JPH01201708A - Multitubular flow controller - Google Patents

Multitubular flow controller

Info

Publication number
JPH01201708A
JPH01201708A JP2726388A JP2726388A JPH01201708A JP H01201708 A JPH01201708 A JP H01201708A JP 2726388 A JP2726388 A JP 2726388A JP 2726388 A JP2726388 A JP 2726388A JP H01201708 A JPH01201708 A JP H01201708A
Authority
JP
Japan
Prior art keywords
flow control
range
flow
pressure
selector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2726388A
Other languages
Japanese (ja)
Inventor
Norihisa Miki
徳久 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2726388A priority Critical patent/JPH01201708A/en
Publication of JPH01201708A publication Critical patent/JPH01201708A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control flow in a range in which range ability is good by selecting the maximum opening of the flow control valves of respective branch pipelines by a high selector and selecting their minimum opening by a low selector. CONSTITUTION:The title multitubular flow controller of flow control valves 31-3n provided for branch pipelines 21-2n of a main pipeline 1 consists of flow sensors 41-4n, flow controller 51-5n, pressure controller 8, etc. A high selector 9 and a low selector 10 are provided and operational outputs MV1-MVn are inputted as the valve opening signals of the respective flow control valves 3. A maximum valve opening signal PVH selected by the high selector 9 and a minimum valve opening signal PVL selected by the low selector 10 are inputted to a pressure set value determining logic 11, the most suitable pressure set value SV0 is operated and it is supplied to a pressure controller 8. Thus, the pressures of the flow control valves 3 of the respective branch pipelines 2 are controlled in the range in which the range ability is good.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、制御弁を各枝管路に有する多管流量制御装置
における制御弁のレンジアビリティの改着に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to changing the rangeability of a control valve in a multi-tube flow control device having a control valve in each branch pipe.

第7図に基づいて従来技術の一例を説明する。An example of the prior art will be explained based on FIG.

lは流体Fが移送される主管路、2.、22・・・2n
は主管路から分岐するn本の枝管路、3.、32・・・
3nは各枝管路に挿入された制御弁、4.、42・・・
4nは同じく各枝管路に挿入された流量センサーであり
、Pv、。
1 is the main pipe through which the fluid F is transferred; 2. , 22...2n
are n branch pipes branching from the main pipe; 3. , 32...
3n is a control valve inserted into each branch pipe; 4. ,42...
4n is a flow rate sensor inserted into each branch pipe, Pv.

PV、・・・PVnはその測定値である。PV, . . . PVn are the measured values.

5、、52・・・5nは各枝管路に設けられた流量調節
計であり、各測定値PV+、 PVz・・’PVnと設
定値SV、。
5, 52...5n are flow rate controllers provided in each branch pipe, and each measured value PV+, PVz...'PVn and set value SV.

Sv2・・・の偏差を夫々制御演算した操作出力MV、
Manipulated output MV obtained by controlling and calculating the deviation of Sv2..., respectively;
.

MY2・・・MVnを各制御弁3..32・・・3nに
供給し、各枝管路の流量を各設定値に制御する。
MY2...MVn for each control valve 3. .. 32...3n, and the flow rate of each branch pipe is controlled to each set value.

6は主管路1に挿入された圧力センサーでPV。6 is a pressure sensor inserted into the main pipe 1 and is a PV.

はその測定値、7は同じく主管路1に挿入された制御弁
である。8は圧力調節計であり、測定値PVoと設定値
SVoの偏差を14dJ御演算した操作出力MVoを制
御弁7に供給して主管路の圧力を設定値に制御する。
is the measured value, and 7 is a control valve also inserted into the main pipe 1. Reference numeral 8 denotes a pressure regulator, which supplies a manipulated output MVo obtained by calculating the deviation between the measured value PVo and the set value SVo by 14 dJ to the control valve 7 to control the pressure in the main pipe to the set value.

(本発明の解決すべき課題) このように多数の枝管路の流量を制御する系では、通常
その主管路の圧力は定値制御で行なわれる。しかしなが
ら、小流量から大流量まで広いしンジの流量の制御を可
能とするためには、制御弁はレンジアビリティの良い範
囲で使用する必要がある。
(Problems to be Solved by the Invention) In systems that control the flow rates of a large number of branch pipes as described above, the pressure in the main pipe is usually controlled at a fixed value. However, in order to be able to control a wide range of flow rates from small to large, the control valve must be used within a range with good rangeability.

第4図は圧力をパラメータとした弁開度と流量の関係を
示す特性図である。例えば圧力P1をパラメータとする
特性C3についてみると、レンジアビリティ良の弁開度
範囲α%〜β%において流量制御範囲はFL、−FH,
である。
FIG. 4 is a characteristic diagram showing the relationship between valve opening degree and flow rate using pressure as a parameter. For example, looking at characteristic C3 with pressure P1 as a parameter, in the valve opening range α% to β% with good rangeability, the flow rate control range is FL, -FH,
It is.

このような圧力P1の条件のまま小流量範囲を制御しよ
うとすれば弁開度は4%以下となり、レンジアビリティ
良の範囲を越えて絞る必要がある。
If an attempt is made to control the small flow rate range under such conditions of pressure P1, the valve opening will be 4% or less, and it will be necessary to throttle the valve opening beyond the range where rangeability is good.

逆に圧力を低く抑えて小流量範囲をレンジアビリティ良
のα%〜β%の範囲とするようにした場合は、β%を越
えても弁を開いて流量制御が不可能となる場合が生ずる
On the other hand, if you keep the pressure low and set the small flow rate range to the range of α% to β% with good rangeability, the valve may open even if the range exceeds β%, making it impossible to control the flow rate. .

このような問題が各枝管路において発生するので、主管
路の圧力を一定に制御した場合には、各枝管路の流量制
御弁すべてをレンジアビリティ良の範囲で使用すること
は不可能である。
Such problems occur in each branch pipe, so if the pressure in the main pipe is controlled to be constant, it is impossible to use all flow control valves in each branch pipe within a range with good rangeability. be.

本発明はこのような問題点を解消できる多管流量制御装
置の提供を目的とする。
An object of the present invention is to provide a multi-tube flow control device that can solve these problems.

(課題を解決するための手段) 本発明の構成上の特徴は、流量制御弁並びに流量調節計
手段を各枝管路に有すると共に、主管路に圧力調節手段
が設けられた多管流量制御装置において、上記各枝管の
流量制御弁開度のうち最大値を選択するハイセレクター
手段と最小価を選択するローセレクター手段と、上記最
大値と最少値の範囲が上記流量制御弁のレンジアビリテ
ィ良の範囲に入るように上記主管路の圧力調節手段の設
定値を決定するロジック手段とを具備せしめた点にある
(Means for Solving the Problems) A structural feature of the present invention is a multi-pipe flow control device having a flow rate control valve and a flow rate regulator means in each branch pipe, and a pressure regulating means provided in the main pipe. , a high selector means for selecting the maximum value and a low selector means for selecting the minimum value among the flow control valve opening degrees of each branch pipe, and a range between the maximum value and the minimum value is determined to have good rangeability of the flow control valve. and logic means for determining the setting value of the pressure regulating means for the main pipe so that the pressure is within the range of .

(作用) 本発明によれば、各枝管路の流量制御弁の内最大開度が
ハイセレクターにより選択され、同様にローセレクター
により最小開度が選択され、これら開度信号に基づいて
各流量制御弁がレンジアビリティ良の範囲となるように
主管路の圧力設定値がロジック手段により決定される。
(Function) According to the present invention, the maximum opening of the flow control valves of each branch pipe is selected by the high selector, the minimum opening is similarly selected by the low selector, and each flow rate is selected based on these opening signals. The pressure setting value of the main line is determined by logic means so that the control valve is within a range with good rangeability.

(実施例) 第1図に基づいて本発明の詳細な説明する。(Example) The present invention will be explained in detail based on FIG.

第7図において説明した要素と同一要素については同一
符号を付して説明を省略し、特徴部分についての説明を
追加する。
Elements that are the same as those explained in FIG. 7 are given the same reference numerals, and explanations are omitted, and explanations of characteristic parts will be added.

9はハイセレクターであり、各流量制御弁31゜3□・
・・3nの弁開度信号としてそれらへの操作出力MV 
、 、 MV 2・・・MVnが入力されている。10
はローセレクターで、同様に各流量制御弁の操作出力が
入力されている。
9 is a high selector, and each flow control valve 31°3□・
・・Manipulation output MV to them as a valve opening signal of 3n
, , MV2...MVn is input. 10
is a low selector, and similarly the operation output of each flow control valve is input.

ハイセレクターで選択される最大弁開度信号PvH並び
にローセレクターで選択される最小弁開度信号PV  
は、圧力設定設定ロジック11に入し 力され、最適な圧力設定11asVoが演算されて圧力
調節計8に供給される。
Maximum valve opening signal PvH selected by high selector and minimum valve opening signal PV selected by low selector
is inputted into the pressure setting logic 11, and the optimum pressure setting 11asVo is calculated and supplied to the pressure regulator 8.

第2図、第3図に基づいて圧力設定値決定ロジック11
の実施例と動作を説明する。
Pressure setting value determination logic 11 based on FIGS. 2 and 3
An example of this and its operation will be explained.

111は最小開度PvLを入力する第1 PID iJ
1節計であり、5VL=α+ε6%(ε:微小m)を設
定値として最小開度がSV  となるような圧力設定設
定り 個を操作出力MVLとして発信する。
111 is the first PID iJ for inputting the minimum opening degree PvL
It is a one-section meter, and a pressure setting value such that the minimum opening degree is SV is transmitted as a manipulated output MVL with a set value of 5VL=α+ε6% (ε: minute m).

+12は最大開度PV、を入力する第2PIDii11
節計であり、SV、 =β−と2%(E、:像小イ市)
を設定値として最大開度がSV  となるような圧力設
定値を操作出力MV  として発信する。
+12 is the maximum opening PV, input the second PIDii11
It is a savings measure, SV, = β- and 2% (E,: Ishikoi City)
A pressure setting value such that the maximum opening becomes SV is transmitted as the manipulated output MV.

+13は切換スイッチ手段であり、@位置ではSVo保
持、■位置ではMY  を選択してSVoとし、■位置
ではMV  を選択してSVoとして発信する。
+13 is a changeover switch means, which holds SVo in the @ position, selects MY and makes it SVo in the ■ position, and selects MV and transmits as SVo in the ■ position.

114はスイッチ切換シーケンス手段であり、第3図の
シーケンステーブルに従って切換スイッチ手段113の
切換位置を選択する。
114 is a switch changeover sequence means, which selects the changeover position of the changeover switch means 113 according to the sequence table shown in FIG.

まず、PV  >4時は、■位置が選択され、MV。First, when PV > 4 o'clock, ■ position is selected and MV.

がSVoとして供給される。これは、第4図において圧
力P2の場合の特性C2において、最大開度が8点の場
合であり、SVoが上昇制御されて圧力がP2となり、
特性がC2゛に移行して同一流量における最大開度がβ
−5%まで引き戻される。
is supplied as SVo. This is the case where the maximum opening degree is 8 points in characteristic C2 in the case of pressure P2 in FIG. 4, and SVo is controlled to increase and the pressure becomes P2,
The characteristics shift to C2゛, and the maximum opening degree at the same flow rate becomes β.
It will be pulled back to -5%.

PV  <αの時は、■位置が選択され、MV  がL
                         
                 LSVoとして供
給される。これは第4図において圧力P1の場合の特性
C1において、最小開度がb点の場合であり、SVoが
下降制御されて圧力がPlo となり、特性がC3゛に
移行して同一流量における最小開度がa+i%まで開か
れる。
When PV < α, position ■ is selected and MV is L

Supplied as LSVo. This is the case in Fig. 4 where the minimum opening is at point b in characteristic C1 for pressure P1, and SVo is controlled to decrease and the pressure becomes Plo, and the characteristic shifts to C3'' and the minimum opening at the same flow rate. degree is opened to a+i%.

ただし、ある流量制御弁の最大開度PV  >βでかつ
他の流量制御弁の最小開度PVL< ”の時、最大開度
PV4100%ならばスイッチはO位置を選り 択して圧力設定値SVoは現在値を維持して変更せず、
PV  =+00%のときは■を選択して最大値PV、
4100%となるまでSVoをMv、4により変更する
However, when the maximum opening PV of a certain flow control valve > β and the minimum opening PVL of another flow control valve <'', if the maximum opening PV is 4100%, the switch selects the O position and sets the pressure setting value SVo. maintains its current value and does not change it,
When PV = +00%, select ■ to set the maximum value PV,
Change SVo by Mv, 4 until it reaches 4100%.

当然のことながら、最大値、最小値がβ〜α%の範囲に
ある場合(PVH≦β、 PVL≧a)の場合は、■位
置を選択してSVoの変更は実行しない。
Naturally, if the maximum value and minimum value are in the range of β to α% (PVH≦β, PVL≧a), select position ① and do not change SVo.

上記実施例では、圧力調節計8の設定fltisVoは
頻繁な変更となる可能性があるので、第5図に示すよう
な機能を追加することができる。即ち複数の圧力設定値
P1. P2. P)・Pn(PI<P2<P3<・P
n)を設定器12により保持し、ロジック決定手段。
In the above embodiment, since the setting fltisVo of the pressure regulator 8 may change frequently, a function as shown in FIG. 5 can be added. That is, a plurality of pressure setting values P1. P2. P)・Pn(PI<P2<P3<・P
n) is held by the setting device 12 and is a logic determining means.

11からの圧力設定値P「により切換スイッチ13を駆
動して候補の1つを選択する。
11, the changeover switch 13 is driven to select one of the candidates.

このとき、切換点付近で設定値の切換が頻発しないよう
に、第6図に示すごときヒステリシスを持たせて切換え
ることが望ましい。
At this time, it is desirable to switch with hysteresis as shown in FIG. 6 so that setting values do not switch frequently near the switching point.

更に他の実施例とし、では、決定ロジック11内の第1
.第2iJ1節計として間欠積分形調節計を用いること
もできる。
In yet another embodiment, the first one in the decision logic 11
.. An intermittent integral type controller can also be used as the second iJ1 node.

(効果) 以上説明したように、本発明によれば、各枝管路の流量
制御弁をレンジアビリティ良の範囲に圧力制御すること
が可能となり、広い流量範囲においてレンジアビリティ
良の範囲で流FkIlI制御できる多管流量制御装置を
容易に実現することができる。
(Effects) As explained above, according to the present invention, it is possible to control the pressure of the flow rate control valve of each branch pipe within a range with good rangeability, and the flow rate FkIlI within a wide flow rate range with good rangeability. A controllable multi-tube flow control device can be easily realized.

【図面の簡単な説明】 第1図は本発明の実施例を示す構成図、第2図は主要部
である圧力設定値決定ロジックの実施例を示す構成図、
第3図はスイッチ手段の切換手順を示すシーケンステー
ブル、第4図は動作説明図、第5図、第6図は圧力設定
の他の実施例を示す構成図並びに切換特性図、第7図は
従来技術の一例を示す構成図である。 1・・・主管路、2.、22・・・枝管路、3.、32
・・・流量制御弁、4.、42・・・流量センサー、5
.、52・・・流量調節計、6・・・圧力センサー、7
・・・流量制御弁、8・・・圧力調節計、9・・・ハイ
セレクター、lO・・・ローセレクター、11・・・圧
力設定値決定ロジック。 第一、5図 t71&シーグンス ラーフフシ 第゛ 4ツ
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing an embodiment of the pressure setting value determination logic which is the main part,
Fig. 3 is a sequence table showing the switching procedure of the switch means, Fig. 4 is an explanatory diagram of operation, Figs. 5 and 6 are block diagrams and switching characteristic diagrams showing other embodiments of pressure setting, and Fig. 7 is FIG. 1 is a configuration diagram showing an example of a conventional technique. 1... Main pipe, 2. , 22...branch pipe, 3. , 32
...flow control valve, 4. , 42...flow rate sensor, 5
.. , 52...Flow rate controller, 6...Pressure sensor, 7
...Flow rate control valve, 8...Pressure regulator, 9...High selector, lO...Low selector, 11...Pressure set value determination logic. Figures 1 and 5 t71 & Signs Rafushi No. 4

Claims (1)

【特許請求の範囲】[Claims] 流量制御弁並びに流量調節計手段を各枝管路に有すると
共に、主管路に圧力調節手段が設けられた多管流量制御
装置において、上記各枝管の流量制御弁開度のうち最大
値を選択するハイセレクター手段と、同じく最小値を選
択するローセレクター手段と、上記最大値と最小値の範
囲が上記流量制御弁のレンジアビリティ良の範囲に入る
ように上記主管路の圧力調節手段の設定値を決定するロ
ジック手段とを具備せしめたことを特徴とする多管流量
制御装置。
In a multi-tube flow control device having a flow control valve and a flow rate regulator means in each branch pipe, and a pressure regulating means in the main pipe, the maximum value is selected from the flow control valve opening degree of each branch pipe. a high selector means to select the minimum value, a low selector means to select the minimum value, and a set value of the pressure regulating means for the main pipe so that the range of the maximum value and minimum value is within the range of good rangeability of the flow control valve. A multi-tube flow control device characterized by comprising logic means for determining.
JP2726388A 1988-02-08 1988-02-08 Multitubular flow controller Pending JPH01201708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2726388A JPH01201708A (en) 1988-02-08 1988-02-08 Multitubular flow controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2726388A JPH01201708A (en) 1988-02-08 1988-02-08 Multitubular flow controller

Publications (1)

Publication Number Publication Date
JPH01201708A true JPH01201708A (en) 1989-08-14

Family

ID=12216187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2726388A Pending JPH01201708A (en) 1988-02-08 1988-02-08 Multitubular flow controller

Country Status (1)

Country Link
JP (1) JPH01201708A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256983A (en) * 2001-03-02 2002-09-11 Mitsubishi Motors Corp Exhaust gas recirculating device
JPWO2008072614A1 (en) * 2006-12-12 2010-03-25 株式会社堀場エステック Flow rate ratio controller
JP2014142865A (en) * 2013-01-25 2014-08-07 Azbil Corp Device and method of cooperative operation
JP2014167728A (en) * 2013-02-28 2014-09-11 Ckd Corp Liquid supply control device and liquid supply system
JP2020013269A (en) * 2018-07-17 2020-01-23 株式会社堀場エステック Flow controller

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256983A (en) * 2001-03-02 2002-09-11 Mitsubishi Motors Corp Exhaust gas recirculating device
JPWO2008072614A1 (en) * 2006-12-12 2010-03-25 株式会社堀場エステック Flow rate ratio controller
JP4642115B2 (en) * 2006-12-12 2011-03-02 株式会社堀場エステック Flow rate ratio controller
US8019481B2 (en) 2006-12-12 2011-09-13 Horiba Stec, Co., Ltd. Flow rate ratio control device
JP2014142865A (en) * 2013-01-25 2014-08-07 Azbil Corp Device and method of cooperative operation
JP2014167728A (en) * 2013-02-28 2014-09-11 Ckd Corp Liquid supply control device and liquid supply system
JP2020013269A (en) * 2018-07-17 2020-01-23 株式会社堀場エステック Flow controller
US11340635B2 (en) 2018-07-17 2022-05-24 Horiba Stec, Co., Ltd. Flow rate control apparatus, flow rate control method, and program recording medium having recorded therein program for flow rate control apparatus

Similar Documents

Publication Publication Date Title
US9010369B2 (en) Flow rate range variable type flow rate control apparatus
WO2009141947A1 (en) Discontinuous switching flow control method of fluid using pressure type flow controller
Bugarski et al. Fuzzy decision support system for ship lock control
JP2000323464A (en) Apparatus and method for supplying gas for semiconductor manufacturing apparatus
DE69938368D1 (en) Flow control device with changeover depending on the fluid
US20160109886A1 (en) Flow rate range variable type flow rate control apparatus
JPH01201708A (en) Multitubular flow controller
Lefebvre et al. Decentralized variable structure control design for a two-pendulum system
AU2014204319B2 (en) System and method for generating a change in pressure proportional to fluid viscocity
JP2884209B2 (en) In-pipe status display method and device
JP3795699B2 (en) Flow distribution device
Froelich Dealing with seasonality while forecasting urban water demand
JP2002116824A (en) Method for controlling flow rate of fluid
SU1657115A1 (en) Heat supply system of greenhouse project
JPS58151614A (en) Flow rate control device
Spiliotis et al. Incorporating uncertainty in the design of water distribution systems
Yosefvand et al. Prediction of froude number of three phases flow in sewer systems using extreme learning machines
JPH06167202A (en) Extraction check valve operating device for steam turbine
Ferdiansyah et al. Water Distribution Control Using Arduino with Fuzzy Logic Algorithm Method: A Prototype Design
Savignac et al. Bumpless switching of two degree of freedom generic controller
JPS6042961B2 (en) Process control method automatic switching device
Kroll Grey-box models and their application to a steel mill
Ghare et al. DESIGNING IMC BASED PID CONTROLLER FOR FLOW AND LEVEL CASCADE CONTROL LOOP
Anuar et al. Implementation of Industrial Automation Water Distribution System Utilizing PLC: A Laboratory Setup
Tippetts Minimization of Power Consumption in Fluidic flow Control Circuits