JPH01201977A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH01201977A
JPH01201977A JP63025751A JP2575188A JPH01201977A JP H01201977 A JPH01201977 A JP H01201977A JP 63025751 A JP63025751 A JP 63025751A JP 2575188 A JP2575188 A JP 2575188A JP H01201977 A JPH01201977 A JP H01201977A
Authority
JP
Japan
Prior art keywords
layer
laser
ingaasp
phase
phase shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63025751A
Other languages
Japanese (ja)
Inventor
Masahiro Okuda
昌宏 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63025751A priority Critical patent/JPH01201977A/en
Publication of JPH01201977A publication Critical patent/JPH01201977A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • H01S5/1243Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts by other means than a jump in the grating period, e.g. bent waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To shift the phase of light propagating within laser in reference to diffraction grid and to simplify adjustment of amount of phase shift by bending stripe structure which forms laser. CONSTITUTION:After coating the entire surface of an n-type InP substrate 1 with resist, primary diffraction grid pattern is marked using HeCd laser beam, chemical etching is performed, and then a diffraction grid 5 is formed. An n-InGaAsP layer 2, an InGaAsP active layer 3, and then an InGaAsP buffer layer 4 are lamination-formed on this substrate 1 in sequence. Then, after performing patterning using a mask of bent pattern, mesa etching is performed to obtain a stripe with bent part at the center. Then, an InP layer 11 is allowed to grow again and an InGaAsP layer 6 is laminated on it. Then, an SiO2 layer 7 with a window is built up and a diffusion region 10 is formed by diffusing Zn so that it reaches the InP layer 11. After that, electrodes 8 and 9 are deposited, is turned into alloy, is divided into chips by cleavage, and SiN is built up on the cleavage surface. It allows a phase shift type DFB laser to be produced easily without using a complex resist coating process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザー装置に関し、特に、グレーティ
ングを導波路内又は導波路上に設けて、発振波長を安定
化させた半導体レーザー装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device, and particularly to a semiconductor laser device in which a grating is provided within or on a waveguide to stabilize the oscillation wavelength.

〔従来の技術〕[Conventional technology]

従来、半導体レーザーの波長安定化をはかるために、半
導体レーザーを形成している導波路内、又は導波路に近
接した部分にグレーティングを形成し、ある特定波長の
み反射させた構造の分布帰還型(D F B : Di
stributad Feed Back)半導体レー
ザーが提案、試作されている。
Conventionally, in order to stabilize the wavelength of a semiconductor laser, a distributed feedback type (distributed feedback type) structure was used in which a grating was formed within the waveguide forming the semiconductor laser or in a portion close to the waveguide, and only a specific wavelength was reflected. DFB: Di
Semiconductor lasers (tributad feed back) have been proposed and prototyped.

長距離、大容量の光フアイバ通信システムにおいて、D
FBレーザーに要求される性能は、高速変調時にも副モ
ードが十分に抑制され、安定に単−縦モード発振するこ
とである。単一縦モード発振の安定性は、主および副モ
ード間の発振しきい値利得差によって決定される。DF
Bレーザーはグレーティングの波長選択性によって高い
発振しきい値利得差をもつが、さらに大きな発振しきい
値利得差を持つように考え出されたのが位相シフト型D
FBレーザーであり、理論的には入/4シフト型DFB
レーザーが最も高い発振しきい値利得差を持つことが知
られており、開発が進められている。
In long-distance, large-capacity optical fiber communication systems, D
The performance required of an FB laser is that the secondary mode is sufficiently suppressed even during high-speed modulation, and stable single-longitudinal mode oscillation is achieved. The stability of single longitudinal mode oscillation is determined by the oscillation threshold gain difference between the major and minor modes. DF
The B laser has a high oscillation threshold gain difference due to the wavelength selectivity of the grating, but the phase shift type D laser was devised to have an even larger oscillation threshold gain difference.
It is an FB laser, and theoretically it is an input/4 shift type DFB.
Lasers are known to have the highest oscillation threshold gain difference, and development is progressing.

従来、位相シフト型DFBレーザーを構成する方法とし
ては、グレーティングの位相を途中でシフトさせる方法
が一般的であった。レーザー構造の途中で位相のシフト
した回折格子を形成するには、レーザー基板上に塗布さ
れたフォトレジスト上に、位相シフト膜をパターン状に
形成した後、レーザー光によって干渉露光を行うことが
行われていた。また、位相シフト量は、位相シフト膜の
膜厚を変えることにより調節されていた。
Conventionally, a common method for constructing a phase-shifted DFB laser has been to shift the phase of a grating midway. To form a diffraction grating with a phase shift in the middle of a laser structure, a phase shift film is formed in a pattern on a photoresist coated on a laser substrate, and then interference exposure is performed using laser light. I was worried. Further, the amount of phase shift was adjusted by changing the thickness of the phase shift film.

また、回折格子は一様に形成し、レーザー、構造を成す
導波路中を伝搬する光の位相をずらすことにより等測的
に回折格子の位相をずらす(シフトさせる)試みも成さ
れている。伝搬する光の位相をずらす方法としては、導
波路の形状、例えば、ストライプの幅を一部分だけ広く
して、その部分で位相を遅らせることが試されている。
Furthermore, attempts have been made to form the diffraction grating uniformly and to shift the phase of the diffraction grating isometrically by shifting the phase of the light propagating in the laser or the waveguide forming the structure. As a method of shifting the phase of propagating light, attempts have been made to widen the shape of the waveguide, for example, the width of a stripe in a portion, and delay the phase in that portion.

〔発明が解決しようとしている課題〕[Problem that the invention is trying to solve]

しかしながら、位相シフト型の回折格子を形成する方法
では、レジストに回折格子を干渉露光する際、膜厚の制
御された位相シフト層をパターンニングしなければなら
ず、複雑な素子形成プロセスを有していた。
However, in the method of forming a phase shift type diffraction grating, when exposing the diffraction grating to a resist using interference light, a phase shift layer with a controlled film thickness must be patterned, and a complicated element formation process is required. was.

また、導波路の形状を途中で変えて伝搬定数をずらして
位相をシフトさせる方法は、位相シフト量を厳密に設定
するためには、導波路の形状変化による伝搬定数の変化
を正確に予測することが必要で、高度なシミュレーショ
ン技術を要していた。
In addition, in order to accurately set the amount of phase shift, it is necessary to accurately predict the change in the propagation constant due to changes in the shape of the waveguide. This required advanced simulation technology.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、レーザー内を伝搬する光の位相をレーザーを
形成するストライブ構造を曲げることにより、−様に形
成された回折格子に対してシフトさせるものである。
The present invention shifts the phase of light propagating within a laser with respect to a diffraction grating formed in a - shape by bending the stripe structure forming the laser.

〔作  用〕[For production]

ホトリングラフイー工程におけるマスクパターンを変更
させるだけでよいので、従来例のように複雑な位相シフ
ト型回折格子の作製プロセスを行うことなしに位相シフ
ト型DFBレーザーを作ることができる。
Since it is only necessary to change the mask pattern in the photolithography process, a phase-shift type DFB laser can be manufactured without performing a complicated process for manufacturing a phase-shift type diffraction grating as in the conventional example.

また、曲折部分のストライプ長を変えることにより、簡
単に位相シフト量の調節が可能である。
Further, by changing the stripe length of the bent portion, the amount of phase shift can be easily adjusted.

〔実施例〕〔Example〕

以下、本発明を実施例を用いて説明する。 The present invention will be explained below using examples.

第1図は本発明の第1の実施例であり、半導体レーザー
を形成するストライプ共振器の中央部付近で曲げ、レー
ザー光の位相を回折格子に対してシフトさせた例である
FIG. 1 shows a first embodiment of the present invention, in which a striped resonator forming a semiconductor laser is bent near the center to shift the phase of the laser beam with respect to the diffraction grating.

lはn型InP基板であり、この全面にレジストを塗布
した後、波長325nmのHeCdレーザー光を用いて
2光束干渉法を用いてピッチが240OAの一次回折格
子パターンを刻印する。その後、)lBr−)IN<)
3−H20溶液によりケミカルエツチングを行ない、回
折格子5を形成する。この回折格子5の刻まれた基板1
上に、Snドープされたn−1nCiaAsP層2、ド
ーピングのないInGaAsP活性層3、さらに1nG
aAsPバッファ層4を順次積層形成する。次に、4μ
s幅の曲折パターンを有するマスクを用いてパターンニ
ングした後、メサエッチングを行い、第3図のような中
央部で曲折部を有するストライプを得る。その後、亜鉛
(Zn)のドープされたInP層11を液相エピタキシ
ャル法によって再成長し、その上にドーピングのないI
nGaAsP層6を積層する。次に、ストライプ構造の
真上に、ウィンドウが設けられた5i02層7をCVD
法により堆積させ、この8102層7をマスクとして、
ZnをInP層11に到達するように拡散し、拡散領域
10をストライプ状に形成する。この拡散領域10の平
面パターンは第2図に示されるようになる。その後、C
r/Au電極8とSn/Au電極9をそれぞれP型及び
n型電極として蒸着し、アロイした。最後に、へき開に
よって長さ約300−のチップに分割した後、へき開面
はSiNによる反射防止膜をプラズマCVD法により堆
積させ(不図示)、位相シフト型DFBレーザーが作製
された。
1 is an n-type InP substrate, and after coating the entire surface with resist, a first-order diffraction grating pattern with a pitch of 240 OA is imprinted using a two-beam interference method using a HeCd laser beam with a wavelength of 325 nm. Then )lBr−)IN<)
Chemical etching is performed using a 3-H20 solution to form a diffraction grating 5. A substrate 1 on which this diffraction grating 5 is carved
On top, a Sn-doped n-1nCiaAsP layer 2, an undoped InGaAsP active layer 3, and a further 1nG
The aAsP buffer layers 4 are sequentially laminated. Next, 4μ
After patterning using a mask having a bent pattern with a width of s, mesa etching is performed to obtain a stripe having a bent part in the center as shown in FIG. Thereafter, a zinc (Zn) doped InP layer 11 is regrown by liquid phase epitaxial method, and an undoped I
An nGaAsP layer 6 is laminated. Next, directly above the striped structure, a 5i02 layer 7 with a window is deposited by CVD.
using this 8102 layer 7 as a mask,
Zn is diffused so as to reach the InP layer 11, and the diffusion regions 10 are formed in a stripe shape. The planar pattern of this diffusion region 10 is shown in FIG. After that, C
An r/Au electrode 8 and a Sn/Au electrode 9 were deposited and alloyed as P-type and n-type electrodes, respectively. Finally, after dividing into chips with a length of about 300 mm by cleavage, an antireflection film made of SiN was deposited on the cleaved surfaces by plasma CVD (not shown), and a phase-shifted DFB laser was fabricated.

この位相シフトDFBレーザーは、回折格子に位相シフ
トを与える方法と異なり、2層レジストや位相シフト膜
を用いることがなく、通常の干渉露光で回折格子が形成
できる。また、位相シフト量は曲折部の長さのみで調節
できるので設計が簡単に行える。
Unlike the method of imparting a phase shift to a diffraction grating, this phase-shifted DFB laser does not use a two-layer resist or a phase shift film, and can form a diffraction grating by ordinary interference exposure. Further, since the amount of phase shift can be adjusted only by the length of the bent portion, the design can be easily performed.

なお、本実施例では、InP基板上の埋め込みストライ
プ型のレーザーを例にとって説明したが、本発明はもち
ろんこれに限るものではなく、GaAs基板等、レーザ
ーを構成する半導体基板であればいずれでも構わず、レ
ーザー構造もリッジ構造や内部ストライプ構造など、い
ずれでもよい。
In this embodiment, a buried stripe type laser on an InP substrate is used as an example, but the present invention is of course not limited to this, and any semiconductor substrate constituting the laser, such as a GaAs substrate, may be used. First, the laser structure may be either a ridge structure or an internal stripe structure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、複雑なレジスト
塗布工程を用いないで、容易に位相シフト型DFBレー
ザーが作製でき、かつ、位相シフト量もマスクパターン
の曲折部の長さを変えることにより、容易に設定可能で
ある。さらに、曲折部分を導入することにより、この曲
折部分で高次モードが漏洩するので、横モードの安定し
た発振をさせることが可能となる。また、半導体レーザ
ーの各種のパラメータに応じて光の位相シフト量を微調
整することも簡単にでき、調整の精度および自由度の向
上が図れる。
As explained above, according to the present invention, a phase-shifted DFB laser can be easily manufactured without using a complicated resist coating process, and the amount of phase shift can also be changed by changing the length of the bent portion of the mask pattern. It can be easily set. Furthermore, by introducing the bent portion, higher-order modes leak at this bent portion, so that stable oscillation of the transverse mode can be achieved. Further, it is possible to easily finely adjust the amount of phase shift of light according to various parameters of the semiconductor laser, and the accuracy and degree of freedom of adjustment can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である位相シフト型DFBレ
ーザーの一部断面を含む斜視図、第2図は第1図におけ
るZn拡散領域の平面パターンを示す図、 第3図は第1図の実施例の製造工程におけるストライプ
形成直後の斜視図である。 1・・・n型1nP基板、 2・・・Snドープn型InGaAsP層、3・・・ノ
ンドープInGaAsP活性層、4 ・= InGaA
sP /< ッ7 y層、5・・・回折格子、 6・・・ノンドープInGaAsP層、7・・・510
2膜、 8・・・Cr/Au電極、 9・・・Sn/Au電極、 10・・・Zn拡散領域、 11・・・InP層。 特許出願人  キャノン株式会社
FIG. 1 is a perspective view including a partial cross section of a phase-shifted DFB laser that is an embodiment of the present invention, FIG. 2 is a diagram showing a plane pattern of the Zn diffusion region in FIG. 1, and FIG. FIG. 3 is a perspective view immediately after forming stripes in the manufacturing process of the illustrated embodiment. DESCRIPTION OF SYMBOLS 1...n-type 1nP substrate, 2...Sn-doped n-type InGaAsP layer, 3...non-doped InGaAsP active layer, 4.=InGaA
sP /< 7 y layer, 5... Diffraction grating, 6... Non-doped InGaAsP layer, 7...510
2 film, 8...Cr/Au electrode, 9...Sn/Au electrode, 10...Zn diffusion region, 11...InP layer. Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 1)半導体レーザーを構成する導波路内あるいは導波路
に近接した部分に回折格子を配置させた分布帰還型半導
体レーザー装置において、 導波路がストライプ構造を有し、該ストライプ構造を有
する導波路が、その一部に曲折部分を有していることを
特徴とする半導体レーザー装置。 2)前記導波路における曲折部分で光の位相が前記回折
格子に対してπ/2だけシフトされるように、曲折部分
の長さが調整されている請求項1記載の半導体レーザー
装置。
[Claims] 1) In a distributed feedback semiconductor laser device in which a diffraction grating is disposed within a waveguide or in a portion close to the waveguide constituting a semiconductor laser, the waveguide has a stripe structure, and the stripe structure A semiconductor laser device characterized in that a waveguide having a waveguide has a bent portion in a part thereof. 2) The semiconductor laser device according to claim 1, wherein the length of the bent portion of the waveguide is adjusted such that the phase of light is shifted by π/2 with respect to the diffraction grating at the bent portion of the waveguide.
JP63025751A 1988-02-08 1988-02-08 Semiconductor laser device Pending JPH01201977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63025751A JPH01201977A (en) 1988-02-08 1988-02-08 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63025751A JPH01201977A (en) 1988-02-08 1988-02-08 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH01201977A true JPH01201977A (en) 1989-08-14

Family

ID=12174537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63025751A Pending JPH01201977A (en) 1988-02-08 1988-02-08 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH01201977A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475662A2 (en) * 1990-09-13 1992-03-18 AT&T Corp. Phase shifted distributed feedback laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102085A (en) * 1984-10-25 1986-05-20 Fujikura Ltd Production of distribution feedback type semiconductor laser
JPS61288480A (en) * 1985-06-17 1986-12-18 Fujitsu Ltd Semiconductor laser
JPS62144378A (en) * 1985-12-18 1987-06-27 Sony Corp Distributed feedback type semiconductor laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102085A (en) * 1984-10-25 1986-05-20 Fujikura Ltd Production of distribution feedback type semiconductor laser
JPS61288480A (en) * 1985-06-17 1986-12-18 Fujitsu Ltd Semiconductor laser
JPS62144378A (en) * 1985-12-18 1987-06-27 Sony Corp Distributed feedback type semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475662A2 (en) * 1990-09-13 1992-03-18 AT&T Corp. Phase shifted distributed feedback laser

Similar Documents

Publication Publication Date Title
US5436195A (en) Method of fabricating an integrated semiconductor light modulator and laser
US5020072A (en) Semiconductor laser device
JPS61216383A (en) Distributed feedback semiconductor laser
US5386433A (en) Semiconductor laser including periodic structures with different periods for producing a single wavelength of light
US5392311A (en) Laser element
JPH11214793A (en) Distributed feedback semiconductor laser
US4589117A (en) Butt-jointed built-in semiconductor laser
JP2553217B2 (en) Laser device and manufacturing method thereof
JPS63166281A (en) Distributed feedback semiconductor laser
JP2700312B2 (en) Distributed feedback semiconductor laser device
EP0732785A1 (en) Semiconductor laser device and method of fabricating semiconductor laser device
JPH01201977A (en) Semiconductor laser device
JPH10308553A (en) Semiconductor laser device
JP2002223032A (en) Optical element and method for manufacturing it
JP2804502B2 (en) Semiconductor laser device and method of manufacturing the same
JPH07105553B2 (en) Method of manufacturing distributed feedback semiconductor laser
JPH05136521A (en) Semiconductor laser
JP2735589B2 (en) Manufacturing method of diffraction grating
JP3274710B2 (en) Distributed feedback semiconductor laser device and method of manufacturing distributed feedback semiconductor laser device
JPH03268380A (en) Semiconductor laser device
JPH11145557A (en) Semiconductor optical element and its manufacture
JPS6292490A (en) Distributed feedback type semiconductor laser
JPH04356001A (en) Production of diffraction grating
JPS63285993A (en) Semiconductor laser device
JPH11163465A (en) Optical semiconductor element and manufacture thereof