JPH01203861A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01203861A
JPH01203861A JP2927888A JP2927888A JPH01203861A JP H01203861 A JPH01203861 A JP H01203861A JP 2927888 A JP2927888 A JP 2927888A JP 2927888 A JP2927888 A JP 2927888A JP H01203861 A JPH01203861 A JP H01203861A
Authority
JP
Japan
Prior art keywords
pressure
detected
outdoor
detected pressure
operating frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2927888A
Other languages
Japanese (ja)
Inventor
Manabu Kitamoto
学 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2927888A priority Critical patent/JPH01203861A/en
Publication of JPH01203861A publication Critical patent/JPH01203861A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To perform a stable heating mode operation by performing a high pressure release in which the operating frequency of compressors is reduced when the high pressure side pressure exceeds a preset level, and adding the speed reduction of the outdoor fan as well as opening a release valve as needed. CONSTITUTION:The outdoor control section 50 monitors the detected pressure (high pressure side pressure) by a pressure sensor 46 while a heating mode operation is being performed, and causes the control in accordance with the detected pressure. That is, when the detected pressure exceeds a preset level into the M zone, the operating frequencies F1, F2 of compressors 1, 2 are caused to be reduced by certain steps down to the N zone which is below the preset level. If the detected pressure is down to P1 in the L zone, the operating frequencies F1, F2 are set at the commanded frequencies to resume a normal operation. When the operating frequencies F1, F2 are down to the minimum operating frequency Fmin, and the detected pressure reaches the set level, a release operation pattern is executed. That is, the speed of the outdoor fan 49 is made zero and a release valve 48 is opened so as to reduce the beat exchanging amount in the outdoor heat exchanger 6.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、室外ユニットおよび複数の室内ユニットか
らなるマルチタイプの空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a multi-type air conditioner consisting of an outdoor unit and a plurality of indoor units.

(従来の技術) 一般に、この種の空気調和機としては、第6図に示すも
のがある。
(Prior Art) Generally, as this type of air conditioner, there is one shown in FIG.

Aは室外ユニットで、二台の能力可変圧縮機を何してい
る。そして、この室外ユニットAに分岐ユニットBを接
続し、その分岐ユニ・ソトBに複数の室内ユニットCI
 、C2,C3を接続している。
A is an outdoor unit, and what are the two variable capacity compressors used for? Then, a branch unit B is connected to this outdoor unit A, and a plurality of indoor units CI are connected to the branch unit B.
, C2, and C3 are connected.

すなわち、室内ユニットC1*  C2*  C3は、
それぞれの空調負荷に応じた要求能力を周波数設定信号
f1.f2.f3として分岐ユニ・ソトBへ送る。
In other words, the indoor units C1*C2*C3 are
The required capacity corresponding to each air conditioning load is determined by the frequency setting signal f1. f2. Send to branch Uni-Soto B as f3.

分岐ユニットBは、送られてくる周波数設定信号f、、
f2.f3から各室内ユニ・ソトの要求能力を求め、そ
の総和に対応する周波数設定信号foを室外ユニットA
に送る。
Branching unit B receives the received frequency setting signals f,...
f2. The required capacity of each indoor unit/soto is determined from f3, and the frequency setting signal fo corresponding to the sum is sent to the outdoor unit A.
send to

室外ユニットAは、送られてくる周波数設定信号f、に
応じて圧縮機の運転台数および運転周波数を制御する。
The outdoor unit A controls the number of operating compressors and the operating frequency according to the frequency setting signal f that is sent.

(発明が解決しようとする課題) ところで、このような空気調和機においては、冷房運転
時、室内、室外の空気条件が共に過負荷で、しかも室内
ユニット容量が大きい場合(室内ユニットの運転台数が
多い場合)、冷凍サイクルの高圧側圧力が異常上昇し、
冷凍サイクル機器の寿命に悪影響を与える。
(Problem to be Solved by the Invention) By the way, in such an air conditioner, when the indoor and outdoor air conditions are both overloaded during cooling operation, and the indoor unit capacity is large (the number of operating indoor units is If the pressure on the high pressure side of the refrigeration cycle increases abnormally,
Adversely affects the life of refrigeration cycle equipment.

また、暖房運転時、室内、室外の空気条件が共に過負荷
で、しかも室内ユニット容量が小さかったり(最小容量
の室内ユニットが一台運転)、室内送風量か少ない場合
にも、高圧側圧力が異常上昇する。たとえば、起動時や
室内ユニットの運転台数減少時がそうである。
In addition, during heating operation, if the indoor and outdoor air conditions are both overloaded, the indoor unit capacity is small (one indoor unit with the minimum capacity is in operation), or the indoor air flow is small, the high pressure side pressure will increase. Abnormal rise. For example, this happens when starting up or when the number of operating indoor units decreases.

この発明は1−記のような事情に鑑みてなされたもので
、その1」的とするところは、高圧側圧力の異常り昇を
確実にしかも最適な状態に抑え、常に安定運転を11能
とする空気調和機を提供することにある。
This invention was made in view of the circumstances described in 1-1.The purpose of this invention is to ensure stable operation at all times by suppressing abnormal rises in high-pressure side pressure to an optimal state. Our goal is to provide air conditioners that meet the needs of our customers.

[発明の構成] (課題を解決するための手段) 冷凍サイクルの高圧側圧力を検知する圧力検知手段と、
冷房運転時、前記圧力検知手段の検知圧力が設定値を超
えるとその検知圧力が所定値に下がるまで6圧縮機の運
転周波数を低減する手段と、暖房運転時、前記圧力検知
手段の検知圧力が設定値を超えるとその検知圧力が所定
値に下がるまで各圧縮機の運転周波数を低減する手段と
、この低減時に前記圧力検知手段の検知圧力に応じて室
外ユニットにおける室外ファンの速度を低減する手段と
を設ける。
[Structure of the Invention] (Means for Solving the Problems) Pressure detection means for detecting high pressure side pressure of a refrigeration cycle;
means for reducing the operating frequency of the compressor 6 until the detected pressure falls to a predetermined value when the detected pressure of the pressure detecting means exceeds a set value during cooling operation; means for reducing the operating frequency of each compressor when the detected pressure exceeds a set value until the detected pressure drops to a predetermined value, and means for reducing the speed of the outdoor fan in the outdoor unit in accordance with the detected pressure of the pressure detecting means at the time of this reduction. and

(作用) 冷房運転時、冷凍サイクルの高圧側圧力か設定値以上に
なると、各圧縮機の運転周波数が低減する。暖房運転時
、冷凍サイクルの高圧側圧力が設定値以」−になると、
各圧縮機の運転周波数が低減するとともに、必要に応じ
て室外ユニットにおける室外ファンの速度が低減する。
(Function) During cooling operation, when the high pressure side pressure of the refrigeration cycle exceeds the set value, the operating frequency of each compressor is reduced. During heating operation, if the high-pressure side pressure of the refrigeration cycle reaches the set value or higher,
The operating frequency of each compressor is reduced and, if necessary, the speed of the outdoor fan in the outdoor unit is reduced.

(実施例) 以下、この発明の一実施例について図面を参照して説明
する。なお、図面において第6図と同一部分には同一符
号を付し、その説明は省略する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. In the drawings, the same parts as in FIG. 6 are designated by the same reference numerals, and their explanations will be omitted.

第2図に示すように、室外ユニットAは二台の能力可変
圧縮機1,2を備え、その圧縮機1,2を逆+)−弁3
,4をそれぞれ介して並列に接続している。
As shown in FIG.
, 4 are connected in parallel through each of them.

そして、圧縮機1,2、四方弁5、室外熱交換器6、暖
房用膨張弁7と冷房サイクル形成用逆止弁8の並列体、
リキッドタンク9、電動式流量調整弁11,21,31
、冷房用膨張弁12.22゜32と暖房サイクル形成用
逆止弁13.23゜33の並列体、室内熱交換器14.
24.34、ガス側開閉弁(電磁開閉弁)15,25,
35、アキュームレータ10などを順次連通し、ヒート
ポンプ式冷凍サイクルを構成している。
A parallel body of compressors 1 and 2, a four-way valve 5, an outdoor heat exchanger 6, a heating expansion valve 7 and a cooling cycle forming check valve 8,
Liquid tank 9, electric flow rate adjustment valve 11, 21, 31
, a parallel body of a cooling expansion valve 12.22°32 and a heating cycle forming check valve 13.23°33, an indoor heat exchanger 14.
24.34, Gas side on-off valve (electromagnetic on-off valve) 15, 25,
35, the accumulator 10, etc. are successively connected to form a heat pump type refrigeration cycle.

なお、冷房用膨張弁12,22.32はそれぞれ感温筒
12a、22a、32aを有しており、これら感温筒を
室内熱交換器14,24.34のガス側冷媒配管にそれ
ぞれ取付けている。
The cooling expansion valves 12, 22.32 each have a temperature sensing tube 12a, 22a, 32a, and these temperature sensing tubes are attached to the gas side refrigerant piping of the indoor heat exchanger 14, 24.34, respectively. There is.

すなわち、室内熱交換器14.24.34を並列構成と
している。
That is, the indoor heat exchangers 14, 24, and 34 are configured in parallel.

さらに、冷房運転時は図示実線矢印の方向に冷媒を流し
て冷房サイクルを形成し、暖房運転時は四方弁5の切換
作動により図示破線矢印の方向に冷媒を流して暖房サイ
クルを形成するようにしている。
Further, during cooling operation, the refrigerant is caused to flow in the direction of the solid arrow shown in the figure to form a cooling cycle, and during heating operation, the refrigerant is caused to flow in the direction of the broken line arrow shown by the switching operation of the four-way valve 5 to form a heating cycle. ing.

また、圧縮機1の冷媒吐出側配管にオイルセパレータ4
1を設け、そのオイルセパレータ41から圧縮機1の冷
媒吸込側配管にかけてオイルバイパス管42を設けてい
る。さらに、圧縮機2の冷媒吐出側配管にオイルセパレ
ータ43を設け、そのオイルセパレータ43から圧縮機
2の冷媒吸込側配管にかけてオイルバイパス管44を設
ける。
In addition, an oil separator 4 is installed on the refrigerant discharge side piping of the compressor 1.
1 is provided, and an oil bypass pipe 42 is provided from the oil separator 41 to the refrigerant suction side pipe of the compressor 1. Further, an oil separator 43 is provided on the refrigerant discharge side piping of the compressor 2, and an oil bypass pipe 44 is provided from the oil separator 43 to the refrigerant suction side piping of the compressor 2.

そして、圧縮機1,2のケースのそれぞれ基準油面レベ
ル位置を均油管45で連通し、互いの潤滑油の流通をr
+J能としている。
Then, the reference oil level positions of the cases of the compressors 1 and 2 are communicated with each other through an oil equalizing pipe 45, and the flow of lubricating oil between them is controlled.
+J Noh.

一方、冷凍サイクルの高圧側冷媒配管に圧力センサ46
を取付けている。
On the other hand, a pressure sensor 46 is installed on the high pressure side refrigerant pipe of the refrigeration cycle.
is installed.

さらに、高圧側冷媒配管から低圧側冷媒配管にかけてバ
イパス管47を設け、そのバイパス管47に高圧レリー
ス弁(電磁開閉弁)48を設けている。
Furthermore, a bypass pipe 47 is provided from the high pressure side refrigerant pipe to the low pressure side refrigerant pipe, and the bypass pipe 47 is provided with a high pressure release valve (electromagnetic on-off valve) 48.

また、室外熱交換器6の近傍に室外ファン49を設けて
いる。
Further, an outdoor fan 49 is provided near the outdoor heat exchanger 6.

制御回路を第1図に示す。The control circuit is shown in FIG.

室外ユニyl・Aは、室外制御部50を備えている。こ
の室外制御部50は、マイクロコンピュータおよびその
周辺回路などからなり、外部に圧力センサ46、高圧レ
リース弁48、室外ファンモータ49M1インバータ回
路51.52を接続している。
The outdoor unit yl.A includes an outdoor control section 50. The outdoor control unit 50 is composed of a microcomputer and its peripheral circuits, and is externally connected to a pressure sensor 46, a high pressure release valve 48, and an inverter circuit 51, 52 of the outdoor fan motor 49M1.

インバータ回路51.52は、交流電源53の電圧を整
流し、それを室外制御部50の指令に応じたスイッチン
グによって所定周波数の交流電圧に変換し、圧縮機モー
タLM、2Mにそれぞれ駆動電力として供給するもので
ある。
The inverter circuits 51 and 52 rectify the voltage of the AC power supply 53, convert it into an AC voltage of a predetermined frequency by switching according to a command from the outdoor control unit 50, and supply it as driving power to the compressor motors LM and 2M, respectively. It is something to do.

分岐ユニットBは、マルチ制御部60を備えている。こ
のマルチ制御部60は、マイクロコンピュータおよびそ
の周辺回路からなり、外部に流量調整弁11,21.3
1および開閉弁15,25゜35を接続している。
Branch unit B includes a multi-control unit 60. This multi-control unit 60 consists of a microcomputer and its peripheral circuits, and externally includes flow rate regulating valves 11, 21.3.
1 and on-off valves 15, 25°35 are connected.

室内ユニットC1,C2,C3は、室内制御部70.8
0.90を備えている。これら室内制御部は、マイクロ
コンピュータおよびその周辺回路からなり、外部に運転
操作部71,81.91および室内温度センサ72,8
2.92をそれぞれ接続している。
The indoor units C1, C2, and C3 are equipped with an indoor control section 70.8.
It has a value of 0.90. These indoor control units consist of a microcomputer and its peripheral circuits, and are externally connected to operation control units 71, 81, 91 and indoor temperature sensors 72, 8.
2.92 are connected respectively.

つぎに、1−記のような構成において第3図ないし第5
図を参照しながら動作を説明する。
Next, in the configuration as shown in 1-, Figures 3 to 5
The operation will be explained with reference to the figures.

いま、全ての室内ユニットで冷房運転を行なっているも
のとする。
It is assumed that all indoor units are currently performing cooling operation.

このとき、室内ユニットC1の室内制御部7゜は、室内
温1女センサ72の検知温度と運転ti作部71で定め
られた設定温度との差を演算し、その温度差に対応する
周波数設定信号f1を要求冷房能力としてマルチ制御部
60に転送する。
At this time, the indoor control unit 7° of the indoor unit C1 calculates the difference between the temperature detected by the indoor temperature sensor 72 and the set temperature determined by the operation unit 71, and sets the frequency corresponding to the temperature difference. The signal f1 is transferred to the multi-control unit 60 as the required cooling capacity.

同じく、室内ユニットC2,C3の室内制御部80.9
0も、周波数設定信号f2.f3を要求冷房能力として
マルチ制御部60に転送する。
Similarly, the indoor control section 80.9 of the indoor units C2 and C3
0 is also the frequency setting signal f2. f3 is transferred to the multi-control unit 60 as the required cooling capacity.

マルチ制御部60は、転送されてくる周波数設定信号に
基づいて各室内ユニットの要求冷房能力を求め、その総
和に対応する周波数設定信号f。
The multi-control unit 60 determines the required cooling capacity of each indoor unit based on the transferred frequency setting signal, and generates a frequency setting signal f corresponding to the sum total.

を室外制御部50に転送する。is transferred to the outdoor control section 50.

室外制御部50は、転送されてくる周波数設定信号f。The outdoor control unit 50 receives the transferred frequency setting signal f.

に覗づいて圧縮機1.2の運転台数および運転周波数(
インバータ回路51.52の出力周波数)を制御する。
The number of operating compressors 1.2 and the operating frequency (
The output frequency of the inverter circuits 51 and 52 is controlled.

この場合、室外制御部50は、要求冷房能力の総和が大
きくなるに従い圧縮機1の一台運転から圧縮@1,2の
二台運転に移行する。
In this case, the outdoor control unit 50 shifts from operating one compressor 1 to operating two compressors @1 and 2 as the total required cooling capacity increases.

なお、マルチ制御部60は、室内ユニットC1+C2,
C3の要求冷房能力に応じてそれぞれ対応する流量調整
弁11.21.31の開度を制御し、室内熱交換器14
,24.34への冷媒流量を調節して冷媒過熱度を一定
に維持する。
Note that the multi-control unit 60 controls the indoor units C1+C2,
The opening degrees of the corresponding flow rate regulating valves 11, 21, and 31 are controlled according to the required cooling capacity of the indoor heat exchanger 14.
, 24 and 34 to maintain a constant degree of refrigerant superheat.

ところで、この冷房運転時、室外制御部50は圧力セン
サ46の検知圧力Pd(高圧側圧力)を監視しており、
その検知圧力Pdに応じて第3図および第5図に示す制
御を行なう。
By the way, during this cooling operation, the outdoor control unit 50 monitors the detected pressure Pd (high pressure side pressure) of the pressure sensor 46.
Controls shown in FIGS. 3 and 5 are performed in accordance with the detected pressure Pd.

すなわち、検知圧力Pdが設定値X(初期値P2)を超
えてM領域に至ると、その検知圧力Pdが設定値X以下
のN領域に入るよう、圧縮機1.2の運転周波数Fl、
F2を所定ステップずつ低減する。
That is, when the detected pressure Pd exceeds the set value
Decrease F2 by a predetermined step.

検知圧力PdがN領域まで下がると、そのときの運転周
波数Fl、F2を保持する。そして、15分後、検知圧
力PdがP1以下のし領域まで下がれば、運転周波数F
1.F2を指令周波数に設定し、通常の運転に戻る。
When the detected pressure Pd falls to the N region, the operating frequencies Fl and F2 at that time are maintained. Then, after 15 minutes, if the detected pressure Pd falls to a range below P1, the operating frequency F
1. Set F2 to the command frequency and return to normal operation.

ただし、15分後、検知圧力PdがN領域であれば、N
領域のなるべく高いところ(P2付近)に検知圧力Pd
が収まるよう、運転周波数F1゜F2を1ステツプずつ
増減または低減する。この場合、検知圧力PdをN領域
のなるべく高いところに収めることにより、能力不足を
極力解消するようにしている。
However, if the detected pressure Pd is in the N range after 15 minutes, then N
Detected pressure Pd at the highest possible point in the area (near P2)
Increase or decrease the operating frequency F1°F2 by one step so that the In this case, by keeping the detected pressure Pd as high as possible in the N region, the lack of capacity is alleviated as much as possible.

検知圧力PdがM領域またはN領域のまま、運軸周波数
F、、F2が最低運転周波数F minまで下がり、し
かも検知圧力PdがP4に達すると、運転周波数F1.
F2を零とする。つまり、圧縮機1,2の運転を停止し
て高圧側圧力の異常上昇を抑える。
While the detected pressure Pd remains in the M region or the N region, the shaft operating frequency F,, F2 decreases to the minimum operating frequency Fmin, and when the detected pressure Pd reaches P4, the operating frequency F1.
Let F2 be zero. That is, the operation of the compressors 1 and 2 is stopped to suppress an abnormal increase in the pressure on the high pressure side.

この運転停止から14分が経過したら、圧縮機1.2を
11起動するが、今度は設定値Xを1kg/ e−G低
い(P2−1)に定める。この状態でも運転停止に至っ
た場合は、設定値Xをさらに1ksr / cd G低
い(P2−2)に定める。そして、この二回に及ぶ圧力
レリースにもかわらず運転停止に至るような激しい上昇
では、現状を継続し、高圧保護を高圧スイッチ(図示し
ない)の作動に依存する(高圧スイッチが作動すると全
停止となる)。
When 14 minutes have elapsed since the operation was stopped, the compressor 1.2 is started for 11 hours, but this time the set value X is set to be 1 kg/e-G lower (P2-1). If the operation is stopped even in this state, the set value X is further set lower by 1 ksr/cd G (P2-2). In the event of a severe rise that results in a shutdown despite these two pressure releases, the current situation will continue and high pressure protection will depend on the activation of a high pressure switch (not shown) (if the high pressure switch is activated, a complete shutdown will occur). ).

このように、高圧側圧力が設定値X以上となったら圧縮
機1.2の運転周波数F1.F2を低減する高圧レリー
スを行なうことにより、高圧側圧力の異常上昇を抑える
ことができ、安定した冷房運転が可能となる。さらには
、冷凍サイクル機器の寿命に悪影響を与えることがない
In this way, when the high pressure side pressure becomes equal to or higher than the set value X, the operating frequency F1 of the compressor 1.2 is changed. By performing high-pressure release to reduce F2, it is possible to suppress an abnormal increase in the pressure on the high-pressure side, and stable cooling operation is possible. Furthermore, the life of the refrigeration cycle equipment is not adversely affected.

しかも、高圧レリースによる運転停止ごとに設定値Xを
順次下げるようにしているので、高圧側圧力の激しい上
昇に対し、その上昇をオーバラン無く抑えることができ
、高圧スイッチがいちいち作動するような不具合がない
Moreover, since the set value do not have.

一方、暖房運転時は、室内ユニットC,,C2゜C3の
要求暖房能力に応じて圧縮機1,2の運転台数および運
転周波数を制御することになる。
On the other hand, during the heating operation, the number of operating compressors 1 and 2 and the operating frequency are controlled according to the required heating capacity of the indoor units C, , C2 and C3.

この暖房運転時、室外制御部50は圧力センサ46の検
知圧力Pd(高圧側圧力)を監視しており、その検知圧
力Pdに応じて第4図および第5図に示す制御を行なう
During this heating operation, the outdoor control section 50 monitors the detected pressure Pd (high pressure side pressure) of the pressure sensor 46, and performs the control shown in FIGS. 4 and 5 according to the detected pressure Pd.

すなわち、検知圧力Pdが設定値X(用期値P、)を超
えてM領域に至ると、その検知圧力Pdが設定値X以下
のN領域に入るよう、圧縮機1.2の運転周波数F1.
F2を所定ステップずつ低減する。
That is, when the detected pressure Pd exceeds the set value ..
Decrease F2 by a predetermined step.

検知圧力PdがN領域まで下がると、そのときの運転周
波数F、、F2を保持する。そして、【5分後、検知圧
力PdがP1以下のL領域まで下がれば、運転周波数F
B、F2を指令周波数に設定し1通常の運転に戻る。
When the detected pressure Pd falls to the N region, the operating frequencies F, , F2 at that time are maintained. Then, [After 5 minutes, if the detected pressure Pd falls to the L region below P1, the operating frequency F
Set B and F2 to the command frequency and return to normal operation.

ただし、15分後、検知圧力PdがN領域であれば、N
領域のなるべく高いところ(P2付近)に検知圧力Pd
が収まるよう、運転周波数F1+F2を1ステツプずつ
増減または低減する。この場合、検知圧力PdをN領域
のなるべく高いところに収めることにより、能力不足を
極力解消するようにしている。
However, if the detected pressure Pd is in the N range after 15 minutes, then N
Detected pressure Pd at the highest possible point in the area (near P2)
The operating frequency F1+F2 is increased or decreased by one step so that the In this case, by keeping the detected pressure Pd as high as possible in the N region, the lack of capacity is alleviated as much as possible.

検知圧力PdがM領域またはN領域のまま、運転周波数
F1.F2が最低運転周波数F girlまで下がり、
しかも検知圧力Pdが設定値Y(初期値P3)に達する
と、そこで下表に示すレリース運転パターン■を実行す
る。つまり、室外ファン49の速度を零(運転オフ)と
し、さらにレリース弁48を開放し、室外熱交換器6に
おける熱交換器を少なくする。そして、このレリース運
転パターン■を【2分実行し、その後にレリース運転パ
ターンVを実行する。
While the detected pressure Pd remains in the M region or N region, the operating frequency F1. F2 drops to the lowest operating frequency F girl,
Furthermore, when the detected pressure Pd reaches the set value Y (initial value P3), the release operation pattern (2) shown in the table below is executed. That is, the speed of the outdoor fan 49 is set to zero (operation off), the release valve 48 is opened, and the number of heat exchangers in the outdoor heat exchanger 6 is reduced. Then, this release operation pattern (2) is executed for 2 minutes, and then the release operation pattern (V) is executed.

このレリース運転パターンVl、 Vの実行にもがかわ
らず検知圧力PdがP4に達すると、運転周波数FI、
F2を零とし、圧縮機1,2の運転を停止りする。
When the detected pressure Pd reaches P4 despite execution of the release operation patterns Vl and V, the operation frequency FI,
F2 is set to zero and the operation of compressors 1 and 2 is stopped.

この運転停止から14分が経過したら、圧縮機1,2を
再起動するが、今度は設定値Xを1kg / cd G
低い(P:1−1)に定め、設定値Yを1 kg / 
J G低い(P3 1)に定める。この状態で運転停止
に至った場合は、設定値Xをさらに1kg / c+#
 G低い(P2−2)に定め、設定値Yをさらに1 k
g / cd G低い(P32)に定める。そして、こ
の二回に及ぶ圧力レリースにもががゎらず運転停止に至
るような激しい上昇では、現状を継続し、高圧保護を高
圧スイッチ(図示しない)の作動に依存する(高圧スイ
ッチが作動すると全停止1−となる)。
After 14 minutes have passed since the operation stopped, compressors 1 and 2 are restarted, but this time the set value X is set to 1 kg/cd G.
Set low (P: 1-1) and set value Y to 1 kg/
Set to J G low (P3 1). If the operation is stopped in this state, increase the set value X by an additional 1kg/c+#
G is set to low (P2-2), and the setting value Y is further increased by 1k.
g/cd Set to G low (P32). In the event of a severe increase in pressure that does not allow the pressure to be released twice and results in a shutdown, the current situation will continue and high pressure protection will depend on the activation of a high pressure switch (not shown) (if the high pressure switch is activated, (total stop 1-).

しかして、レリース運転パターンVl、 Vの実行によ
って検知圧力PdがP2以下のN領域まで下がると、そ
のときの運転周波数F1.F2およびレリース運転パタ
ーンVを保持する。以後、検知圧力Pdの変化に応じて
レリース運転パターンを適宜選択し、最適な高圧レリー
スを実行する。
When the detected pressure Pd falls to the N range below P2 by executing the release operation patterns Vl and V, the operating frequency F1. F2 and release operation pattern V are maintained. Thereafter, a release operation pattern is appropriately selected according to changes in the detected pressure Pd, and an optimal high-pressure release is executed.

このように、高圧側圧力が設定値X以上となったら圧縮
m1.2の運転周波数Fl、F2を低減する高圧レリー
スを行ない、さらには必要に応じて室外ファン49の速
度低減およびレリース弁48の開放を加えることにより
、高圧側圧力の異常−上昇を確実にしかも最適な状態に
抑えることができ、安定した暖房運転を行なうことがで
きる。
In this way, when the high-pressure side pressure becomes equal to or higher than the set value By adding the opening, abnormal rise in pressure on the high pressure side can be reliably suppressed to an optimum state, and stable heating operation can be performed.

しかも、設定値X(およびY)を順次下げるようにして
いるので、高圧側圧力の激しい上昇に対し、その−1,
昇をオーバラン無く抑えることができ、高圧スイッチか
いちいち作動するような不具合もない。
Moreover, since the set value X (and Y) is lowered sequentially, the -1,
It is possible to suppress the rise without overrun, and there is no problem of the high voltage switch operating every time.

また、圧縮機1.2に対してオイルセパレータ等のオイ
ル仄し経路を設けているので、冷房、暖房の別なく、冷
凍機油を効率よく回収することができる。
Further, since an oil passage such as an oil separator is provided to the compressor 1.2, refrigerating machine oil can be efficiently recovered regardless of whether the compressor is used for cooling or heating.

なお、上記実施例では、室内ユニットが二台の場合につ
いて説明したが、それ以上あるいは三台の場合について
も同様に実施可能である。
In the above embodiments, the case where there are two indoor units has been described, but it is also possible to implement the case with more or three indoor units.

その他、この発明は上記実施例に限定されるものではな
く、要旨を変えない範囲で種々変形実施可能である。
In addition, the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without changing the gist.

[発明の効果] 以上述べたようにこの発明によれば、冷凍サイクルの高
圧側圧力を検知する圧力検知手段と、冷房運転時、前記
圧力検知手段の検知圧力が設定値を超えるとその検知圧
力が所定値に下がるまで各圧縮機の運転周波数を低減す
る手段と、暖房運転時、前記圧力検知手段の検知圧力が
設定値を超えるとその検知圧力が所定値に下かるまで各
圧縮機の運転周波数を低減する手段と、この低減時に前
記圧力検知1段の検知圧力に応じて室外ユニットにおけ
る室外ファンの速度を低減する手段とを設けたので、高
圧側圧力の異常」二昇を確実にしかも最適な状態に抑え
、常に安定運転を=1能とする空気調和機を提供できる
[Effects of the Invention] As described above, according to the present invention, there is provided a pressure detection means for detecting the pressure on the high pressure side of the refrigeration cycle, and when the detected pressure of the pressure detection means exceeds a set value during cooling operation, the detected pressure is detected. means for reducing the operating frequency of each compressor until the pressure drops to a predetermined value; and a means for reducing the operating frequency of each compressor until the detected pressure of the pressure detection means exceeds a set value during heating operation, and operating each compressor until the detected pressure falls to a predetermined value. By providing a means for reducing the frequency and a means for reducing the speed of the outdoor fan in the outdoor unit according to the pressure detected by the first pressure detection stage at the time of this reduction, it is possible to prevent abnormalities in the high pressure side pressure. We can provide an air conditioner that maintains optimal conditions and always operates stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における制御回路の構成を
示す図、第2図は同実施例における冷凍サイクルの構成
を示す図、第3図は同実施例における冷房運転の動作を
説明するためのフローチャート、第4図は同実施例にお
ける暖房運転の動作を説明するだめのフローチャート、
第5図は同実施例における高圧側圧力と設定値との関係
を示す図、第6図は従来の空気調和機の構成を概略的に
示す図である。 A・・・室外ユニット、B・・・分岐ユニット、C1゜
C2,C3・・・室内ユニット、1.2・・・能力可変
圧縮機、46・・・圧力センサ、49・・・室外ファン
、50・・・室外制御部、60・・・マルチ制御部、7
0゜80.90・・・室内制御部。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a diagram showing the configuration of a control circuit in one embodiment of the present invention, FIG. 2 is a diagram showing the configuration of a refrigeration cycle in the same embodiment, and FIG. 3 is a diagram explaining the operation of the cooling operation in the same embodiment. FIG. 4 is a flowchart for explaining the operation of heating operation in the same embodiment.
FIG. 5 is a diagram showing the relationship between the high pressure side pressure and the set value in the same embodiment, and FIG. 6 is a diagram schematically showing the configuration of a conventional air conditioner. A... Outdoor unit, B... Branch unit, C1° C2, C3... Indoor unit, 1.2... Variable capacity compressor, 46... Pressure sensor, 49... Outdoor fan, 50... Outdoor control unit, 60... Multi control unit, 7
0°80.90...Indoor control unit. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 二台の能力可変圧縮機を有する室外ユニット、および複
数の室内ユニットを備え、これら室内ユニットの要求能
力に応じて前記各圧縮機の運転台数および運転周波数を
制御する空気調和機において、冷凍サイクルの高圧側圧
力を検知する圧力検知手段と、冷房運転時、前記圧力検
知手段の検知圧力が設定値を超えるとその検知圧力が所
定値に下がるまで前記各圧縮機の運転周波数を低減する
手段と、暖房運転時、前記圧力検知手段の検知圧力が設
定値を超えるとその検知圧力が所定値に下がるまで前記
各圧縮機の運転周波数を低減する手段と、この低減時に
前記圧力検知手段の検知圧力に応じて前記室外ユニット
における室外ファンの速度を低減する手段とを具備した
ことを特徴とする空気調和機。
An air conditioner comprising an outdoor unit having two variable capacity compressors and a plurality of indoor units, and controlling the number of operating compressors and the operating frequency of each compressor according to the required capacity of these indoor units. pressure detection means for detecting high-pressure side pressure; and means for reducing the operating frequency of each compressor when the pressure detected by the pressure detection means exceeds a set value during cooling operation until the detected pressure falls to a predetermined value; During heating operation, when the pressure detected by the pressure detection means exceeds a set value, means for reducing the operating frequency of each compressor until the detected pressure falls to a predetermined value; and at the time of this reduction, the pressure detected by the pressure detection means An air conditioner comprising means for reducing the speed of an outdoor fan in the outdoor unit accordingly.
JP2927888A 1988-02-10 1988-02-10 Air conditioner Pending JPH01203861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2927888A JPH01203861A (en) 1988-02-10 1988-02-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2927888A JPH01203861A (en) 1988-02-10 1988-02-10 Air conditioner

Publications (1)

Publication Number Publication Date
JPH01203861A true JPH01203861A (en) 1989-08-16

Family

ID=12271806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2927888A Pending JPH01203861A (en) 1988-02-10 1988-02-10 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01203861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631234A (en) * 2019-09-30 2019-12-31 广东美的暖通设备有限公司 Control method of air conditioner operation frequency, air conditioner and computer readable storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631234A (en) * 2019-09-30 2019-12-31 广东美的暖通设备有限公司 Control method of air conditioner operation frequency, air conditioner and computer readable storage medium

Similar Documents

Publication Publication Date Title
US4932220A (en) Air conditioner system with optimum high pressure control function
KR930007962B1 (en) Air conditioner
JP3322684B2 (en) Air conditioner
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
JPH037853A (en) Air conditioner
JPH04161763A (en) Air conditioner
JPH10238880A (en) Multiple heat pump type air conditioner
JPH01203855A (en) Air conditioner
JPH04273949A (en) Refrigerating cycle device
JPH01203861A (en) Air conditioner
JPH05157374A (en) Air conditioner
JPH0493558A (en) Operation-controlling device for refrigeration arrangement
JPH01147265A (en) Air conditioner
JPH01127865A (en) Air conditioner
JPH07305915A (en) Air conditioner
JP2955278B2 (en) Multi-room air conditioning system
JPH01203859A (en) Air conditioner
JPH01193088A (en) Air conditioner
JPH01203858A (en) Air conditioner
JPH01203860A (en) Air conditioner
JPH01203854A (en) Air conditioner
JPS62129661A (en) Air conditioner
JPH02150664A (en) Air conditioner
JPH01252864A (en) Air conditioner
JPH03102142A (en) Air conditioner