JPH01203856A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01203856A
JPH01203856A JP63029266A JP2926688A JPH01203856A JP H01203856 A JPH01203856 A JP H01203856A JP 63029266 A JP63029266 A JP 63029266A JP 2926688 A JP2926688 A JP 2926688A JP H01203856 A JPH01203856 A JP H01203856A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
indoor unit
deltat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63029266A
Other languages
Japanese (ja)
Inventor
Manabu Kitamoto
学 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63029266A priority Critical patent/JPH01203856A/en
Priority to GB8902082A priority patent/GB2215867B/en
Priority to AU29573/89A priority patent/AU603280B2/en
Priority to US07/306,074 priority patent/US4926652A/en
Priority to KR1019890001488A priority patent/KR930004382B1/en
Publication of JPH01203856A publication Critical patent/JPH01203856A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Abstract

PURPOSE:To perform an optimum refrigerant flow rate regulation that meets the cooling capacity demand for the indoor units regardless of the length of the refrigerant piping or head by detecting the degree of overheating of refrigerant in regard to each indoor unit, and, based on the detection results, correcting the opening of the respective refrigerant flow rate regulating valves. CONSTITUTION:The detected temperature from a temperature sensor 48a and the detected temperature from a temperature sensor 47 are taken in to compute their difference DELTAT. This differential temperature DELTAT is an apparent degree of overheating of refrigerant in an indoor unit C1. In the case where the temperature differential DELTAT is in the L zone which is below a set level, a normal opening control is performed without any correction. If the temperature differential DELTAT, however, is in the M zone which is above a set level, the opening correction pi is computed by the following equation, and the opening of a refrigerant flow rate regulating valve 11 is increased by that amount. theta=E.(capacity of indoor unit C1) where K is a constant. In this case, the temperature differential DELTAT is computed at regular intervals, and, if it is still in the M zone, the opening is increased each time. If the temperature differential DELTAT drops to the N zone which is below a set level, the opening existing before the correction is retained. If the temperature differential DELTAT further drops to the L zone, the normal opening control is resumed without any correction.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、室外ユニ・ソトおよび複数の室内ユニット
からなるマルチタイプの空気調和機に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a multi-type air conditioner comprising an outdoor unit and a plurality of indoor units.

(従来の技術) 一般に、この種の空気調和機としては、室外ユニットに
複数の分岐ユニットを接続し、それら分岐ユニットにそ
れぞれ複数の室内ユニ・ットを接続してなるスーパーマ
ルチタイプがある。−例を第4図に示す。
(Prior Art) Generally, as this type of air conditioner, there is a super multi type in which a plurality of branch units are connected to an outdoor unit, and a plurality of indoor units are connected to each of these branch units. - An example is shown in FIG.

第4図において、Aは室外ユニット、Bは分岐ユニット
、CI *  C2103は室内ユニットである。
In FIG. 4, A is an outdoor unit, B is a branch unit, and CI*C2103 is an indoor unit.

室外ユニットAは二台の能力可変圧縮機1,2を備えて
おり、その圧縮機1,2を逆止弁3,4をそれぞれ介し
て並列に接続している。
The outdoor unit A includes two variable capacity compressors 1 and 2, which are connected in parallel via check valves 3 and 4, respectively.

そして、圧縮機1,2、四方弁5、室外熱交換器6、暖
房用膨張弁7と冷房サイクル形成用逆止弁8の並列体、
リキッドタンク9、へ・ソダ■、電動式の冷媒流量調整
弁()(ルスモータノ(ルブ)11.21.31、冷房
用膨張弁12,22゜32と暖房サイクル形成用逆止弁
13,23゜33の並列体、室内熱交換器14,24,
34、ガス側・開閉弁(電磁開閉弁)15,25,35
、ヘッダH1アキュームレータ10などを順次連通し、
ヒートポンプ式冷凍サイクルを構成している。
A parallel body of compressors 1 and 2, a four-way valve 5, an outdoor heat exchanger 6, a heating expansion valve 7 and a cooling cycle forming check valve 8,
Liquid tank 9, Soda ■, Electric refrigerant flow rate adjustment valve () (Rusmotano (Lube) 11.21.31, Expansion valve for cooling 12, 22゜32 and Check valve for forming heating cycle 13, 23゜33 parallel bodies, indoor heat exchangers 14, 24,
34, Gas side/on-off valve (electromagnetic on-off valve) 15, 25, 35
, header H1 accumulator 10, etc. are sequentially communicated,
It consists of a heat pump type refrigeration cycle.

すなわち、冷房運転時は図示実線矢印の方向に冷媒を流
して冷房サイクルを形成し、室外熱交換器6を凝縮器、
室内熱交換器14,24.34を蒸発器として作用させ
る。
That is, during cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure to form a cooling cycle, and the outdoor heat exchanger 6 is converted into a condenser,
The indoor heat exchanger 14, 24, 34 acts as an evaporator.

暖房運転時は四方弁5の切換作動により図示破線矢印の
方向に冷媒を流して暖房サイクルを形成し、室内熱交換
器14.24.34を凝縮器、室外熱交換器6を蒸発器
として作用させる。
During heating operation, the four-way valve 5 is switched to flow the refrigerant in the direction of the dashed arrow in the figure to form a heating cycle, with the indoor heat exchanger 14, 24, 34 acting as a condenser and the outdoor heat exchanger 6 acting as an evaporator. let

分岐ユニットBは、室内ユニットCI +  C2+C
3に連通の液側冷媒配管とガス側冷媒配管とにわたって
構成してあり、冷媒流量調整弁11゜21.31、冷房
用膨張弁12.22.32、暖房サイクル形成用逆止弁
13.23.33、ガス側開閉弁15.25.35を有
している。
Branch unit B is indoor unit CI + C2 + C
3, the liquid side refrigerant pipe and the gas side refrigerant pipe communicate with each other, and the refrigerant flow rate adjustment valve 11°21.31, the cooling expansion valve 12.22.32, and the heating cycle forming check valve 13.23. .33, gas side on-off valve 15.25.35.

なお、圧縮機1の吐出側冷媒配管にオイルセパレータ4
1を設け、そのオイルセパレータ41から圧縮機1の吸
込側冷媒配管にかけてオイルバイパス管42を設けてい
る。圧縮機2の吐出側冷媒配管および吸込側冷媒配管に
も、同様にオイルセパレータ41、オイルバイパス管4
2を設けている。
Note that an oil separator 4 is installed in the refrigerant pipe on the discharge side of the compressor 1.
1 is provided, and an oil bypass pipe 42 is provided from the oil separator 41 to the suction side refrigerant pipe of the compressor 1. Similarly, an oil separator 41 and an oil bypass pipe 4 are installed in the discharge side refrigerant pipe and the suction side refrigerant pipe of the compressor 2.
2 are provided.

そして、圧縮機1.2のケースのそれぞれ基準油面レベ
ル位置を均油管43で連通し、両者間の潤滑油の流通を
可能としている。
The respective reference oil level positions of the cases of the compressors 1 and 2 are communicated with each other through oil equalizing pipes 43, allowing the flow of lubricating oil between the two.

このような空気調和機においては、各室内ユニットの要
求能力の総和に応じて圧縮機1.2の運転台数および能
力を制御する。
In such an air conditioner, the number and capacity of compressors 1.2 in operation are controlled according to the total required capacity of each indoor unit.

さらに、冷媒流量調整弁11,21.31の開度を対応
する室内ユニットの要求能力に応じて制御する。
Furthermore, the opening degrees of the refrigerant flow rate regulating valves 11, 21, and 31 are controlled according to the required capacity of the corresponding indoor unit.

(発明が解決しようとする課題) ただし、分岐ユニットBと室内ユニットC1+C2+C
3との間の冷媒配管はその長さおよび落差が据付は状況
に応じて様々に変化するのが普通であるにもかかわらず
、要求能力の判断は室内ユニットC1,C2,C3の容
量(馬力とも称す)のみを基準としており、分岐ユニッ
トBと室内ユニットc11 C2+ C3との間の冷媒
配管での圧力損失については何ら考慮していない。
(Problem to be solved by the invention) However, branch unit B and indoor unit C1+C2+C
Although the length and head of the refrigerant piping between the indoor units C1, C2, and C3 usually vary depending on the installation situation, the required capacity is determined based on the capacity (horsepower) of the indoor units C1, C2, and C3. (also referred to as )), and does not take into account pressure loss in the refrigerant piping between the branch unit B and the indoor units c11, C2+, and C3.

このため、各室内ユニットの要求能力に合致した最適な
冷媒流量調節が困難である。
For this reason, it is difficult to optimally adjust the refrigerant flow rate to match the required capacity of each indoor unit.

たとえば冷媒配管が長くなると加熱ぎみのサイクルとな
る。
For example, if the refrigerant piping is long, the cycle will be too hot.

この発明は上記のような事情に鑑みてなされたもので、
その目的とするところは、冷媒配管の長さや落差に影響
を受けることなく、各室内ユニットの要求能力に合致し
た最適な冷媒流量調節を行なうことができる信頼性にす
ぐれた空気調和機を提供することにある。
This invention was made in view of the above circumstances,
The objective is to provide a highly reliable air conditioner that can optimally adjust the refrigerant flow rate to match the required capacity of each indoor unit without being affected by the length or head of the refrigerant piping. There is a particular thing.

[発明の構成] (課題を解決するための手段) 各室内ユニットの要求能力の総和に応じて圧縮機の運転
周波数を制御する手段と、各分岐ユニットに設けられ各
室内ユニットへの冷媒流量を調整する冷媒流量調整弁と
、これら冷媒流量調整弁の開度を対応する室内ユニット
の要求能力に応じて制御する手段と、各室内ユニットの
冷媒過熱度を検出する手段と、これら検出結果に応じて
各冷媒流量調整弁の開度を補正する手段とを設ける。
[Structure of the Invention] (Means for Solving the Problems) Means for controlling the operating frequency of the compressor according to the total required capacity of each indoor unit, and means provided in each branch unit to control the flow rate of refrigerant to each indoor unit. A refrigerant flow rate adjustment valve to be adjusted, a means for controlling the opening degree of these refrigerant flow rate adjustment valves according to the required capacity of the corresponding indoor unit, a means for detecting the degree of refrigerant superheat of each indoor unit, and a means according to the detection results. means for correcting the opening degree of each refrigerant flow rate regulating valve.

(作用) まず、各室内ニットの要求能力に応じて各冷媒流量調整
弁の開度を制御する。この状態において、室内ユニット
ごとの冷媒過熱度を検出し、これら検出結果に応じて各
冷媒流量調整弁の開度を補正する。
(Function) First, the opening degree of each refrigerant flow rate regulating valve is controlled according to the required capacity of each indoor unit. In this state, the refrigerant superheat degree of each indoor unit is detected, and the opening degree of each refrigerant flow rate adjustment valve is corrected according to these detection results.

(実施例) 以下、この発明の一実施例について図面を参照して説明
する。なお、図面において第4図と同一部分には同一符
号を付し、その詳細な説明は省略する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. In the drawings, the same parts as in FIG. 4 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

第1図に示すように、分岐ユニットBにおいて、室内ユ
ニットcll  C21C3に連通の液側冷媒配管の集
合部から、同じく室内ユニットCI rC2,C3に連
通のガス側冷媒配管の集合部にかけて、逆止弁44およ
びキャピラリチューブ45を順次介してバイパス管46
を設ける。
As shown in Fig. 1, in branch unit B, a non-return check is installed from the gathering point of the liquid side refrigerant piping communicating with the indoor unit cll C21C3 to the gathering point of the gas side refrigerant piping communicating with the indoor units CI rC2, C3. A bypass pipe 46 is sequentially passed through a valve 44 and a capillary tube 45.
will be established.

そして、バイパス管46の出口側に第1温度センサ47
を取付ける。
A first temperature sensor 47 is provided on the outlet side of the bypass pipe 46.
Install.

さらに、上記各ガス側冷媒配管において、開閉弁15.
25.35よりも室内ユニット側の位置にそれぞれ第2
温度センサ48a、48b。
Further, in each of the gas side refrigerant pipes, an on-off valve 15.
25. The second position is located closer to the indoor unit than 35.
Temperature sensors 48a, 48b.

48cを取付ける。Install 48c.

他方の分岐ユニットBにおいても同じ構成とする。The other branch unit B also has the same configuration.

制御回路を第2図に示す。The control circuit is shown in FIG.

室外ユニットAは、室外制御部50を備えている。The outdoor unit A includes an outdoor control section 50.

この室外制御部50は、マイクロコンピュータおよびそ
の周辺回路などからなり、外部にインバータ回路51.
52を接続している。インバータ回路51.52は、交
流電源53の電圧を整流し、それを室外制御部50の指
令に応じたスイッチングによって所定周波数の交流電圧
に変換し、圧縮機モータIM、2Mにそれぞれ駆動電力
として供給するものである。
This outdoor control section 50 is composed of a microcomputer and its peripheral circuits, and has an external inverter circuit 51.
52 is connected. The inverter circuits 51 and 52 rectify the voltage of the AC power supply 53, convert it into an AC voltage of a predetermined frequency by switching according to a command from the outdoor control unit 50, and supply it as driving power to the compressor motors IM and 2M, respectively. It is something to do.

分岐ユニットBは、マルチ制御部60を備えている。こ
のマルチ制御部60は、マイクロコンピュータおよびそ
の周辺回路からなり、外部に冷媒流量調整弁11,21
,31、開閉弁15.25゜35、および温度センサ4
7,48a、48b。
Branching unit B includes a multi-control unit 60. This multi-control unit 60 consists of a microcomputer and its peripheral circuits, and has external refrigerant flow rate regulating valves 11 and 21.
, 31, on-off valve 15.25° 35, and temperature sensor 4
7, 48a, 48b.

48cを接続している。48c is connected.

室内ユニットc、 、c21  c3は、室内制御部7
0.80.90を備えている。
The indoor units c, , c21 c3 are the indoor control unit 7
It is equipped with 0.80.90.

これら室内制御部は、マイクロコンピュータおよびその
周辺回路からなり、外部に運転操作部71.81.91
および室内温度センサ72゜82.92をそれぞれ接続
している。
These indoor control units consist of a microcomputer and its peripheral circuits, and external operation units 71, 81, and 91.
and an indoor temperature sensor 72°82.92, respectively.

そして、各室内制御部は周波数設定信号f1゜f2.f
3を要求能力としてマルチ制御部60に転送するように
なっている。マルチ制御部60は、転送されてくる周波
数設定信号から各室内ユニットの要求能力を求め、その
総和に対応する周波数設定信号foを室外制御部50に
転送するようになっている。
Then, each indoor control unit receives frequency setting signals f1°f2. f
3 is transferred to the multi-control unit 60 as the required capacity. The multi-control unit 60 determines the required capacity of each indoor unit from the transferred frequency setting signal, and transfers the frequency setting signal fo corresponding to the sum total to the outdoor control unit 50.

つぎに、上記のような構成において第3図を参照しなが
ら動作を説明する。
Next, the operation of the above configuration will be explained with reference to FIG.

いま、全ての室内ユニットで冷房運転を行なっているも
のとする。
It is assumed that all indoor units are currently performing cooling operation.

このとき、室内ユニットC1の室内制御部70は、室内
温度センサ72の検知温度と運転操作部71で定められ
た設定温度との差を演算し、その温度差に対応する周波
数設定信号flを要求冷房能力としてマルチ制御部60
に転送する。
At this time, the indoor control section 70 of the indoor unit C1 calculates the difference between the temperature detected by the indoor temperature sensor 72 and the set temperature determined by the operation operation section 71, and requests a frequency setting signal fl corresponding to the temperature difference. Multi-control unit 60 as cooling capacity
Transfer to.

同じく、室内ユニットC2+C3の室内制御部80.9
0も、周波数設定信号f2+  f3を要求冷房能力と
してマルチ制御部60に転送する。
Similarly, indoor control section 80.9 of indoor unit C2+C3
0 also transfers the frequency setting signal f2+f3 to the multi-control unit 60 as the required cooling capacity.

マルチ制御部60は、転送されてくる周波数設定信号に
基づいて各室内ユニットの要求冷房能力骨 を求め、その総和に対応する周波数設定信号f。
The multi-control unit 60 determines the required cooling capacity of each indoor unit based on the transferred frequency setting signal, and generates a frequency setting signal f corresponding to the sum total.

を室外制御部50に転送する。is transferred to the outdoor control unit 50.

この場合、マルチ制御部60は、各室内ユニットの容量
に関するデータをあらかじめ保持しており、そのデータ
を要求冷房能力の判断基準とする。
In this case, the multi-control unit 60 holds data regarding the capacity of each indoor unit in advance, and uses this data as a criterion for determining the required cooling capacity.

室外制御部50は、各分岐ユニットBから転送されてく
る周波数設定信号f。に基づいて室内ユニットの総要求
冷房能力を求め、圧縮機1.2の運転台数および運転周
波数(インバータ回路51゜52の出力周波数)を制御
する。
The outdoor control unit 50 receives the frequency setting signal f transferred from each branch unit B. Based on this, the total required cooling capacity of the indoor unit is determined, and the number of operating compressors 1.2 and the operating frequency (output frequency of the inverter circuits 51 and 52) are controlled.

この場合、室外制御部50は、総要求冷房能力が大きく
なるに従い圧縮機1の1台運転から圧縮機1,2の2台
運転に移行する。
In this case, the outdoor control unit 50 shifts from operating one compressor 1 to operating two compressors 1 and 2 as the total required cooling capacity increases.

ところで、圧縮機1.2の吐出冷媒には潤滑油が含まれ
ており、その潤滑油のほとんどはオイルセパレータ41
で回収され、オイルバイ、パス管42を通して圧縮機1
,2に戻される。回収されなかった冷媒は冷凍サイクル
を一巡し、圧縮機1゜2に戻る。
By the way, the refrigerant discharged from the compressor 1.2 contains lubricating oil, and most of the lubricating oil is in the oil separator 41.
The oil is collected in the compressor 1 through the oil bypass and pass pipe 42.
, 2. The unrecovered refrigerant goes through the refrigeration cycle and returns to the compressor 1.2.

一方、マルチ制御部60は、冷媒流量調整弁11.21
.31の開度を対応する室内ユニットの要求冷房能力に
応じて制御し、冷媒流量の調節を行なう。そして、この
開度制御の上に次の補正を適宜加える。
On the other hand, the multi-control unit 60 controls the refrigerant flow rate adjustment valve 11.21.
.. The opening degree of 31 is controlled according to the required cooling capacity of the corresponding indoor unit, and the refrigerant flow rate is adjusted. Then, on top of this opening degree control, the following correction is added as appropriate.

温度センサ48aの検知温度(室内ユニットC1からの
流出冷媒温度)および温度センサ47の検知温度(疑似
飽和冷媒温度)を取込み、その両温度の差ΔTを算出す
る。この温度差ΔTは、室内ユニットC1における疑似
冷媒過熱度である。
The temperature detected by the temperature sensor 48a (outflow refrigerant temperature from the indoor unit C1) and the temperature detected by the temperature sensor 47 (pseudo-saturated refrigerant temperature) are taken in, and the difference ΔT between the two temperatures is calculated. This temperature difference ΔT is the pseudo refrigerant superheat degree in the indoor unit C1.

しかして、温度差ΔTが設定値以下の第3図に示すし領
域にある場合は補正のない通常の開度制御を行なうが、
温度差ΔTが設定値を超えて第3図に示すM領域に至る
と、下式により補正開度θを算出し、その分だけ冷媒流
量調整弁11の開度を増す。
However, if the temperature difference ΔT is in the range shown in FIG. 3 below the set value, normal opening control without correction is performed.
When the temperature difference ΔT exceeds the set value and reaches the M region shown in FIG. 3, the corrected opening degree θ is calculated by the formula below, and the opening degree of the refrigerant flow rate regulating valve 11 is increased by that amount.

θ−K・ (室内ユニットC1の容量)なお、Kは定数
θ−K・(capacity of indoor unit C1) K is a constant.

この場合、一定時間ごとに温度差ΔTを算出し、M領域
であればその度に開度増を行なう。
In this case, the temperature difference ΔT is calculated at regular intervals, and if it is in the M region, the opening degree is increased each time.

温度差ΔTが下がって設定値以下のN領域に移行すれば
、移行前の開度を保持する。
If the temperature difference ΔT decreases and shifts to the N range below the set value, the opening degree before the shift is maintained.

温度差ΔTがさらに下がってL領域に移行すれば、補正
のない通常の開度制御に戻る。
When the temperature difference ΔT further decreases and shifts to the L region, normal opening control without correction is resumed.

同じく、温度センサ48bの検知温度(室内ユニットC
2からの流出冷媒温度)と温度センサ47の検知温度と
の差(疑似冷媒過熱度)を算出し、その温度差に応じて
冷媒流量調整弁21に対する開度補正を適宜加える。
Similarly, the temperature detected by the temperature sensor 48b (indoor unit C
2) and the temperature detected by the temperature sensor 47 (pseudo refrigerant superheat degree), and appropriately corrects the opening degree of the refrigerant flow rate regulating valve 21 according to the temperature difference.

さらに、温度センサ48cの検知温度(室内ユニットC
1からの流出冷媒温度)と温度センサ47の検知温度と
の差(疑似冷媒過熱度)を算出し、その温度差に応じて
冷媒流量調整弁31に対する開度補正を適宜加える。
Furthermore, the detected temperature of the temperature sensor 48c (indoor unit C
1) and the temperature detected by the temperature sensor 47 (pseudo refrigerant superheat degree), and appropriately adjusts the opening degree of the refrigerant flow rate regulating valve 31 according to the temperature difference.

このように、室内ユニットごとの冷媒過熱度を検出し、
これら検出結果に応じて各冷媒流量調整弁の開度を補正
することにより、冷媒配管の長さや落差にかかわらず、
室内ユニットの要求冷房能力に合致した最適な冷媒流量
調節を行なうことができる。
In this way, the degree of refrigerant superheating for each indoor unit is detected,
By correcting the opening degree of each refrigerant flow rate adjustment valve according to these detection results, regardless of the length or head of the refrigerant piping,
It is possible to perform optimal refrigerant flow rate adjustment that matches the required cooling capacity of the indoor unit.

すなわち、たとえば分岐ユニットBと室内ユニットとの
間の冷媒配管が長かったり、あるいは分岐ユニットBか
ら室内ユニットにかけて冷媒配管の高さ位置が増すよう
な状況では、冷媒配管における圧力損失が大きくて通常
の開度制御だけでは室内ユニットへの冷媒流量が少なく
なり、加熱ぎみのサイクルとなるが、そのとき直ちに冷
媒流量を増やすため、室内ユニットにおいて必要十分な
冷房能力が発揮される。
In other words, in situations where, for example, the refrigerant piping between branch unit B and the indoor unit is long, or the height of the refrigerant piping increases from branch unit B to the indoor unit, the pressure loss in the refrigerant piping is large and the normal If only the opening is controlled, the refrigerant flow rate to the indoor unit will decrease, resulting in a cycle that is too hot, but since the refrigerant flow rate is immediately increased at that time, the indoor unit can exert the necessary and sufficient cooling capacity.

別の見方をすれば、冷媒配管の据付けに係わる制限を緩
和することができる。
From another perspective, restrictions on the installation of refrigerant piping can be relaxed.

しかも、冷媒過熱度が安定するので、各室内ユニットの
吹出口からの霧吹き現象を防ぐことがきる。
Moreover, since the degree of superheating of the refrigerant is stabilized, it is possible to prevent the phenomenon of misting from the outlet of each indoor unit.

なお、上記実施例では、分岐ユニットごとに室内ユニッ
トが3台の場合について説明したが、それ以上あるいは
2台の場合についても同様に実施可能である。
In the above embodiment, the case where there are three indoor units for each branch unit has been described, but it is also possible to implement the case with more than three indoor units or two indoor units.

[発明の効果] 以上述べたようにこの発明によれば、各室内ユニットの
要求能力の総和に応じて圧縮機の運転周波数を制御する
手段と、各分岐ユニットに設けられ各室内−ユニットへ
の冷媒流量を調整する冷媒流量調整弁と、これら冷媒流
量調整弁の開度を対応する室内ユニットの要求能力に応
じて制御する手段と、各室内ユニットの冷媒過熱度を検
出する手段と、これら検出結果に応じて各冷媒流量調整
弁の開度を補正する手段とを備えたので、冷媒配管の長
さや落差に影響を受けることなく、各室内ユニットの要
求能力に合致した最適な冷媒流量調節を行なうことがで
きる信頼性にすぐれた空気調和機を提供できる。
[Effects of the Invention] As described above, according to the present invention, there is provided a means for controlling the operating frequency of the compressor according to the total required capacity of each indoor unit, and a means for controlling the operating frequency of the compressor according to the total required capacity of each indoor unit, and a means for controlling the operating frequency of the compressor in accordance with the total required capacity of each indoor unit, and a means for controlling the operating frequency of the compressor in accordance with the total required capacity of each indoor unit. A refrigerant flow rate adjustment valve that adjusts the refrigerant flow rate, a means for controlling the opening degree of these refrigerant flow rate adjustment valves according to the required capacity of the corresponding indoor unit, a means for detecting the degree of refrigerant superheating of each indoor unit, and a means for detecting the refrigerant superheat degree of each indoor unit. Since it is equipped with a means to correct the opening degree of each refrigerant flow rate adjustment valve according to the result, the optimal refrigerant flow rate adjustment that matches the required capacity of each indoor unit can be made without being affected by the length or head of the refrigerant piping. It is possible to provide an air conditioner with excellent reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における冷凍サイクルの構
成を示す図、第2図は同実施例における制御回路の構成
を示す図、第3図はm→゛     −、 十怪發同実施例の動作を説明するための図、第舎図は従
来の空気調和機における冷凍サイクルの構成を示す図で
ある。 A・・・室外ユニット、B・・・分岐ユニット、C1r
C2,C3・・・室内ユニット、1.2・・・能力可変
圧縮機、47−・・第1温度センサ、48a、48b。 48c・・・第2温度センサ、50・・・室外制御部、
60・・・マルチ制御部、70.80.90・・・室内
制御部。 出願人代理人 弁理士 鈴江武彦
Fig. 1 is a diagram showing the configuration of a refrigeration cycle in an embodiment of the present invention, Fig. 2 is a diagram showing the configuration of a control circuit in the same embodiment, and Fig. 3 is a diagram showing the configuration of a control circuit in the same embodiment. Figure 1 is a diagram for explaining the operation of the refrigeration cycle in a conventional air conditioner. A...Outdoor unit, B...Branch unit, C1r
C2, C3... Indoor unit, 1.2... Variable capacity compressor, 47-... First temperature sensor, 48a, 48b. 48c... second temperature sensor, 50... outdoor control section,
60...Multi control unit, 70.80.90...Indoor control unit. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 能力可変圧縮機を有する室外ユニット、この室外ユニッ
トに接続した複数の分岐ユニット、およびこの各分岐ユ
ニットに接続した複数の室内ユニットからなる空気調和
機において、前記各室内ユニットの要求能力の総和に応
じて前記圧縮機の運転周波数を制御する手段と、前記各
分岐ユニットに設けられ各室内ユニットへの冷媒流量を
調整する冷媒流量調整弁と、これら冷媒流量調整弁の開
度を対応する室内ユニットの要求能力に応じて制御する
手段と、前記各室内ユニットの冷媒過熱度を検出する手
段と、これら検出結果に応じて前記各冷媒流量調整弁の
開度を補正する手段とを具備したことを特徴とする空気
調和機。
In an air conditioner consisting of an outdoor unit having a variable capacity compressor, a plurality of branch units connected to this outdoor unit, and a plurality of indoor units connected to each of these branch units, according to the total required capacity of each indoor unit, means for controlling the operating frequency of the compressor; a refrigerant flow rate adjustment valve provided in each branch unit for adjusting the refrigerant flow rate to each indoor unit; and a means for controlling the opening of the refrigerant flow rate adjustment valve for the corresponding indoor unit It is characterized by comprising means for controlling according to the required capacity, means for detecting the degree of refrigerant superheating of each of the indoor units, and means for correcting the opening degree of each of the refrigerant flow rate regulating valves according to the detection results. air conditioner.
JP63029266A 1988-02-09 1988-02-10 Air conditioner Pending JPH01203856A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63029266A JPH01203856A (en) 1988-02-10 1988-02-10 Air conditioner
GB8902082A GB2215867B (en) 1988-02-09 1989-01-31 Air conditioner system with control for optimum refrigerant temperature
AU29573/89A AU603280B2 (en) 1988-02-09 1989-02-02 Air conditioner system with control for optimum refrigerant temperature
US07/306,074 US4926652A (en) 1988-02-09 1989-02-06 Air conditioner system with control for optimum refrigerant temperature
KR1019890001488A KR930004382B1 (en) 1988-02-09 1989-02-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029266A JPH01203856A (en) 1988-02-10 1988-02-10 Air conditioner

Publications (1)

Publication Number Publication Date
JPH01203856A true JPH01203856A (en) 1989-08-16

Family

ID=12271476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029266A Pending JPH01203856A (en) 1988-02-09 1988-02-10 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01203856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317907A (en) * 1991-04-25 1994-06-07 Kabushiki Kaisha Toshiba Air conditioning apparatus having ambient air-conditioning unit and a plurality of personal air-conditioning units connected to outdoor unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317907A (en) * 1991-04-25 1994-06-07 Kabushiki Kaisha Toshiba Air conditioning apparatus having ambient air-conditioning unit and a plurality of personal air-conditioning units connected to outdoor unit

Similar Documents

Publication Publication Date Title
JP2664740B2 (en) Air conditioner
US4766735A (en) Inverter-aided multisystem air conditioner with control functions of refrigerant distribution and superheating states
US6109533A (en) Air conditioner and refrigerant heater outlet temperature control method
JPH03282150A (en) Air conditioner and its controlling system
US6102114A (en) Multi-room air conditioning system
JPH037853A (en) Air conditioner
JPH05256525A (en) Air-conditioner
JPH04268169A (en) Air conditioner
JP2557577B2 (en) Air conditioner
JP3277665B2 (en) Air conditioner
JPH01203856A (en) Air conditioner
JP3356485B2 (en) Multi-room air conditioner
JP3627101B2 (en) Air conditioner
JPH01127865A (en) Air conditioner
JPH01203855A (en) Air conditioner
JP2974381B2 (en) Air conditioner
JPH04214153A (en) Refrigerating cycle device
JP2955278B2 (en) Multi-room air conditioning system
JP2500524B2 (en) Refrigeration system operation controller
US11732940B2 (en) System and method for superheat regulation and efficiency improvement
JPH01203857A (en) Air conditioner
JPH02223774A (en) Air-conditioning machine
JPH01193088A (en) Air conditioner
JP2703070B2 (en) Multi refrigeration cycle
JP2533143B2 (en) Air conditioner