JPH01202297A - Fractional determination of adenosine deaminase isozyme - Google Patents

Fractional determination of adenosine deaminase isozyme

Info

Publication number
JPH01202297A
JPH01202297A JP2824188A JP2824188A JPH01202297A JP H01202297 A JPH01202297 A JP H01202297A JP 2824188 A JP2824188 A JP 2824188A JP 2824188 A JP2824188 A JP 2824188A JP H01202297 A JPH01202297 A JP H01202297A
Authority
JP
Japan
Prior art keywords
isozyme
adenosine deaminase
adenosine
ada
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2824188A
Other languages
Japanese (ja)
Other versions
JPH0650992B2 (en
Inventor
Hiroyuki Shiraishi
白石 弘之
Tadashi Yasui
正 安井
Takao Ando
安藤 隆夫
Toshiharu Muraoka
村岡 俊春
Takatsugu Imura
井村 孝嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruho Co Ltd
Original Assignee
Maruho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruho Co Ltd filed Critical Maruho Co Ltd
Priority to JP2824188A priority Critical patent/JPH0650992B2/en
Publication of JPH01202297A publication Critical patent/JPH01202297A/en
Publication of JPH0650992B2 publication Critical patent/JPH0650992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To enable simple and exact fractional determination of adenosine deaminase using adenosine as a substrate, by using a specific inhibitor of adenosine aminase isozyme I. CONSTITUTION:In the determination of adenosine deaminase using adenosine as a substrate, 0.1-0.3mM of erythro-9-(2-hydroxy-3-nonyl)-adenine is added in a substrate concentration of 6-20mM, as an inhibitor of adenosine deaminase isozyme I. Then, the enzyme activity in the presence of the inhibitor (b) is subtracted from the total enzyme activity (a) determined without the inhibitor to give the values of adenosine deaminase isozyme I (a-b) and adenosine deaminase isozyme II (b) whereby the fractional determination of adenosine deaminase isozymes can be done.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、アデノシンデアミナーゼアイソザイム■と■
とを簡単に分別定量する方法に関する。 【従来の技術1 (背景) アデノシンデアミナーゼ(ADA)は、アデノシンをイ
ノシンとアンモニアとに分解する酵素であって、生物の
核酸代謝に関与しており、牌臓、肝臓、赤血球等に高濃
度に存在している。このアデノシンデアミナーゼは、遺
伝子の異なる主分子量35,000ダルトンのアイソザ
イム■(以下“ADA 、 ”とも略す)と主分子量1
00,000ダルトンのアイソザイム■(以下“ADA
2”とも略す)の二種のアイソザイムに区別できること
が知られている。 ところで、本酵素の臨床的意義については、従来から、
各種悪性腫瘍、肝疾患、炎症性疾患時等における活性値
の変動が注目されてきたが、近来に至り、本酵素の活性
をアイソザイムのレベルで精査したときの個々のアイソ
ザイムレベルの高低と、各種疾患との関連性が頓に注視
されるようになってきた。例えば倉田ら((臨床病理)
32巻、875頁、1984)は、健康成人及び肝炎、
肝硬変などの肝疾患、悪性腫瘍の患者の血清がらゲル濾
過法(分子篩クロマトグラフィー)によりアイソザイム
を分離した後、各アイソザイムの活性を測定した。その
結果、下表−1記載の通り、これら各種疾患との関連が
示唆されている。 表−1 (次頁へ続く) (以下余白) 表−1(続き) * Vo : ADAIと結合プロティン(cp)との
結合体が複数結合したもの。 大型: ADA、とcpの結合体。 中間型: ADA2 小型: ADA。 なお、より近来では、後天性免疫不全症候群(エイズ)
又は成人T細胞白血病リンパ腫(ATL)患者血清中に
おけるADA 、とADA2との関連も指摘されている
。 【従来の技術とその問題点1 ところで、既存のADAアイソザイムの測定方法として
は、大別して以下三種の方法が知られている。 ■ 基質に対する反応性の違いを利用する方法(a>二
種類の基質を用いる方法 (b)二種類の基質濃度を用いる方法 (e)阻害剤を使用する方法。 ■ 分子量、等電点の違いを利用する方法。 (a>セファデックスG−200によるゲル濾過法(b
) DEAEセファロースCL−6Bによるイオン交換
クロマトグラフィー (c)高速液体クロマトグラフィー (d)電気泳動法 ■ 抗原性の違いを利用する方法 (a)酵素免疫測定法 (b)放射免疫測定法 以上の各方法の中、■の抗原性の相違を利用する方法は
、キット化に時間とコストがかかるので実用化迄に至っ
ていない。特に(b)の放射免疫測定法は、同位元素の
放射能を利用する関係で、設備的にも大きな制約を受け
る。 ■のクロマトグラフィーや電気泳動による方法は、アイ
ソザイムを個別的に分離して各フラクションの活性を測
定するので、精密ではあるが操作が繁雑であって、時間
とコストがかかるため、自動分析用には不向きである。 従って、現状では■の方法が最も実用化し易い方法であ
ろうと考えられるが、現実には簡単で、しかも多量検体
の処理に適した測定手段は未だ確立していない。 【発明が解決しようとする課題】 以上の事情に鑑み、本発明は、多検体処理に適したアデ
ノシンデアミナーゼアイソザイムの簡便かつ正確な分別
定量法の提供を目的とする。
[Industrial Application Field 1] The present invention relates to adenosine deaminase isozymes ■ and ■.
This paper relates to a method for easily separating and quantifying [Conventional technology 1 (Background) Adenosine deaminase (ADA) is an enzyme that decomposes adenosine into inosine and ammonia, and is involved in nucleic acid metabolism in living organisms, and is found in high concentrations in the spleen, liver, red blood cells, etc. Existing. This adenosine deaminase is an isozyme with a main molecular weight of 35,000 daltons (hereinafter also abbreviated as "ADA") and a main molecular weight of 1
00,000 dalton isozyme■ (hereinafter referred to as “ADA
It is known that the enzyme can be distinguished into two types of isozymes:
Changes in activity values during various malignant tumors, liver diseases, inflammatory diseases, etc. have been attracting attention, but recently, when the activity of this enzyme was examined at the isozyme level, it was found that the levels of individual isozymes and various The relationship between this and other diseases has been attracting close attention. For example, Kurata et al. ((clinical pathology)
32, p. 875, 1984), healthy adults and hepatitis,
After isozymes were separated by gel filtration (molecular sieve chromatography) from serum samples from patients with liver diseases such as cirrhosis or malignant tumors, the activity of each isozyme was measured. As a result, as shown in Table 1 below, a relationship with these various diseases has been suggested. Table 1 (Continued on next page) (Margins below) Table 1 (Continued) *Vo: Multiple conjugates of ADAI and binding protein (cp). Large: A combination of ADA and cp. Intermediate: ADA2 Small: ADA. In addition, more recently, acquired immunodeficiency syndrome (AIDS)
It has also been pointed out that there is a relationship between ADA and ADA2 in the serum of adult T-cell leukemia-lymphoma (ATL) patients. [Prior art and its problems 1] By the way, as existing methods for measuring ADA isozyme, the following three types of methods are known. ■ Method using differences in reactivity to substrates (a> Method using two types of substrates (b) Method using two types of substrate concentrations (e) Method using inhibitors. ■ Differences in molecular weight and isoelectric point (a>Gel filtration method using Sephadex G-200 (b)
) Ion exchange chromatography using DEAE Sepharose CL-6B (c) High performance liquid chromatography (d) Electrophoresis■ Methods that utilize differences in antigenicity (a) Enzyme immunoassay (b) Radioimmunoassay Each of the above Among the methods, method (2) that utilizes the difference in antigenicity has not been put into practical use because it takes time and cost to prepare a kit. In particular, the radioimmunoassay method (b) uses the radioactivity of isotopes, and is therefore subject to major restrictions in terms of equipment. Methods using chromatography and electrophoresis (2) separate isozymes individually and measure the activity of each fraction, so although they are accurate, they are complicated, time-consuming, and costly, so they are not suitable for automatic analysis. is not suitable. Therefore, at present, method (2) is considered to be the easiest method to put into practical use, but in reality, a measurement method that is simple and suitable for processing a large amount of specimen has not yet been established. [Problems to be Solved by the Invention] In view of the above circumstances, an object of the present invention is to provide a simple and accurate method for differentially quantifying adenosine deaminase isozyme, which is suitable for processing multiple samples.

【課題を解決するための手段】[Means to solve the problem]

(概要) 本発明に係るアデノシンデアミナーゼアイソザイムの分
別定量法は、以上の目的を達成せんがため、アデノシン
を基質としてアデノシンデアミナーゼを定−量するに当
たり、アデノシンデアミナーゼアイソザイム■の阻害剤
として、0.1 mM〜0.3 mMのエリスロ−9−
(2−ヒドロキシ−3−ノニル)−アデニンを選択し、
基質濃度6n+)4〜20mMにおいて、上記阻害剤を
併用しない全酵素活性値(a)から該阻害剤を併用した
ときの酵素活性値(b)を控除してアデノシンデアミナ
ーゼアイソザイム■の値(a−b)及びアデノシンデア
ミナーゼアイソザイムIIの値(b)を夫々求めること
を特徴とする。 (原理) 本発明は、主としてADA 1を選択的に阻害する阻害
剤、エリスロ−9−(2−ヒドロキシ−3−ノニル)−
アデニン(EHNA)を用るADA 1とADA2へ の分別定量である。即ち、特定濃度範囲内の基質(検体
)にE HN Aを添加しないで測定した全酵素活性値
から、特定濃度範囲内のEHNAを添加してADA I
活性を阻害することにより得られるADA2活性値を控
除して得られる差値を以ってADA 1活性値を求める
方法である。 (発明の経緯) EHNAがADA 1を選択的に阻害することは、既に
Ratechら(Enzyme 26,74−84.1
981)により報告されている。しかし、EHNAによ
る阻害は必ずしもADA、に対してのみ特異的である訳
ではなく、ADA2に対してもある程度阻害作用を及ぼ
すから、本方法を臨床検査に応用するときの鍵となる基
質濃度と阻害作用の関連、 ADA2に対する阻害剤の
影響の程度及び測定結果の再現性など、本方法を実用化
するのに必要な要件については未知であった。 そこで本発明者は、基質濃度とEHNAの阻害作用との
関連、殊にこれを臨床現場で使用されているアデノシン
デアミナーゼ測定法に準用したときの測定条件につき検
討した結果、ここに本発明に到達した。 (測定条件) アデノシンは緩衝液に溶けにくいので、アデノシン濃度
の上限は20mMが限界であり、逆に濃度が低過ぎると
反応速度が非実用的なレベル迄低下するため、実用的な
濃度の下限は6mMである。 次にこれら基質濃度下における阻害剤EHNAの濃度を
検討すると、第1図に示されるように、アデノシン6m
MのときEHNAの濃度が帆1m14てあればADA、
は完全に阻害され、ADA2は殆ど影響を受けない(同
図A)。同様にアデノシン20mMのときのADA、と
ADA2の阻害割合を検討してみると、EHNAが0.
31のときADA、は完全に阻害されるが、ADA2は
殆ど影響を受けない(同図B〉。 そこで、35検体のADA2のみを精製した試料の活性
と、同じ試料に0.1n+M E HN Aを添加して
測定した活性との相関を検討すると、相関係数0.96
26が得られ、0.1mM E HN Aの添加により
ADAlがほぼ100%阻害されていることが確認でき
たく第2図)。 さらに、既知ADA測定法である■GLDH−NADH
法、■GLDH−NADPH法及び■XOD−PNP法
(下注参照)における相関関係を検討したところ以下の
値が得られ、いずれも極めて良好な相関を示すことが判
明した。それ故、本発明測定法は、何れの測定方式にも
応用できることが明らかである(第3図〜第5図参照)
。 lJL        糺fLIL ■と■          0.992■と■    
      0.992■と■          0
.993(各測定法の詳細) 以下、上記GLDH−NADH法、GLDH−NADP
H法及びχ0D−PNP法の各詳細につき記述する。 +1)  G L D H−N A D H法(a)原
理 アデノシンは、アデノシンデアミナーゼの作用によって
イノシンとアンモニアになる。このアンモニアは、ニコ
チンアミド補酵素NADHとグルタミン酸デヒドロゲナ
ーゼ(GLDH)の存在下でα−ケトグルタル酸と反応
してグルタミン酸を生じる。その際、アンモニアと等モ
ルのNADHが消費される。このNADHの減少速度を
測定してADA活性を求める。 (b)操作 ■ 試薬(250回用) ○基質液(アデノシン、α−K G A 20m X○
酵素剤(GLDH,NADH,LDH凍結乾燥品20d
X5) ■ 試薬の調製 酵素剤1本分を基質液20−中に溶かし、基質M衝液と
する。 (以下余白) ■ 測定法(用手法) ADA活性(U/L)=キルた4Nへ”X 21 X 
106* NADHの分子吸光係数 (21G L D H−N A D P H法(a)原
理 アデノシンからADAの作用で生成したアンモニアを、
α−ケトグルタル酸とNADPHの存在下でGLDHと
共役させ、NADPHの減少速度を波長340nmにお
ける吸光度変化として測定する。 ↓ グルタミン酸 (b)試薬 (以下余白) (C)測定法(用手法) ↓ 充分攪拌後、37℃で2分間加温 ↓ ↓ 充分攪拌後、37℃、340nmにおける3〜5分後の
吸光度変化を測定して1分間当たりの吸光度減少速度を
求め、下式によりADA活性を計算。 (以下余白) 明細書の浄書く内容に変更なし) +3)  X OD −P N P法 (a)原理 ADAにより生成したイノシンをプリンヌクレオシドフ
ォスホリラーゼ(PNP)によりキサンチンとして、テ
トラゾリウム塩、例えばニトロブルーテトラゾ1)ラム
(NBT)の存在下にキサンチンオキシダーゼと共役さ
せ、生じたホルマザンの吸光度を測定する。 (b)試薬 ■標準液(0,2mMヒポキサンチン溶液)=2.72
2n+gのヒポキサンチンを蒸留水に溶かし、100 
Fdとする。 ■基質・発色緩衝液;アデノシン168.4mgに蒸留
水50 mQを加え、加温、溶解させる。冷後、0.5
Mリン酸M街液(pH7,0)42 dを加え、これに
アジ化ナトリウム10.5Tfig、ツイーン2042
0mg 、 N B T  25.76mg、 P N
 P  52.5U及びXOD 2.625Uを添加し
、蒸留水を加えて全量を100−とする。 (c)測定法 下表−2記載の通りである。 ↓ 37℃、10分間加熱
(Summary) In order to achieve the above-mentioned purpose, the method for differentially quantifying adenosine deaminase isozyme according to the present invention is to quantify adenosine deaminase using adenosine as a substrate. mM to 0.3 mM erythro-9-
(2-hydroxy-3-nonyl)-adenine,
At a substrate concentration of 6n+) 4 to 20 mM, the value of adenosine deaminase isozyme ■ (a- b) and the value (b) of adenosine deaminase isozyme II, respectively. (Principle) The present invention mainly relates to an inhibitor that selectively inhibits ADA 1, erythro-9-(2-hydroxy-3-nonyl)-
This is a differential determination of ADA 1 and ADA2 using adenine (EHNA). That is, from the total enzyme activity value measured without adding EHNA to a substrate (sample) within a specific concentration range, to the ADA I by adding EHNA within a specific concentration range.
This is a method of determining the ADA1 activity value using the difference value obtained by subtracting the ADA2 activity value obtained by inhibiting the activity. (Background of the invention) It has already been reported by Ratech et al. (Enzyme 26, 74-84.1) that EHNA selectively inhibits ADA 1.
981). However, inhibition by EHNA is not necessarily specific only to ADA, and also exerts an inhibitory effect on ADA2 to some extent, so substrate concentration and inhibition are the key factors when applying this method to clinical tests. The requirements necessary to put this method into practical use, such as the relationship between effects, the extent of the inhibitor's influence on ADA2, and the reproducibility of measurement results, were unknown. Therefore, the present inventor investigated the relationship between the substrate concentration and the inhibitory effect of EHNA, and in particular, the measurement conditions when applying this to the adenosine deaminase measurement method used in clinical practice, and as a result, the present invention has been arrived at. did. (Measurement conditions) Adenosine is difficult to dissolve in buffer solutions, so the upper limit for the adenosine concentration is 20mM.On the other hand, if the concentration is too low, the reaction rate will drop to an impractical level, so the lower limit for practical concentration is is 6mM. Next, when considering the concentration of the inhibitor EHNA under these substrate concentrations, as shown in Figure 1, adenosine 6m
When M, if the concentration of EHNA is 1m14, then ADA,
was completely inhibited, and ADA2 was hardly affected (Figure A). Similarly, when examining the inhibition ratio of ADA and ADA2 at 20mM adenosine, it was found that EHNA was 0.
31, ADA is completely inhibited, but ADA2 is hardly affected (Figure B). Therefore, the activity of the 35 samples purified only of ADA2 and the same sample with 0.1n+M E HN A When examining the correlation with the activity measured by adding , the correlation coefficient was 0.96.
26 was obtained, confirming that ADAl was almost 100% inhibited by the addition of 0.1 mM EHNA (Figure 2). In addition, ■GLDH-NADH, which is a known ADA measurement method.
The following values were obtained by examining the correlations in the GLDH-NADPH method, (1) GLDH-NADPH method, and (2) XOD-PNP method (see note below), and it was found that all of them showed extremely good correlations. Therefore, it is clear that the measurement method of the present invention can be applied to any measurement method (see Figures 3 to 5).
. lJL 纺fLIL ■and■ 0.992■and■
0.992 ■ and ■ 0
.. 993 (Details of each measurement method) Below, the above GLDH-NADH method, GLDH-NADP
The details of the H method and the χ0D-PNP method will be described. +1) GLDH-NADH method (a) Principle Adenosine becomes inosine and ammonia by the action of adenosine deaminase. This ammonia reacts with α-ketoglutarate to produce glutamic acid in the presence of nicotinamide coenzyme NADH and glutamate dehydrogenase (GLDH). At this time, ammonia and equimolar NADH are consumed. The rate of decrease in NADH is measured to determine ADA activity. (b) Operation■ Reagent (for 250 times) ○Substrate solution (adenosine, α-K GA 20m X○
Enzyme agent (GLDH, NADH, LDH freeze-dried product 20d
X5) ① Preparation of reagent Dissolve one bottle of enzyme preparation in substrate solution 20-20 and use it as substrate M solution. (Left below) ■Measurement method (technique) ADA activity (U/L) = Killed 4N”X 21
106* Molecular extinction coefficient of NADH (21G LDH-NADPH method (a) Principle Ammonia produced from adenosine by the action of ADA,
It is conjugated with GLDH in the presence of α-ketoglutaric acid and NADPH, and the rate of decrease in NADPH is measured as a change in absorbance at a wavelength of 340 nm. ↓ Glutamic acid (b) reagent (blank below) (C) Measurement method (manual method) ↓ After thorough stirring, heat at 37℃ for 2 minutes ↓ ↓ After thorough stirring, absorbance change after 3 to 5 minutes at 37℃ and 340 nm Measure the rate of decrease in absorbance per minute, and calculate the ADA activity using the formula below. (Left below) No changes to the text in the specification) +3) It is conjugated with xanthine oxidase in the presence of blue tetrazo1)ram (NBT), and the absorbance of the resulting formazan is measured. (b) Reagent ■Standard solution (0.2mM hypoxanthine solution) = 2.72
Dissolve 2n+g of hypoxanthine in distilled water and add 100
Let it be Fd. (2) Substrate/coloring buffer: Add 50 mQ of distilled water to 168.4 mg of adenosine and dissolve by heating. After cooling, 0.5
Add 42 d of M phosphoric acid M street solution (pH 7,0), and add 10.5 Tfig of sodium azide and Tween 2042 to this.
0mg, N B T 25.76 mg, P N
Add 52.5 U of P and 2.625 U of XOD, and add distilled water to bring the total volume to 100-. (c) Measurement method As described in Table 2 below. ↓ Heat at 37℃ for 10 minutes

【作用】[Effect]

本発明は、エリスロ−9−(2−ヒドロキシ−3−ノニ
ル)−アデニン(EHNA)が一定の濃度範囲内におい
て、一定基質濃度範囲内のアデノシンに対するADAl
の作用を選択的に阻害するという自然法則の発見に基づ
き、これをADAアイソザイムの分別定量に利用しよう
とするものである。従ってこの方法は、測定に要する手
数及び時間を短縮、軽減できることの他に、特に現在広
く実用化されている自動分析手段への適用が容易である
点で、ADAアイソザイム活性測定の臨床的応用を実現
できるという効果を奏する。
The present invention provides that erythro-9-(2-hydroxy-3-nonyl)-adenine (EHNA) is an ADAl for adenosine within a certain substrate concentration range within a certain concentration range.
Based on the discovery of a natural law that selectively inhibits the action of ADA isozymes, we aim to utilize this for the differential quantification of ADA isozymes. Therefore, this method not only shortens and reduces the number of steps and time required for measurement, but also facilitates the clinical application of ADA isozyme activity measurement, especially in that it is easy to apply to automatic analysis methods that are currently widely used. It has the effect of being achievable.

【実施例】【Example】

以下、実施例により発明実施の態様を説明するが、例示
は当然説明用のものであって、発明思想の限界又は制限
を意味するものではない。 (以下余白) 実施例1 25のヒト血清検体につき、出願人の製造、発売に係る
前記性(1)項記載のGLDH−NADH法用試薬(<
ADオートマルホ)商標)を用い、基質アデノシン濃度
6mMにおいて、EHNAを加えないときの全ADA活
性値から、同じ< 0.1mMのEHNAを加えた場合
の活性値を控除してADA 1とADA2の値を求めた
。結果は下表−3の通りであった。 表−3 表−3(続き)
Hereinafter, embodiments of the invention will be explained with reference to Examples, but the examples are, of course, for illustrative purposes and do not imply any limitations or restrictions on the idea of the invention. (Left below) Example 1 For 25 human serum samples, the reagent for the GLDH-NADH method (<
Using AD Automaruho (Trademark), at a substrate adenosine concentration of 6mM, the activity value when EHNA was added at the same <0.1mM was subtracted from the total ADA activity value when EHNA was not added, and the values of ADA1 and ADA2 were calculated. I asked for The results were as shown in Table 3 below. Table-3 Table-3 (continued)

【発明の効果】【Effect of the invention】

以上、説明した通り、本発明は、ADAアイソザイムの
簡便かつ正確な定量法を提供しうろことを通じて、各種
疾病の診断及び治療の向上に寄与しうる。
As described above, the present invention can contribute to improving the diagnosis and treatment of various diseases by providing a simple and accurate method for quantifying ADA isozymes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、異なった基質濃度下におけるエリスロ−9−
(2−ヒドロキシ−3−ノニル)−アデニンのADAア
イソザイムに対する阻害作用を示すグラフ(A:基質濃
度6mM、B:同20mM) 、第2図は、ゲル濾過法
により精製されたADA2活性と発明測定法によるAD
A2活性との相関を示すグラフ、第3図〜第5図は、夫
々ADA活性の測定に関し、NADH法とNADPH法
、NADPH法とXOD−PNP法及びNADH法とX
OD−PNP法との相関を示すグラフである。 ADA活・避CA) 0    8    8    8     °3o 
    8 Cす oJ7′ルi71!孟FM)ADA 馳11(mU/m
l)       0(Y)        (’J 
        ″第5図 二手続祁1′X1ミマ!) 昭和63年 6月 6日 1、事件の表示 昭和63年特許願第28241号 2 発明の名称−。 ア アデノシンアミナーゼアイソザイムの分別定量法3、補
正をする者 事件との関係  特許出願人 住 所 大阪市大淀区中津1丁目6番24号名 称 マ
ルポ株式会社 代表者 高木 二部 4、代理人■532 住 所 大阪府大阪市淀川区東三国1−32−12電話
06−395−2714 /(Xl−391−6712
;06−397−1007(FAX> 7、補正の対象 (1)明細書の浄書(内容に変更ない (2)代理権を証明する書面 a 補正の内容 (1)別紙の通り明細書の15頁を提出する。 (21別紙の通り委任状を補充する。 9、添1;を書類の目録 (1)明a書(15頁)    1通
Figure 1 shows erythro-9-9 under different substrate concentrations.
A graph showing the inhibitory effect of (2-hydroxy-3-nonyl)-adenine on ADA isozyme (A: substrate concentration 6mM, B: substrate concentration 20mM), Figure 2 shows ADA2 activity purified by gel filtration method and the invention measurement. AD by law
Graphs showing the correlation with A2 activity, Figures 3 to 5, respectively relate to the measurement of ADA activity by the NADH method and the NADPH method, the NADPH method and the XOD-PNP method, and the NADH method and the XOD-PNP method.
It is a graph showing the correlation with the OD-PNP method. ADA active/evasive CA) 0 8 8 8 °3o
8 CsoJ7'le i71! Meng FM) ADA Hase 11 (mU/m
l) 0(Y) ('J
``Figure 5 2 Procedures 1' Relationship with the case of the person making the amendment Patent Applicant Address 1-6-24 Nakatsu, Oyodo-ku, Osaka Name Name: Marupo Co., Ltd. Representative Takagi Nibe 4, Agent 532 Address Higashimikuni, Yodogawa-ku, Osaka-shi, Osaka Prefecture 1-32-12 Telephone 06-395-2714 / (Xl-391-6712
;06-397-1007 (FAX> 7. Subject of amendment (1) Engraving of the specification (no change in content) (2) Document certifying authority of agency a Contents of amendment (1) Page 15 of the specification as attached (Supplement the power of attorney as shown in Attachment 21. 9. Attachment 1; List of documents (1) Letter A (15 pages) 1 copy

Claims (1)

【特許請求の範囲】 1 アデノシンを基質としてアデノシンデアミナーゼを
定量するに当たり、アデノシンデアミナーゼアイソザイ
ム I の阻害剤として、0.1mM〜0.3mMのエリ
スロ−9−(2−ヒドロキシ−3−ノニル)−アデニン
を選択し、基質濃度6mM〜20mMにおいて、上記阻
害剤を併用しない全酵素活性値(a)から該阻害剤を併
用したときの酵素活性値(b)を控除してアデノシンデ
アミナーゼアイソザイム I の値(a−b)及びアデノ
シンデアミナーゼアイソザイムIIの値(b)を夫々求め
ることを特徴とするアデノシンデアミナーゼアイソザイ
ムの分別定量法。 2 アデノシンデアミナーゼアイソザイムの定量法とし
てGLDH−NADH法、GLDH−NADPH法及び
XOD−PNP法から選ばれた方法が使用される特許請
求の範囲第1項記載のアデノシンデアミナーゼアイソザ
イムの分別定量法。
[Claims] 1. In quantifying adenosine deaminase using adenosine as a substrate, 0.1 to 0.3 mM of erythro-9-(2-hydroxy-3-nonyl)-adenine is used as an inhibitor of adenosine deaminase isoenzyme I. At a substrate concentration of 6mM to 20mM, the value of adenosine deaminase isozyme I ( 1. A method for differentially quantifying adenosine deaminase isozyme, which comprises determining the values of a-b) and adenosine deaminase isozyme II (b), respectively. 2. The method for differentially quantifying adenosine deaminase isozyme according to claim 1, wherein a method selected from the GLDH-NADH method, GLDH-NADPH method, and XOD-PNP method is used as the method for quantifying adenosine deaminase isozyme.
JP2824188A 1988-02-09 1988-02-09 Fractional quantification method of adenosine deaminase isozyme Expired - Lifetime JPH0650992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2824188A JPH0650992B2 (en) 1988-02-09 1988-02-09 Fractional quantification method of adenosine deaminase isozyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2824188A JPH0650992B2 (en) 1988-02-09 1988-02-09 Fractional quantification method of adenosine deaminase isozyme

Publications (2)

Publication Number Publication Date
JPH01202297A true JPH01202297A (en) 1989-08-15
JPH0650992B2 JPH0650992B2 (en) 1994-07-06

Family

ID=12243091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2824188A Expired - Lifetime JPH0650992B2 (en) 1988-02-09 1988-02-09 Fractional quantification method of adenosine deaminase isozyme

Country Status (1)

Country Link
JP (1) JPH0650992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530569A (en) * 2014-09-25 2016-03-30 Osama Aldirbashi Methods of detecting adenosine deaminase deficiency

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530569A (en) * 2014-09-25 2016-03-30 Osama Aldirbashi Methods of detecting adenosine deaminase deficiency
EP3204487A4 (en) * 2014-09-25 2018-09-05 Children's Hospital of Eastern Ontario Research Institute Inc. Methods of detecting adenosine deaminase deficiency

Also Published As

Publication number Publication date
JPH0650992B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
Skrede et al. Bile acids measured in serum during fasting as a test for liver disease.
Roda et al. Bioluminescence measurement of primary bile acids using immobilized 7 alpha-hydroxysteroid dehydrogenase: application to serum bile acids
Washtien et al. Assay of intracellular free and macromolecular-bound metabolites of 5-fluorodeoxyuridine and 5-fluorouracil
Kasidas et al. A new enzymatic method for the determination of glycollate in urine and plasma
Jelikić-Stankov et al. Determination of uric acid in human serum by an enzymatic method using N-methyl-N-(4-aminophenyl)-3-methoxyaniline reagent
Nazar et al. An improved microfluorometric enzymatic assay for the determination of ammonia
Atkins et al. Plasma concentrations of histamine measured by radioenzymatic assay: effects of histaminase incubations
JPS6357040B2 (en)
Shamma'a et al. Serum xanthine oxidase: a sensitive test of acute liver injury
CN109112181A (en) A kind of 5`- activity of 5 &#39;-nucleotidase measuring method and 5`- nucleotidase detection kit
JPH01202297A (en) Fractional determination of adenosine deaminase isozyme
Kato et al. Improved assay for alcohol dehydrogenase activity in serum by centrifugal analysis.
CN111808918B (en) Kit for determining 5&#39; -nucleotidase
Härkönen et al. Enzymatic techniques in steroid assay
JPS61502443A (en) Novel reagents and their use
JPH02276595A (en) Method for measuring bile acid in high sensitivity and composition for measuring bile acid
TW593681B (en) Quantitative determination method of mannose and reagent therefor
Hyldgaard-Jensen et al. A study of the determination of lactic dehydrogenase isoenzymes by means of agar gel and starch-agar gel zymograms
Singkamani et al. A direct assay for pyridoxal 5′-phosphate using pig heart apo-aspartate transaminase
JPH06153991A (en) Phosphatase analysis reagent
Chrostek et al. Serum class I and II alcohol dehydrogenase activity during the course of viral hepatitis
JP3493411B2 (en) Reagent composition for potassium ion measurement and test piece
Ravid et al. Interrelation between salvage of purine nucleotides and protein synthesis in rat heart cells
Henley et al. Mitochondrial oxidase activities and pyridine nucleotide concentrations of normal human liver
JPS6024199A (en) Determination of substance relating to disease