JPH01203850A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH01203850A
JPH01203850A JP63028105A JP2810588A JPH01203850A JP H01203850 A JPH01203850 A JP H01203850A JP 63028105 A JP63028105 A JP 63028105A JP 2810588 A JP2810588 A JP 2810588A JP H01203850 A JPH01203850 A JP H01203850A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
suction
compressor
compressors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63028105A
Other languages
Japanese (ja)
Inventor
Manabu Kitamoto
学 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63028105A priority Critical patent/JPH01203850A/en
Priority to GB8902082A priority patent/GB2215867B/en
Priority to AU29573/89A priority patent/AU603280B2/en
Priority to US07/306,074 priority patent/US4926652A/en
Priority to KR1019890001488A priority patent/KR930004382B1/en
Publication of JPH01203850A publication Critical patent/JPH01203850A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PURPOSE:To prevent the refrigerant delivery temperature and the suction temperature from rising so as to stabilize the operation at an optimum cycle temperature by providing sensors which detect the refrigerant suction temperature and the delivery temperature of compressors, and controlling the valve opening of a flow rate regulating valve in accordance with the detected temperatures from the respective temperature sensors. CONSTITUTION:While a refrigerating cycle is being performed, the refrigerant suction temperature and the delivery temperature of compressors 1, 2 are detected by suction temperature sensors 54, 55 and delivery temperature sensors 56, 57, and, if any one of the detected temperatures from the respective temperature sensors 54-57 reaches the set temperature, a pulse motor valve 52 is opened to allow part of low temperature liquid refrigerant to be supplied from the liquid refrigerant passage in the refrigerating cycle to the suction passage 44a side of the compressors 1, 2 via a bypass passage 51 for cycle cooling. By the low temperature refrigerant so supplied, the refrigerant temperature in the suction passage 44a of the compressors 1, 2 is reduced. As a result, the rise of the refrigerant suction and delivery temperature in and out of the compressors 1, 2 can be prevented.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) この発明はヒートポンプ式冷凍サイクルの構成を改良し
た空気調和機の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) This invention relates to an improvement in an air conditioner having an improved structure of a heat pump type refrigeration cycle.

(従来の技術) 一般に、空気調和機として複数の室内ユニットを備えた
マルチ式の構成のものが知られている。
(Prior Art) Generally, air conditioners with a multi-type configuration including a plurality of indoor units are known.

第5図はこの種のマルチ式空気調和機のヒートポンプ式
冷凍サイクルを示すもので、Aは室外ユニット、Bは分
岐ユニット、C,D、Eは室内ユニットである。室外ユ
ニットAは2台の能力可変圧縮機1.2を備え、その圧
縮機1.2を逆止弁3゜4をそれぞれ介して並列に接続
している。そして、圧縮機1,2、四方弁5、室外熱交
換器6、暖房用膨張弁7と冷房サイクル形成用逆止弁8
との並列体、リキッドタンク9、電動式流量調整弁11
゜21.31、冷房用膨張弁12.22.32と暖房サ
イクル形成用逆止弁13,23.33との並列体、室内
熱交換器14.24.34、ガス側開閉弁(電磁開閉弁
’)15.25,35、アキュームレータ10などを順
次連通し、ヒートポンプ式冷凍サイクルを構成している
。なお、冷房用膨張弁12,22.32はそれぞれ感温
筒12a。
FIG. 5 shows a heat pump type refrigeration cycle of this type of multi-type air conditioner, where A is an outdoor unit, B is a branch unit, and C, D, and E are indoor units. The outdoor unit A includes two variable capacity compressors 1.2, which are connected in parallel via check valves 3 and 4, respectively. Compressors 1 and 2, four-way valve 5, outdoor heat exchanger 6, heating expansion valve 7, and cooling cycle forming check valve 8
parallel body with, liquid tank 9, electric flow rate adjustment valve 11
゜21.31, parallel body of cooling expansion valve 12.22.32 and heating cycle forming check valve 13, 23.33, indoor heat exchanger 14.24.34, gas side on-off valve (electromagnetic on-off valve) ') 15. 25, 35, accumulator 10, etc. are successively connected to form a heat pump type refrigeration cycle. Note that the cooling expansion valves 12, 22, and 32 are each temperature-sensitive tubes 12a.

22a、32aををしており、これらの感温筒12a、
22a、32aを室内熱交換器14゜24.34のガス
側冷媒配管にそれぞれ取付けている。
22a, 32a, and these temperature sensing tubes 12a,
22a and 32a are respectively attached to the gas side refrigerant piping of the indoor heat exchanger 14°24.34.

また、室内熱交換器14,24.34は冷凍サイクル内
で並列に接続させている。そして、冷房運転時には第5
図中に実線矢印で示す方向に冷媒を流して室外熱交換器
6を凝縮器、室内熱交換器14.24.34を蒸発器と
してそれぞれ機能させる冷房サイクルを形成し、暖房運
転時には同図中に点線矢印で示す方向に冷媒を流して室
内熱交換器14,24.34を凝縮器、室外熱交換器6
を蒸発器としてそれぞれ機能させる暖房サイクルを形成
するようにしている。
Further, the indoor heat exchangers 14, 24, and 34 are connected in parallel within the refrigeration cycle. During cooling operation, the fifth
A cooling cycle is formed in which the outdoor heat exchanger 6 functions as a condenser and the indoor heat exchangers 14, 24, and 34 function as evaporators by flowing the refrigerant in the direction shown by the solid arrow in the figure. Flow the refrigerant in the direction shown by the dotted arrow to connect the indoor heat exchangers 14, 24, and 34 to the condenser and outdoor heat exchanger 6.
A heating cycle is formed in which each of the two functions as an evaporator.

さらに、この種のものにあっては各室内ユニットC,D
、Eの要求能力を満足するように圧縮機1.2の運転台
数および能力を制御するとともに、流量調整弁11.2
1.31の開度をそれぞれ制御して各室内熱交換器14
,24.34への冷媒流量を調整している。そして、冷
房用膨張弁12゜22.32によって冷媒流量の変化に
かかわらず、各室内熱交換器14,24.34における
冷媒過熱度を一定に維持し、安定かつ効率の良い運転を
行なうようにしている。したがって、例えば各室内ユニ
ットC,D、Hの要求能力が設定能力より小さい場合に
は1台の圧縮機1の能力の増減によってこの要求能力に
応じ、この要求能力が設定能力より増大した場合には圧
縮機1とともに圧縮機2を同時に駆動するようにしてい
る。また、このように2台の圧縮機1,2を同時に駆動
している状態で各室内ユニットC,D、Eからの要求能
力が小さくなると圧縮機2の能力が徐々に低減し、さら
には圧縮機2の運転が停止して1台の圧縮機1のみの運
転となる。
Furthermore, in this type of equipment, each indoor unit C, D
The number and capacity of the compressors 1.2 in operation are controlled so as to satisfy the required capacity of the compressors 1.2 and 11.2.
1. Each indoor heat exchanger 14 is controlled by controlling the opening degree of 31 respectively.
, 24. The refrigerant flow rate to 34 is adjusted. The cooling expansion valve 12.22.32 maintains the degree of superheat of the refrigerant in each indoor heat exchanger 14, 24.34 constant regardless of changes in the refrigerant flow rate, thereby ensuring stable and efficient operation. ing. Therefore, for example, when the required capacity of each indoor unit C, D, H is smaller than the set capacity, the required capacity is increased or decreased by increasing or decreasing the capacity of one compressor 1, and when this required capacity is greater than the set capacity, The compressor 1 and the compressor 2 are driven simultaneously. In addition, when the required capacity from each indoor unit C, D, and E decreases while the two compressors 1 and 2 are being driven simultaneously, the capacity of compressor 2 gradually decreases, and furthermore, the The operation of the compressor 2 is stopped and only one compressor 1 is operated.

ところで、上記従来構成のものにあっては例えば運転中
の各室内ユニットC,D、Eの空気負荷が高い場合のよ
うに冷媒のスーパーヒートが大きい場合には圧縮機1.
2からの冷媒吐出温度か通常運転時の冷媒吐出温度より
も極端に上昇するおそれがあるので、圧縮機1.2の内
部で冷媒の劣化が急速に進み、潤滑油の炭化や各圧縮機
1.2内のピストン、コンロッド等の摺動部位の焼付き
等が発生し易い問題があった。さらに、圧縮機1゜2の
冷媒吸込み温度が高い場合には圧縮機1.2のモータの
巻線温度が上昇し、絶縁的に圧縮機1゜2の使用規格範
囲を越えるおそれがあった。
By the way, in the conventional configuration described above, when the superheat of the refrigerant is large, such as when the air load of each indoor unit C, D, and E during operation is high, the compressor 1.
Since there is a risk that the refrigerant discharge temperature from the compressor 1.2 will rise significantly higher than the refrigerant discharge temperature during normal operation, the refrigerant will rapidly deteriorate inside the compressor 1.2, resulting in carbonization of the lubricating oil and There was a problem that the sliding parts of the piston, connecting rod, etc. in the 2 were likely to seize. Furthermore, if the refrigerant suction temperature of the compressor 1.2 is high, the temperature of the windings of the motor of the compressor 1.2 will rise, and there is a risk that the insulation will exceed the operating standard range of the compressor 1.2.

(発明が解決しようとする課題) 従来構成のものにあっては圧縮機1,2からの冷媒吐出
温度の極端な上昇を防止することができないので、圧縮
機1.2の内部で冷媒の劣化が急速に進み、潤滑油の炭
化や各圧縮機1,2内のピストン、コンロッド等の摺動
部位の焼付き等が発生し易い問題があるとともに、圧縮
機1.2の冷媒吸込み温度の上昇にともない圧縮機1,
2のモータの巻線温度が上昇し、絶縁的に圧縮機1゜2
の使用規格範囲を越える等の不具合があった。
(Problems to be Solved by the Invention) With the conventional configuration, it is not possible to prevent an extreme rise in the refrigerant discharge temperature from the compressors 1 and 2, so the refrigerant deteriorates inside the compressors 1 and 2. This causes problems such as carbonization of lubricating oil and seizure of sliding parts such as pistons and connecting rods in each compressor 1 and 2, as well as an increase in the refrigerant suction temperature of compressors 1 and 2. Accordingly, compressor 1,
The temperature of the windings of the motor 2 rises, and the temperature of the compressor 1°2 increases.
There were problems such as exceeding the usage standard range.

この発明はト記事情に着目してなされたもので、圧縮機
からの冷媒吐出温度の極端な上昇や冷媒吸込み温度の1
−昇等を防止することができ、最適なサイクル温度で安
定運転させることができる空気調和機を提供することを
目的とするものである。
This invention was made by paying attention to the following situations, such as an extreme rise in the refrigerant discharge temperature from the compressor and a drop in the refrigerant suction temperature.
- It is an object of the present invention to provide an air conditioner that can prevent temperature rise, etc., and can operate stably at an optimal cycle temperature.

[発明の構成] (課題を解決するための手段) この発明は冷凍サイクル内の液冷媒流通路と圧縮機の吸
込み通路との間を連結するサイクル冷却用のバイパス通
路を設け、弁開度制御可能な流量調整弁をこのバイパス
通路内に介設させるとともに、圧縮機の冷媒吸込み温度
および冷媒吐出温度を検出する吸込み温度センサおよび
吐出温度センサをそれぞれ設け、各温度センサからの検
出温度に応じて流量調整弁の弁開度を制御させるサイク
ル冷却手段を設けたものである。
[Structure of the Invention] (Means for Solving the Problems) This invention provides a bypass passage for cycle cooling that connects the liquid refrigerant flow passage in the refrigeration cycle and the suction passage of the compressor, and controls the valve opening degree. A possible flow rate adjustment valve is interposed in this bypass passage, and a suction temperature sensor and a discharge temperature sensor are respectively provided to detect the refrigerant suction temperature and refrigerant discharge temperature of the compressor, and the temperature is adjusted according to the detected temperature from each temperature sensor. A cycle cooling means is provided to control the opening degree of the flow rate regulating valve.

(作用) 冷凍サイクル駆動中、圧縮機の冷媒吸込み温度および冷
媒吐出温度のうちの何れかが設定温度に達した場合に流
量調整弁を開操作させることにより、冷凍サイクル内の
液冷媒流通路からサイクル冷却用のバイパス通路を介し
て圧縮機の吸込み通路側に低温状態の液冷媒の一部を導
入させ、圧縮機の吸込み通路内の冷媒温度を低下させる
ようにしたものである。
(Function) During operation of the refrigeration cycle, when either the refrigerant suction temperature or the refrigerant discharge temperature of the compressor reaches the set temperature, the flow rate adjustment valve is opened to remove the liquid refrigerant from the flow path in the refrigeration cycle. A portion of the low-temperature liquid refrigerant is introduced into the suction passage of the compressor via a cycle cooling bypass passage to lower the refrigerant temperature within the suction passage of the compressor.

(実施例) 以下、この発明の一実施例を第1図乃至第4図を参照し
て説明する。なお、第1図乃至第4図中で第5図と同一
部分には同一の符号を付してその説明を省略する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. Note that in FIGS. 1 to 4, the same parts as in FIG. 5 are given the same reference numerals, and the explanation thereof will be omitted.

第1図中で、41aは一方の圧縮機1の冷媒吸込み側聞
管、41bはこの圧縮機1の冷媒吐出側配管、42aは
他方の圧縮機2の吸込み側聞管、42bはこの圧縮機2
の冷媒吐出側配管である。
In FIG. 1, 41a is a refrigerant suction pipe of one compressor 1, 41b is a refrigerant discharge pipe of this compressor 1, 42a is a suction pipe of the other compressor 2, and 42b is a pipe of this compressor 1. 2
This is the refrigerant discharge side piping.

この場合、再圧縮機1.2の冷媒吸込み側聞管41a、
42aは共通の冷媒吸込み管43aに連結させていると
ともに、再圧縮機1.2の冷媒吐出側配管41b、42
bも同様に共通の冷媒吐出管43bに連結させており、
冷媒吸込み側聞管41a、42aおよび冷媒吸込み管4
3aによって再圧縮機1,2の冷媒吸込み通路44a1
冷媒吐出側配管41b、42bおよび冷媒吐出管43b
によって再圧縮機1.2の冷媒吐出通路44bをそれぞ
れ形成させている。
In this case, the refrigerant suction pipe 41a of the recompressor 1.2,
42a is connected to a common refrigerant suction pipe 43a, and the refrigerant discharge side pipes 41b and 42 of the recompressor 1.2.
b is similarly connected to a common refrigerant discharge pipe 43b,
Refrigerant suction side pipes 41a, 42a and refrigerant suction pipe 4
3a, the refrigerant suction passage 44a1 of the recompressors 1 and 2
Refrigerant discharge pipes 41b, 42b and refrigerant discharge pipe 43b
A refrigerant discharge passage 44b of the recompressor 1.2 is formed by the recompressor 1.2.

さらに、再圧縮機1,2の冷媒吐出側配管41b、42
bにはオイルセパレータ45.46をそれぞれ介設させ
ている。これらのオイルセパレータ45,46にはオイ
ル戻し管47.48の一端を連結させており、これらの
オイル戻し管47.48の他端は再圧縮機1,2の冷媒
吸込み側聞管41a、42aにそれぞれ連結させている
Furthermore, the refrigerant discharge side pipes 41b and 42 of the recompressors 1 and 2
Oil separators 45 and 46 are interposed in each portion b. One end of oil return pipes 47, 48 is connected to these oil separators 45, 46, and the other end of these oil return pipes 47, 48 is connected to refrigerant suction side pipes 41a, 42a of recompressors 1, 2. are connected to each other.

また、圧縮機1のケース底部には第2図に示すように均
油管49の一端を連結させている。この均油管49の他
端は他方の圧縮機2のケース底部に連結させている。
Furthermore, one end of an oil equalizing pipe 49 is connected to the bottom of the case of the compressor 1, as shown in FIG. The other end of this oil equalizing pipe 49 is connected to the bottom of the case of the other compressor 2.

一方、冷凍サイクル内の液冷媒流通路、例えば暖房用膨
張弁7と冷房サイクル形成用逆+I−,弁8との並列体
と、リキッドバイブ9との間に配設させた冷媒管(液冷
媒流通路)50にはサイクル冷却用のバイパス通路51
の一端を連結させている。
On the other hand, a refrigerant pipe (liquid refrigerant The flow path) 50 includes a bypass path 51 for cycle cooling.
One end of the is connected.

このバイパス通路51の他端は冷媒吸込み管43aに連
結させている。また、このバイパス通路51には弁開度
制御可能なパルスモータバルブ(流量調整弁)52を介
設させている。
The other end of this bypass passage 51 is connected to the refrigerant suction pipe 43a. Further, a pulse motor valve (flow rate adjustment valve) 52 that can control the valve opening is interposed in the bypass passage 51.

さらに、冷凍サイクルの冷媒吐出管43bには圧力セン
サ53を取付けるとともに、圧縮機1゜2の冷媒吸込み
側聞管41a、42aには冷媒吸込み温度を検出する吸
込み温度センサ54,55、圧縮機1,2の冷媒吐出側
配管41b、42bには冷媒吐出温度を検出する吐出温
度センサ56゜57をそれぞれ取付けている。
Further, a pressure sensor 53 is attached to the refrigerant discharge pipe 43b of the refrigeration cycle, and suction temperature sensors 54, 55 for detecting the refrigerant suction temperature are attached to the refrigerant suction side pipes 41a, 42a of the compressor 1. , 2 are provided with discharge temperature sensors 56 and 57, respectively, for detecting the refrigerant discharge temperature.

また、第3図は空気調和機本体の制御回路を示すもので
ある。この第3図中で、60は室外ユニットAに装着さ
せた室外制御部である。この室外制御部60はマイクロ
コンピュータおよびその周辺回路などからなり、外部に
パルスモータバルブ52、圧力センサ53、吸込み温度
センサ54゜55、吐出温度センサ56.57およびイ
ンバータ回路61.62を接続している。この場合、イ
ンバータ回路61.62は交流電源63の電圧を整流し
、それを室外制御部60の指令に応じたスイッチングに
よって所定周波数の交流電圧に変換し、圧縮機モータI
M、2Mにそれぞれ駆動電力として供給するものである
Moreover, FIG. 3 shows a control circuit of the air conditioner main body. In this FIG. 3, 60 is an outdoor control section attached to the outdoor unit A. This outdoor control section 60 is composed of a microcomputer and its peripheral circuits, and has a pulse motor valve 52, a pressure sensor 53, a suction temperature sensor 54, 55, a discharge temperature sensor 56, 57, and an inverter circuit 61, 62 connected to the outside. There is. In this case, the inverter circuits 61 and 62 rectify the voltage of the AC power supply 63, convert it into an AC voltage of a predetermined frequency by switching according to a command from the outdoor control unit 60, and convert it into an AC voltage of a predetermined frequency.
This is to supply driving power to M and 2M, respectively.

また、70は分岐ユニットBに装着させたマルチ制御部
である。このマルチ制御部70はマイクロコンピュータ
およびその周辺回路などからなり、外部に接続させた流
量調整弁11,21.31および開閉弁15,25.3
5をそれぞれ駆動制御するものである。
Further, 70 is a multi-control unit attached to the branch unit B. This multi-control unit 70 consists of a microcomputer and its peripheral circuits, and includes externally connected flow rate adjustment valves 11, 21.31 and on-off valves 15, 25.3.
5, respectively.

さらに、80,90.100は室内ユニットC1D、H
にそれぞれ装着させた室内制御部である。
Furthermore, 80, 90.100 are indoor units C1D, H
This is an indoor control unit installed in each.

これらの室内制御部80,90,100はマイクロコン
ピュータおよびその周辺回路などからなり、外部に運転
操作部位81,91,101および室内温度センサ82
,92,102をそれぞれ接続している。そして、各室
内制御部80,90゜100は周波数設定信号f1.f
2.f3を各室内ユニットC,D、Hの要求能力として
マルチ制御部70に転送するようになっている。また、
マルチ制御部70は転送されてくる周波数設定信号f1
.f2.f3にもとづいて各室内ユニットC1D、Eの
要求能力の総和を求め、それに対応する周波数設定信号
f。を室外制御部60に転送するようになっている。
These indoor control units 80, 90, and 100 are composed of a microcomputer and its peripheral circuits, and are externally equipped with operating operation parts 81, 91, and 101, and an indoor temperature sensor 82.
, 92, and 102 are connected to each other. Each indoor control unit 80, 90° 100 receives a frequency setting signal f1. f
2. f3 is transferred to the multi-control unit 70 as the required capacity of each indoor unit C, D, and H. Also,
The multi-control unit 70 receives the transferred frequency setting signal f1.
.. f2. The total required capacity of each indoor unit C1D and E is determined based on f3, and the corresponding frequency setting signal f is determined. is transferred to the outdoor control section 60.

次に、上記構成の作用を説明する。例えば、全ての室内
ユニットC,D、Eが冷房運転を行なっている場合には
室内ユニットCの室内制御部80は室内温度センサ82
の検出温度と運転操作部81で設定された設定温度との
差を演算し、その温度差に対応する周波数設定信号f1
を要求冷房能力としてマルチ制御部70に転送する。同
様に、室内ユニットD、Hの室内制御部90,100も
周波数設定信号f2.f3を要求冷房能力としてマルチ
制御部70に転送する。
Next, the operation of the above configuration will be explained. For example, when all the indoor units C, D, and E are performing cooling operation, the indoor control section 80 of the indoor unit C uses the indoor temperature sensor 82.
calculates the difference between the detected temperature and the set temperature set by the operation unit 81, and generates a frequency setting signal f1 corresponding to the temperature difference.
is transferred to the multi-control unit 70 as the required cooling capacity. Similarly, the indoor control sections 90 and 100 of the indoor units D and H also receive the frequency setting signal f2. f3 is transferred to the multi-control unit 70 as the required cooling capacity.

さらに、マルチ制御部70では転送されてくる周波数設
定信号f7.f2.f3にもとづいて各室内ユニットC
,D、Hの要求冷房能力の総和を求め、この総和に対応
する周波数設定信号f、を室外制御部60に転送する。
Furthermore, the multi-control unit 70 receives the frequency setting signal f7. f2. Each indoor unit C based on f3
, D, and H, and transmits the frequency setting signal f corresponding to this sum to the outdoor control unit 60.

この室外制御部60では転送されてくる周波数設定信号
foに応じて圧縮機1.2の運転台数および運転周波数
(インバータ回路61.62の出力周波数)Fを制御す
る。この場合、室外制御部60では要求冷房能力の総和
が設定冷房能力よりも小さい場合には1台の圧縮機1の
みを駆動し、要求冷房能力の総和が設定冷房能力よりも
大きくなると2台の圧縮機1゜2を同時に駆動するよう
にしている。
This outdoor control unit 60 controls the number of operating compressors 1.2 and the operating frequency (output frequency of the inverter circuits 61, 62) F in accordance with the transferred frequency setting signal fo. In this case, the outdoor control unit 60 drives only one compressor 1 when the total required cooling capacity is smaller than the set cooling capacity, and drives only one compressor 1 when the total required cooling capacity is larger than the set cooling capacity. Compressors 1 and 2 are driven simultaneously.

一方、空気調和機本体の運転(冷房、暖房および除霜運
転)中は吸込み温度センサ54,55および吐出温度セ
ンサ56,57によって圧縮機1゜2の冷媒吸込み温度
および冷媒吐出温度をそれぞれ検出させている。そして
、第4図中にAゾーンで示すように各温度センサ54.
55.56゜57からの検出温度が全て所定の設定温度
TIよりも小さい状態であることが検出されている場合
には室外制御部60に6よってパルスモータバルブ52
が全閉状態で保持される。また、各lH度センサ54,
55.56.57からの検出温度のうちの何れかが所定
の設定温度T1に達すると室外制御部60によって次の
ようなパルスモータバルブ52の開度制御が行なわれる
On the other hand, during the operation of the air conditioner (cooling, heating, and defrosting operations), the refrigerant suction temperature and refrigerant discharge temperature of the compressor 1.2 are detected by the suction temperature sensors 54, 55 and the discharge temperature sensors 56, 57, respectively. ing. As shown by zone A in FIG. 4, each temperature sensor 54.
55.56.If it is detected that all of the detected temperatures from 57 are lower than the predetermined set temperature TI, the outdoor control unit 60 causes the pulse motor valve 52 to
is held fully closed. In addition, each lH degree sensor 54,
When any of the detected temperatures from 55, 56, and 57 reaches a predetermined set temperature T1, the outdoor control section 60 controls the opening degree of the pulse motor valve 52 as follows.

このパルスモータバルブ52の開度制御時には各温度セ
ンサ54,55.56.57からの検出温度のうち、最
初に設定温度Tlに達した温度センサの検出値を優先さ
せるようにしており、最初に設定温度T、に達した温度
センサの検出温度にもとづいてパルスモータバルブ52
の開度制御を行なうようにしている。そして、基準とな
る温度センサの検出温度が設定温度Tlを越えてBゾー
ン内の温度に達すると室外制御部60によってパルスモ
ータバルブ52を初期設定開度に開操作させる。そのた
め、このパルスモータバルブ52の開操作にともない冷
媒管50内の低温冷媒をサイクル冷却用のバイパス通路
51内を介して冷媒吸込み管43a側に流入させること
ができるので、この低温状態の流入冷媒によって冷媒吸
込み管43a側の冷媒温度を効果的に低下させることが
できる。
When controlling the opening degree of the pulse motor valve 52, priority is given to the detected value of the temperature sensor that reaches the set temperature Tl first among the detected temperatures from the respective temperature sensors 54, 55, 56, and 57. Based on the temperature detected by the temperature sensor that has reached the set temperature T, the pulse motor valve 52
The opening degree is controlled. Then, when the temperature detected by the reference temperature sensor exceeds the set temperature Tl and reaches the temperature in zone B, the outdoor control section 60 causes the pulse motor valve 52 to open to the initial set opening degree. Therefore, as the pulse motor valve 52 is opened, the low-temperature refrigerant in the refrigerant pipe 50 can be caused to flow into the refrigerant suction pipe 43a through the cycle cooling bypass passage 51, so that the inflow refrigerant in the low-temperature state Accordingly, the temperature of the refrigerant on the side of the refrigerant suction pipe 43a can be effectively lowered.

また、パルスモータバルブ52の開度は初期設定開度に
開操作させた後、所定の時間単位毎に所定のステップ数
(nパルス)ずつ徐々に増大させる。そして、基準とな
る温度センサの検出温度が設定温度T、よりも低下した
Cゾーンに達した状態が検出されるとその時点でパルス
モータバルブ52の開度増大動作を停止させ、その時点
の開度でパルスモータバルブ52を保持させる。また、
基準となる温度センサの検出温度がCゾーンからDゾー
ンまで低下すると所定の時間単位毎に所定のステップ数
(nパルス)ずつパルスモータバルブ52の開度を徐々
に縮小させる。そして、このパルスモータバルブ52の
開度縮小動作によってパルスモータバルブ52の開度が
0、すなわちパルスモータバルブ52が全閉された時点
で初期状態に戻る。
Further, the opening degree of the pulse motor valve 52 is gradually increased by a predetermined number of steps (n pulses) every predetermined time unit after the opening operation is performed to the initial setting opening degree. When it is detected that the temperature detected by the reference temperature sensor has reached zone C, which is lower than the set temperature T, the opening increasing operation of the pulse motor valve 52 is stopped at that point. The pulse motor valve 52 is held at a certain temperature. Also,
When the temperature detected by the reference temperature sensor falls from the C zone to the D zone, the opening degree of the pulse motor valve 52 is gradually reduced by a predetermined number of steps (n pulses) every predetermined time unit. Then, by this operation of reducing the opening degree of the pulse motor valve 52, the opening degree of the pulse motor valve 52 returns to 0, that is, when the pulse motor valve 52 is fully closed, the initial state is returned.

なお、圧縮機1,2の運転停止時および起動後、一定時
間が経過する前は各温度センサ54,55.56.57
からの温度検出値は無視される。
Note that each temperature sensor 54, 55, 56, and 57 is
Temperature detection values from are ignored.

そこで、上記構成のものにあっては冷凍サイクル駆動中
、吸込み温度センサ54.55および吐出温度センサ5
6,57によって圧縮機1.2の冷媒吸込み温度および
冷媒吐出温度をそれぞれ検出させ、各温度センサ54,
55.56.57からの検出温度のうちの何れかが設定
温度T1に達した場合にパルスモータバルブ52を開操
作させることにより、冷凍サイクル内の液冷媒流通路か
らサイクル冷却用のバイパス通路51を介して圧縮機1
,2の吸込み通路44a側に低温状態の液冷媒の一部を
導入させるようにしたので、この低温の導入冷媒によっ
て圧縮機1.2の吸込み通路44a内の冷媒温度を低下
させることができる。
Therefore, in the case of the above configuration, during the refrigeration cycle operation, the suction temperature sensor 54,55 and the discharge temperature sensor 5
6 and 57 to detect the refrigerant suction temperature and refrigerant discharge temperature of the compressor 1.2, respectively, and each temperature sensor 54,
55, 56, and 57 reaches the set temperature T1, by opening the pulse motor valve 52, the bypass passage 51 for cycle cooling is removed from the liquid refrigerant flow passage in the refrigeration cycle. Compressor 1 through
Since a part of the low temperature liquid refrigerant is introduced into the suction passage 44a of the compressor 1.2, the refrigerant temperature within the suction passage 44a of the compressor 1.2 can be lowered by this low temperature introduced refrigerant.

そのため、冷凍サイクル駆動中、従来のような圧縮機1
,2からの冷媒吐出温度の極端な上昇や冷媒吸込み温度
の上昇等を防止することができるので、冷媒の劣化を防
止することができ、潤滑油の炭化や各圧縮機1.2内の
ピストン、コンロッド等の摺動部位の焼付きや、圧縮機
1.2のモータの巻線温度の極端な上昇を防止して最適
なサイクル温度で安定運転させることができる。さらに
、冷凍サイクル駆動中、冷媒口のばらつきが発生した場
合であってもこれらのばらつきを比較的短時間で修正す
ることができるので、冷凍サイクル中の極端な圧力変動
等を防1F、することができる。
Therefore, during the refrigeration cycle operation, the compressor 1
Since it is possible to prevent an extreme rise in the refrigerant discharge temperature from , 2 and a rise in the refrigerant suction temperature, it is possible to prevent deterioration of the refrigerant, carbonization of lubricating oil, and piston inside each compressor 1.2. It is possible to prevent seizure of sliding parts such as connecting rods and an extreme rise in the temperature of the windings of the motor of the compressor 1.2, thereby allowing stable operation at an optimal cycle temperature. Furthermore, even if variations in the refrigerant port occur during operation of the refrigeration cycle, these variations can be corrected in a relatively short time, thereby preventing extreme pressure fluctuations during the refrigeration cycle. Can be done.

なお、この発明は」−記実施例に限定されるものではな
く、この発明の要旨を逸脱しない範囲で種々変形実施で
きることは勿論である。
It should be noted that this invention is not limited to the embodiments described above, and it goes without saying that various modifications can be made without departing from the gist of the invention.

[発明の効果] この発明によれば冷凍サイクル内の液冷媒流通路と圧縮
機の吸込み通路との間を連結するサイクル冷却用のバイ
パス通路を設け、弁開度制御可能な流量調整弁をこのバ
イパス通路内に介設させるとともに、圧縮機の冷媒吸込
み温度および冷媒吐出温度を検出する吸込み温度センサ
および吐出温度センサをそれぞれ設け、各温度センサか
らの検出温度に応じて流は調整弁の弁開度を制御させる
サイクル冷却手段を設けたので、圧縮機からの冷媒吐出
温度の極端な上昇や冷媒吸込み温度の−L昇等を防+l
することができ、最適なサイクル温度で安定運転させる
ことができる。
[Effects of the Invention] According to the present invention, a cycle cooling bypass passage connecting the liquid refrigerant flow passage in the refrigeration cycle and the suction passage of the compressor is provided, and a flow rate adjustment valve that can control the valve opening is provided in this bypass passage. A suction temperature sensor and a discharge temperature sensor are installed in the bypass passage and detect the refrigerant suction temperature and refrigerant discharge temperature of the compressor, respectively, and the flow is controlled by the opening of the regulating valve according to the detected temperature from each temperature sensor. Since a cycle cooling means is provided to control the temperature, extreme rises in the refrigerant discharge temperature from the compressor and -L rises in the refrigerant suction temperature can be prevented.
This allows for stable operation at the optimum cycle temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図はこの発明の一実施例を示すもので、
第1図は空気調和機内の冷凍サイクルを示す全体の概略
構成図、第2図は2台q、圧縮機間の均油管の取付は状
態を示す概略構成図、第3図は冷凍サイクルの制御回路
を示す全体の概略構成図、第4図は流量調整弁の制御状
態を説明するための温度特性図、第5図は従来の空気調
和機内の冷凍サイクルを示す全体の概略構成図である。 1.2・・・圧縮機、44・・・冷媒吸込み通路、50
・・・冷媒管(液冷媒流通路)、51・・・バイパス通
路、52・・・パルスモータバルブ(流量調整弁) 、
54゜55・・・吸込み温度センサ、56.57・・・
吐出温度センサ、60・・・室外制御部。 出願人代理人 弁理士 鈴江武彦 第2図 時間 第4図
Figures 1 to 4 show an embodiment of the present invention.
Figure 1 is a schematic diagram of the overall configuration of the refrigeration cycle inside the air conditioner, Figure 2 is a schematic diagram of the installation of the oil equalizing pipe between the two compressors, and Figure 3 is the control of the refrigeration cycle. FIG. 4 is a temperature characteristic diagram for explaining the control state of the flow rate regulating valve, and FIG. 5 is an overall schematic diagram showing the refrigeration cycle in a conventional air conditioner. 1.2... Compressor, 44... Refrigerant suction passage, 50
... refrigerant pipe (liquid refrigerant flow path), 51 ... bypass passage, 52 ... pulse motor valve (flow rate adjustment valve),
54゜55...Suction temperature sensor, 56.57...
Discharge temperature sensor, 60... outdoor control section. Applicant's Representative Patent Attorney Takehiko Suzue Figure 2 Time Figure 4

Claims (1)

【特許請求の範囲】[Claims] 冷凍サイクル内の液冷媒流通路と圧縮機の吸込み通路と
の間を連結するサイクル冷却用のバイパス通路を設け、
弁開度制御可能な流量調整弁をこのバイパス通路内に介
設させるとともに、前記圧縮機の冷媒吸込み温度および
冷媒吐出温度を検出する吸込み温度センサおよび吐出温
度センサをそれぞれ設け、前記各温度センサからの検出
温度に応じて前記流量調整弁の弁開度を制御させるサイ
クル冷却手段を設けたことを特徴とする空気調和機。
A bypass passage for cycle cooling is provided that connects the liquid refrigerant flow passage in the refrigeration cycle and the suction passage of the compressor,
A flow regulating valve whose opening degree can be controlled is interposed in this bypass passage, and a suction temperature sensor and a discharge temperature sensor are respectively provided to detect the refrigerant suction temperature and refrigerant discharge temperature of the compressor, and from each of the temperature sensors. An air conditioner comprising cycle cooling means for controlling the opening degree of the flow rate regulating valve according to the detected temperature.
JP63028105A 1988-02-09 1988-02-09 Air conditioner Pending JPH01203850A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63028105A JPH01203850A (en) 1988-02-09 1988-02-09 Air conditioner
GB8902082A GB2215867B (en) 1988-02-09 1989-01-31 Air conditioner system with control for optimum refrigerant temperature
AU29573/89A AU603280B2 (en) 1988-02-09 1989-02-02 Air conditioner system with control for optimum refrigerant temperature
US07/306,074 US4926652A (en) 1988-02-09 1989-02-06 Air conditioner system with control for optimum refrigerant temperature
KR1019890001488A KR930004382B1 (en) 1988-02-09 1989-02-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63028105A JPH01203850A (en) 1988-02-09 1988-02-09 Air conditioner

Publications (1)

Publication Number Publication Date
JPH01203850A true JPH01203850A (en) 1989-08-16

Family

ID=12239531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63028105A Pending JPH01203850A (en) 1988-02-09 1988-02-09 Air conditioner

Country Status (1)

Country Link
JP (1) JPH01203850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337364U (en) * 1989-08-25 1991-04-11
US6772600B2 (en) * 2002-06-12 2004-08-10 Lg Electronics Inc. Multi-unit air conditioner and method for controlling the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337364U (en) * 1989-08-25 1991-04-11
US6772600B2 (en) * 2002-06-12 2004-08-10 Lg Electronics Inc. Multi-unit air conditioner and method for controlling the same

Similar Documents

Publication Publication Date Title
KR930004382B1 (en) Air conditioner
US10323862B2 (en) Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
EP1477748B1 (en) Air conditioner
JP2557903B2 (en) Air conditioner
US5263333A (en) Multi-type air conditioner system with optimum control for gaseous flow adjustment valve and liquid expansion valve
EP2270405B1 (en) Refrigerating device
US10088206B2 (en) Air-conditioning apparatus
KR101485601B1 (en) Air conditioner and method of controlling the same
EP2107322A2 (en) Heat pump type hot water supply outdoor apparatus
US6843066B2 (en) Air conditioning system and method for controlling the same
US20040098997A1 (en) Air conditioner and method for controlling electronic expansion valve of air conditioner
JP3322684B2 (en) Air conditioner
JPH0828985A (en) Air conditioner
CA2086398C (en) Automatic chiller stopping sequence
US20040107709A1 (en) Method for operating compressors of air conditioner
JP2922002B2 (en) Air conditioner
JPWO2004088212A1 (en) Air conditioner
EP2093508B1 (en) Air Conditioner and Method of Controlling the Same
KR20190041091A (en) Air Conditioner
EP0485147A1 (en) Refrigeration system
JPH01203850A (en) Air conditioner
JPH01203855A (en) Air conditioner
JPH01203854A (en) Air conditioner
JP2614253B2 (en) Air conditioner
JPS63297784A (en) Protecting device for refrigeration device