stage.

〔作用〕[Effect]

この発明において、光減衰量は超電導コイルを定常的に
流れる電流量を変化させることにょ〕。
In this invention, the amount of optical attenuation is determined by changing the amount of current that steadily flows through the superconducting coil.

制御される。controlled.

〔実施例〕〔Example〕

以下この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、C7)は磁気光学素子、(8)は磁気
光学素子())の近傍に固定された偏光子、(9)は磁
気光学素子(71を中心として偏光子181にほぼ対称
な位置に置かれた検光子、(2)は磁気光学素子(71
から見て偏光子1B+の後方に設置された第1のレンズ
、(劇は磁気光学素子(71を中心として111g1の
レンズ(2)にほぼ対称な位置に置かれた第2のレンズ
、αυtf&気光学素子(7)から見て第1のレンズ(
2)の後方に設置された偏波保持光ファイバ、(51は
磁気光学素子(71を中心として偏波保持光ファイバ鱈
とほぼ対称な位置に置かれた第2の光ファイバ、u社磁
気光学素子(7)を取シまくように設置された強磁性体
の円筒、 (13は強磁性体の円筒a11に巻かれては
いるが。
In Fig. 1, C7) is a magneto-optical element, (8) is a polarizer fixed near the magneto-optical element ()), and (9) is a magneto-optical element (71) which is almost symmetrical to the polarizer 181. The analyzer (2) is placed at the magneto-optical element (71
The first lens is placed behind the polarizer 1B+ when viewed from above, and the second lens (αυtf & The first lens (seeing from the optical element (7)
2), a polarization-maintaining optical fiber (51 is a magneto-optical element) (a second optical fiber placed at a position almost symmetrical to the polarization-maintaining optical fiber with 71 as the center, manufactured by U Company Magneto-Optics) A ferromagnetic cylinder is installed so as to surround the element (7) (although 13 is wound around the ferromagnetic cylinder a11).

強磁性体の円筒a11と社絶縁されている超電導コイル
、C3は超電導コイルa3に流りる電流蓋を調節する電
流調節手段である。
The superconducting coil C3, which is insulated from the ferromagnetic cylinder a11, is a current adjusting means for adjusting the current cap flowing through the superconducting coil a3.

上記のように構成された光可変減衰器についてその動作
を説明する。偏波保持光ファイバα・より出射された光
は第1のレンズ(2)によってコリメート光となシ、偏
光子(8)を透過する特定の偏波方向の光のみが磁気光
学素子+71に入射される。磁気光学素子(71を透過
した光は検光子+91によって減衰され、第2のレンズ
(4)を通して第2の光ファイバ+51と結合されるが
、検光子(91による光の減衰量は。
The operation of the variable optical attenuator configured as described above will be explained. The light emitted from the polarization-maintaining optical fiber α is collimated by the first lens (2), and only the light in a specific polarization direction that passes through the polarizer (8) enters the magneto-optical element +71. be done. The light transmitted through the magneto-optical element (71) is attenuated by the analyzer +91 and coupled to the second optical fiber +51 through the second lens (4), but the amount of attenuation of the light by the analyzer (91) is.

磁気光学素子を透過した光の偏波方向と検光子(9)を
透過する偏波方向の角度ずわに依存する。そして磁気光
学素子(71を透過する光の偏波方向は磁気光学素子(
71にかかる磁場によってきまるために。
It depends on the angle of the polarization direction of the light transmitted through the magneto-optical element and the polarization direction transmitted through the analyzer (9). The polarization direction of the light transmitted through the magneto-optical element (71) is determined by the magneto-optical element (71).
Because it depends on the magnetic field applied to 71.

この磁場の大きさを、超電導コイルα2を流れる電流蓋
を調節することにより制御してやれば、検光子(9)に
よる光の減衰音を調節できるというものである。
By controlling the magnitude of this magnetic field by adjusting the current cap that flows through the superconducting coil α2, it is possible to adjust the attenuation sound of the light produced by the analyzer (9).

この場合、光の減衰量の調節可能幅は、偏光子(8)、
磁気光学素子(7)及び、検光子+91の消光比によっ
て決まる@ なお上記実施例では、磁気光学素子+71に入射する偏
波光として偏光子の透過光を利用したが、半へ体レーザ
からの出射光咎他の偏光であってもよく、上記実施例と
同様の効果を奏する。
In this case, the adjustable range of the amount of light attenuation is determined by the polarizer (8),
determined by the extinction ratio of the magneto-optical element (7) and the analyzer +91. Other polarized light may be used, and the same effects as in the above embodiments can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、光減衰量の調節を、超
電導コイルを流れる電流量の制御によシ行うようにした
ので、装置に機械的可動部分がなくなシ1部品の摩耗等
による特性劣化がなくなり装置の寿命の延命効果がある
。また、超電導コイルは、理想的には、外部からのエネ
ルギーの供給なしで、電流が流れ続けるために、光減衰
量一定の時には、消費電力は理想的には無である。
As described above, according to the present invention, the amount of optical attenuation is adjusted by controlling the amount of current flowing through the superconducting coil, so there is no mechanically moving part in the device, and there is no need to worry about wear and tear of parts. This eliminates characteristic deterioration and has the effect of extending the life of the device. Furthermore, since a current continues to flow through a superconducting coil ideally without any external energy supply, power consumption is ideally zero when the amount of optical attenuation is constant.

【図面の簡単な説明】 第1図れこの発明の一実施例による先回に減衰器を示す
断面図、第2図は従来の光可変減衰器を示す断面図、第
3図は従来の光可変減衰器の光減衰板として複合減衰板
を用いたものを示す断面図である。 +71は磁気光学素子、azは超電導コイル、C3は電
流調節手段、(9)は検光子。なお2図中同一符号は同
一、又は相当部分を示す。
[Brief Description of the Drawings] Figure 1 is a sectional view showing the attenuator previously described according to an embodiment of the present invention, Figure 2 is a sectional view showing a conventional variable optical attenuator, and Figure 3 is a sectional view of a conventional variable optical attenuator. FIG. 2 is a sectional view showing an attenuator using a composite attenuation plate as an optical attenuation plate. +71 is a magneto-optical element, az is a superconducting coil, C3 is a current adjustment means, and (9) is an analyzer. Note that the same reference numerals in the two figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] ファラデー回転機能を有する磁気光学素子と、前記ファ
ラデー回転子を磁化させるための超電導コイルと、上記
超電導コイルを流れる電流量を可変にするための電流調
節手段と、上記磁気光学素子を透過した光のうち、一偏
波方向のみを検出する検光子とを備えた光可変減衰器。
a magneto-optical element having a Faraday rotation function; a superconducting coil for magnetizing the Faraday rotator; a current adjusting means for varying the amount of current flowing through the superconducting coil; Among them, an optical variable attenuator equipped with an analyzer that detects only one polarization direction.
JP63029348A 1988-02-10 1988-02-10 Optical variable attenuator Pending JPH01204021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029348A JPH01204021A (en) 1988-02-10 1988-02-10 Optical variable attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029348A JPH01204021A (en) 1988-02-10 1988-02-10 Optical variable attenuator

Publications (1)

Publication Number Publication Date
JPH01204021A true JPH01204021A (en) 1989-08-16

Family

ID=12273720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029348A Pending JPH01204021A (en) 1988-02-10 1988-02-10 Optical variable attenuator

Country Status (1)

Country Link
JP (1) JPH01204021A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812304A (en) * 1995-08-29 1998-09-22 Fujitsu Limited Faraday rotator which generates a uniform magnetic field in a magnetic optical element
US5844710A (en) * 1996-09-18 1998-12-01 Fujitsu Limited Faraday rotator and optical device employing the same
US5867300A (en) * 1996-03-01 1999-02-02 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of a light signal
US5889609A (en) * 1992-07-31 1999-03-30 Fujitsu Limited Optical attenuator
US6018411A (en) * 1996-11-29 2000-01-25 Fujitsu Limited Optical device utilizing magneto-optical effect
US6441955B1 (en) 1998-02-27 2002-08-27 Fujitsu Limited Light wavelength-multiplexing systems
KR100425366B1 (en) * 2000-10-27 2004-03-30 마츠시타 덴끼 산교 가부시키가이샤 Optical signal transmission system and magneto-optical modulator designed to establish modulation over wide range for use in the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018412A (en) * 1992-07-31 2000-01-25 Fujitsu Limited Optical attenuator
US5889609A (en) * 1992-07-31 1999-03-30 Fujitsu Limited Optical attenuator
US6275323B1 (en) 1992-07-31 2001-08-14 Fujitsu Limited Optical attenuator
US5812304A (en) * 1995-08-29 1998-09-22 Fujitsu Limited Faraday rotator which generates a uniform magnetic field in a magnetic optical element
US5867300A (en) * 1996-03-01 1999-02-02 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of a light signal
US5973821A (en) * 1996-03-01 1999-10-26 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of light signal
US6333806B1 (en) 1996-03-01 2001-12-25 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a Faraday element to rotate the polarization of a light signal
US6570699B2 (en) 1996-03-01 2003-05-27 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a Faraday element to rotate the polarization of a light signal
US6717713B2 (en) 1996-03-01 2004-04-06 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of a light signal
US5844710A (en) * 1996-09-18 1998-12-01 Fujitsu Limited Faraday rotator and optical device employing the same
US6018411A (en) * 1996-11-29 2000-01-25 Fujitsu Limited Optical device utilizing magneto-optical effect
US6441955B1 (en) 1998-02-27 2002-08-27 Fujitsu Limited Light wavelength-multiplexing systems
KR100425366B1 (en) * 2000-10-27 2004-03-30 마츠시타 덴끼 산교 가부시키가이샤 Optical signal transmission system and magneto-optical modulator designed to establish modulation over wide range for use in the same

Similar Documents

Publication Publication Date Title
JP3773601B2 (en) Faraday rotator
KR100304100B1 (en) Optical Variable Attenuator
US5889609A (en) Optical attenuator
KR100242916B1 (en) Faraday rotator which generates a uniform magnetic field in a magnetic optical element
US6018411A (en) Optical device utilizing magneto-optical effect
US6594068B2 (en) High switching speed digital faraday rotator device and optical switches containing the same
KR100274810B1 (en) Optical attenuator using isolator and optical communication system comprising it
JPH01204021A (en) Optical variable attenuator
WO2002014939A1 (en) Farady rotation device and optical device comprising it
US8854716B2 (en) Reflection type variable optical attenuator
JP3771228B2 (en) Magneto-optical components
US5111330A (en) Optical isolators employing wavelength tuning
WO2003073156A1 (en) Optical attenuator modulator
JP2005099737A (en) Magnetooptic optical component
JPS60200225A (en) Faraday rotator
JP3974041B2 (en) Optical variable attenuator, optical shutter and optical variable equalizer
JPH07120711A (en) Optical variable attenuator and optical output control unit using the same
EP0413566A1 (en) Optical isolators employing wavelength tuning
JP3936451B2 (en) Optical attenuator module
JP2001249313A (en) Variable optical attenuator utilizing faraday effect
CN211653338U (en) Magneto-optical adjustable optical attenuator
JPWO2004029698A1 (en) Variable polarization rotator and variable optical attenuator using the same
JP2001142040A (en) Optical attenuator
JP4931070B2 (en) Variable optical attenuator
GB2100018A (en) Fibre optics measuring device