JPH01201583A - Synthetic fiber for reinforcing polyvinyl chloride-based resin tile and production of said fiber - Google Patents

Synthetic fiber for reinforcing polyvinyl chloride-based resin tile and production of said fiber

Info

Publication number
JPH01201583A
JPH01201583A JP2298188A JP2298188A JPH01201583A JP H01201583 A JPH01201583 A JP H01201583A JP 2298188 A JP2298188 A JP 2298188A JP 2298188 A JP2298188 A JP 2298188A JP H01201583 A JPH01201583 A JP H01201583A
Authority
JP
Japan
Prior art keywords
fiber
tile
polyvinyl chloride
short fibers
specific volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2298188A
Other languages
Japanese (ja)
Inventor
Mutsuo Kazu
嘉津 睦夫
Nobuo Sakashita
坂下 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2298188A priority Critical patent/JPH01201583A/en
Publication of JPH01201583A publication Critical patent/JPH01201583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PURPOSE:To obtain the title reinforcing fiber effective as an alternative to asbestos, by assembling short fibers with each specified single fiber fineness and fiber length coated with a thermally adhesive resin, consisting of a thermoplastic polymer having a melting point at or higher than a specified temperature so as to become specified specific volume. CONSTITUTION:Undrawn yarns made of synthetic fiber consisting of a thermoplastic polymer with a melting point of >=250 deg.C (e.g., polyester) are drawn and coated with a thermoplastic resin (pref. water-dispersible polyester, polyurethane). The resultant drawn yarns are crimped if needed, then dried, heat set and assembled so as to become a tow of 3,000-70,000de with a single fiber fineness of 0.1-30de. The resulting tow is then cut into short fibers 1-20mm in length, which is then assembled so as to become 3-15cm<3>/g in its specific volume. The short fibers thus obtained is good in the dispersibility in a polyvinyl chloride-based resin, thus enabling polyvinyl chloride-based resin tiles with excellent surface smoothness and sufficiently high tile strength to be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリ塩化ビニール系樹脂タイル補強用合成繊維
及びその製造法に関し、更に詳しくは、アスヘストに代
替し得るポリ塩化ビニール系樹脂タイル補強用合成繊維
及びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a synthetic fiber for reinforcing polyvinyl chloride resin tiles and a method for producing the same, and more specifically, a synthetic fiber for reinforcing polyvinyl chloride resin tiles that can be substituted for ashest. Concerning synthetic fibers and their manufacturing methods.

(従来の技術) 従来、ポリ塩化ビニール系樹脂タイル(以下、塩ビタイ
ルと称することがある)は、主としてポリ塩化ビニール
系樹脂(以下、pvcと称することがある)と炭酸カル
シウムとから形成され更に補強材としてアスベストが配
合されている。
(Prior Art) Conventionally, polyvinyl chloride resin tiles (hereinafter sometimes referred to as PVC tiles) are mainly formed from polyvinyl chloride resin (hereinafter sometimes referred to as PVC) and calcium carbonate. Asbestos is added as a reinforcing material.

ところで、アスベストは、取扱者に珪肺が発生したり、
或いは発ガン性の疑いもあるため、労働衛生の観点から
その使用には、極めて大きな問題がある。
By the way, asbestos can cause silicosis in those who handle it,
Also, since it is suspected of being carcinogenic, there are extremely serious problems with its use from the standpoint of occupational health.

このため、特開昭60−155780号公報には、アス
ベストを全(使用することなく、特殊な炭酸カルシウム
と従来用いられている炭酸カルシウムとを併用した塩ビ
タイルが提案されているが、かかる塩ビタイルの強度は
補強材としてアスベストを用いた塩ビタイルよりも劣る
ものである。
For this reason, Japanese Patent Application Laid-Open No. 60-155780 proposes a PVC tile that uses a combination of special calcium carbonate and conventionally used calcium carbonate without using asbestos. The strength of PVC tiles is inferior to that of PVC tiles that use asbestos as a reinforcing material.

(発明が解決しようとする課題) 本発明者等は、この対策として、特公昭59−3467
3号公報において、コンクリート補強材としてアスベス
トに代替し得るとされているポリビニールアルコール短
繊維を、塩ビタイルの補強材として用いたところ、得ら
れる塩ビタイルは表面が凸凹で、しかも、低強度のもの
であった。
(Problem to be solved by the invention) As a countermeasure to this problem, the present inventors have proposed
In Publication No. 3, when polyvinyl alcohol short fibers, which are said to be able to replace asbestos as a concrete reinforcing material, were used as a reinforcing material for PVC tiles, the resulting PVC tiles had uneven surfaces and had low strength. It was something.

これは、塩ビタイルの成形工程において、PVC粉末、
炭酸カルシウム粉末、及び補強材を80〜180℃の高
温で混練するために、補強材として用いたポリビニール
アルコール短繊維が融着して団塊となったことに起因す
る。
In the PVC tile molding process, PVC powder,
This is because the calcium carbonate powder and the reinforcing material are kneaded at a high temperature of 80 to 180° C., so the short polyvinyl alcohol fibers used as the reinforcing material are fused and formed into a lump.

このため、本発明者等は、ポリビニールアルコール短繊
維よりも耐熱性が良好であるポリエステル短繊維を補強
材として用いてみたが、補強材同志の融着は解消される
ものの、依然として団塊となって補強効果を充分に発揮
できず、塩ビタイルの表面も平滑にすることができなか
った。
For this reason, the present inventors tried using polyester short fibers, which have better heat resistance than polyvinyl alcohol short fibers, as a reinforcing material, but although the fusion between the reinforcing materials was resolved, no lumps still formed. Therefore, the reinforcing effect could not be sufficiently exhibited, and the surface of the PVC tile could not be made smooth.

この様に、単に従来の合成繊維を塩ビタイルの補強材と
して用いてみても、充分に満足し得る塩ビタイルは得ら
れない。
As described above, even if conventional synthetic fibers are simply used as reinforcing materials for PVC tiles, fully satisfactory PVC tiles cannot be obtained.

本発明の目的は、高強度で且つ平滑な塩ビタイルが得ら
れる塩ビタイル補強用合成繊維及びその製造法を提供す
ることにある。
An object of the present invention is to provide a synthetic fiber for reinforcing a PVC tile and a method for producing the same, with which a high-strength and smooth PVC tile can be obtained.

(課題を解決するための手段) 本発明者等は、かかる目的を達成すべく種々検討したと
ころ、補強材として用いる合成繊維から成る短繊維(以
下単に短繊維と称することがある)の(比容積)がpv
c粉末及び炭酸カルシウム粉末に比較して著しく大きく
、混練工程で短繊維が炭酸カルシウム及びPVCに混合
され難いために団塊となることを知った。
(Means for Solving the Problems) The present inventors have conducted various studies to achieve the above object, and have found that short fibers (hereinafter sometimes simply referred to as short fibers) made of synthetic fibers used as reinforcing materials (comparable to volume) is pv
It was found that short fibers were significantly larger than C powder and calcium carbonate powder, and it was difficult for short fibers to be mixed with calcium carbonate and PVC during the kneading process, resulting in lumps.

そこで、本発明者等は、短繊維の混練工程における混合
を容易にすべく検討した結果、混練工程に供給する短繊
維を一旦束状に集束せしめることによって、混練工程で
短繊維が容易に混合され、均一に分散されることを見い
出し、本発明に到達した。
Therefore, the present inventors investigated ways to facilitate the mixing of short fibers in the kneading process, and found that by once converging the short fibers supplied to the kneading process into a bundle, the short fibers can be easily mixed in the kneading process. The present invention was achieved by discovering that the present invention can be dispersed uniformly.

即ち、本発明は、融点が250℃以上の熱可塑性重合体
から成り、単糸繊度が0.1〜30de、繊維長が1〜
20鳳−であり、かつ熱接着性樹脂が付与されている短
繊維を、比容積が3〜15cm3/gとなるように束状
に集束したことを特徴とするポリ塩化ビニール系樹脂タ
イル補強用合成繊維及び融点が250℃以上の熱可塑性
重合体から成る合成繊維末延伸糸を延伸し、熱接着性樹
脂を付与して、乾燥、熱固定を行い、単糸繊度が0.1
〜30de、 hつ幅10当たりの繊度が30.000
〜?0.000deのトウとなるように集束した後、繊
維長1〜20鶴の短繊維に切断することを特徴とするポ
リ塩化ビニール系樹脂タイル補強用合成繊維の製造法で
ある。
That is, the present invention is made of a thermoplastic polymer having a melting point of 250° C. or higher, a single fiber fineness of 0.1 to 30 de, and a fiber length of 1 to 30 de.
Polyvinyl chloride-based resin for reinforcing tiles, characterized by short fibers having a specific volume of 3 to 15 cm3/g and having a specific volume of 3 to 15 cm3/g. A synthetic fiber end drawn yarn made of synthetic fiber and a thermoplastic polymer with a melting point of 250°C or higher is drawn, a thermoadhesive resin is applied, and the yarn is dried and heat-fixed to have a single yarn fineness of 0.1.
~30de, fineness per width 10 is 30.000
~? This is a method for producing a polyvinyl chloride resin tile reinforcing synthetic fiber, which is characterized in that it is bundled into a tow of 0.000 de, and then cut into short fibers with a fiber length of 1 to 20 deg.

本発明の合成繊維は、融点が250℃以上の熱可塑性重
合体で形成されていることが必要である。
The synthetic fiber of the present invention needs to be made of a thermoplastic polymer having a melting point of 250° C. or higher.

融点の低いポリエチレン(融点125〜135℃)、ポ
リプロピレン(融点165〜173℃)、ナイロン6 
(215〜220℃)などから成る合成繊維を用いると
、タイル原料混練工程で80〜180℃の温度を受ける
ため、繊維が固着して団塊となり、タイル欠点の原因と
なる。融点が250℃以上の熱可塑性重合体としては、
比較的低コストのポリエステル、特にポリエチレンテレ
タートが好適である。
Low melting point polyethylene (melting point 125-135°C), polypropylene (melting point 165-173°C), nylon 6
(215-220°C), etc., is exposed to temperatures of 80-180°C during the tile raw material kneading process, which causes the fibers to stick and form clumps, causing tile defects. Thermoplastic polymers with a melting point of 250°C or higher include:
Relatively low cost polyesters, especially polyethylene teretate, are preferred.

また、本発明の合成繊維は、単糸繊度が0.1〜30d
e、繊維長が1〜20鶴の短繊維で構成されていること
が必要である。単糸繊度が30デニールを越えると、合
成繊維混率の低い領域(3重量部以下)でのタイル補強
効果が不充分となり、また、0゜1デニ一ル未満の場合
は、タイル中の繊維の分散が、不良となり、タイルの凸
凹欠点の原因となるとともに、充分な補強効果が得られ
ない。一方、繊維長が20鶴を越えると、原料混練中に
繊維が絡んで、タイル凸凹欠点が発生し、また繊維長が
l am未満では充分なタイルの補強効果が得られない
Furthermore, the synthetic fiber of the present invention has a single yarn fineness of 0.1 to 30 d.
e. It must be composed of short fibers with a fiber length of 1 to 20. If the single yarn fineness exceeds 30 denier, the tile reinforcing effect will be insufficient in areas where the synthetic fiber blend ratio is low (3 parts by weight or less), and if it is less than 0.1 denier, the fibers in the tile will not be strong enough. The dispersion becomes poor, causing uneven defects in the tiles, and a sufficient reinforcing effect cannot be obtained. On the other hand, if the fiber length exceeds 20 tsuru, the fibers become entangled during the raw material kneading process, resulting in uneven tile defects, and if the fiber length is less than 100 ml, a sufficient tile reinforcing effect cannot be obtained.

更に、本願発明の合成繊維は、上記短繊維に熱接着性樹
脂を付与して、比容積が3〜15cm3/gとなるよう
に、束状に集束されていることが必要である。比容積が
15aa/gを越えると、原料混練工程で、繊維の他原
料中への混合及び、分散が不充分となり、タイル凸凹欠
点の原因となる。一方、比容積が3 aj / g未満
になるまで繊維を固着、集束させると混練工程での繊維
の分散が不充分となり、タイル凸凹欠点の原因となり、
又充分な補強効果も得られない。尚、ここで、比容積は
、横断面積が400CO1”の円筒容器に400gの試
料繊維を入れ、その上から330gの荷重をかけた時の
試料繊維の高さを測定することによって算出される。
Furthermore, the synthetic fibers of the present invention need to be bundled into a bundle so that the short fibers have a heat-adhesive resin and have a specific volume of 3 to 15 cm<3>/g. If the specific volume exceeds 15 aa/g, the fibers will not be sufficiently mixed and dispersed into other raw materials during the raw material kneading process, resulting in uneven tile defects. On the other hand, if the fibers are fixed and bunched until the specific volume is less than 3 aj/g, the fibers will not be sufficiently dispersed during the kneading process, causing uneven tile defects.
Moreover, a sufficient reinforcing effect cannot be obtained. Here, the specific volume is calculated by placing 400 g of sample fiber in a cylindrical container with a cross-sectional area of 400 CO1'' and measuring the height of the sample fiber when a load of 330 g is applied from above.

本発明において用いられる熱接着性樹脂は、繊維を集束
させる機能を有するものであれば、特に限定されないが
、タイルの性能から判断して、水分散性ポリエステル樹
脂(融点80〜240℃)を主成分とするものが好適で
ある。
The thermoadhesive resin used in the present invention is not particularly limited as long as it has the function of converging fibers, but judging from the performance of the tile, water-dispersible polyester resin (melting point 80 to 240°C) is mainly used. It is preferable to use it as a component.

本発明の合成繊維が補強材として適用されるポリ塩化ビ
ニール系樹脂タイルは、全体量の20重量部以下のポリ
塩化ビニール樹脂に可塑剤をふくませ、炭酸カルシウム
などの増量剤で増量を行い、タイル製造工程中の加工性
を高めるための粘結剤を添加したもので、その他に安定
剤、着色剤等が含まれる。本発明の合成繊維のタイルの
混率は、通常0.5〜20重量部が適当である。
The polyvinyl chloride resin tile to which the synthetic fiber of the present invention is applied as a reinforcing material is obtained by adding a plasticizer to the polyvinyl chloride resin in an amount of 20 parts by weight or less based on the total amount, and increasing the amount with an extender such as calcium carbonate. A binder is added to improve workability during the tile manufacturing process, and it also contains stabilizers, colorants, etc. The mixing ratio of the synthetic fiber tile of the present invention is usually 0.5 to 20 parts by weight.

かかる本発明の合成繊維を製造するには、ポリエステル
の如き、融点が250℃以上の熱可塑性重合体からな成
る合成繊維末延伸糸を延伸し、熱接着性樹脂を付与して
、必要に応じて捲縮を付与し、乾燥、熱固定を行い、単
糸繊度が0.1〜30de、トウ幅1cm当たりの繊度
が30.000〜?0.0OOde(7) ) ’7と
なるように集束した後、繊維長1〜20+uの短繊維に
切断すればよい。
In order to produce such synthetic fibers of the present invention, drawn synthetic fiber ends made of a thermoplastic polymer having a melting point of 250° C. or higher, such as polyester, are drawn, a thermoadhesive resin is applied, and if necessary, After crimping, drying and heat setting, the single yarn fineness is 0.1 to 30 de, and the fineness per 1 cm of tow width is 30.000 to 30. After converging to a fiber length of 0.0OOde(7)'7, the fibers may be cut into short fibers having a fiber length of 1 to 20+u.

得られる合成繊維の比容積を15cm/g以下とするに
は、熱接着性樹脂を付与して、トウ幅1a11当たりの
繊度が70.0OOde以下のトウとなるように集束す
る必要があり、また比容積を3 cm3 / g以上と
するには、トウ幅1(3当たりの繊度が30,000 
de以下となるように集束する必要がある。
In order to make the specific volume of the resulting synthetic fibers 15 cm/g or less, it is necessary to apply a thermoadhesive resin and bundle the fibers into tows with a fineness of 70.0 OOde or less per tow width 1a11, and In order to make the specific volume 3 cm3 / g or more, the tow width 1 (the fineness per 3 is 30,000
It is necessary to focus the light so that it is less than or equal to de.

合成繊維の比容積を3〜15cnf/gとするには、熱
接着性樹脂の付着量、熱接着性樹脂の種類、単糸繊度な
どを適当に選択すればよい。熱接着性樹脂の付着量を制
御するには、熱接着性樹脂浴中に浸漬したトウを、乾燥
、熱固定する前に、一対の絞りローラに通して、所望の
付着量となるように絞ればよい。この場合、絞りローラ
幅1c11当りの゛トウ繊度を、25.000〜60.
000deとなるように調整するのが望ましい。
In order to set the specific volume of the synthetic fiber to 3 to 15 cnf/g, the amount of the thermally adhesive resin adhered, the type of the thermally adhesive resin, the fineness of the single fibers, etc. may be appropriately selected. To control the amount of heat-adhesive resin deposited, the tow immersed in a heat-adhesive resin bath is passed through a pair of squeezing rollers and squeezed to the desired amount before drying and heat-setting. Bye. In this case, the tow fineness per squeeze roller width 1c11 is 25.000 to 60.
It is desirable to adjust it so that it becomes 000de.

(実施例) 以下、実施例、比較例により本発明を更に詳細に説明す
る。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

尚、以下の実施例、比較例において、ポリ塩化ビニール
タイルの作製並びにタイル表面平滑性及び強度の判定は
、次のようにして行った。
In the following Examples and Comparative Examples, the production of polyvinyl chloride tiles and the determination of tile surface smoothness and strength were performed as follows.

(イ)ポリ塩化ビニールタイルの作製性下記配合物を小
型試験ロールで5分間、80〜180℃で混練した後、
厚さ2鳳爲に調整して、30■X30cmのタイル片と
して取りだした。
(a) Production of polyvinyl chloride tiles After kneading the following composition with a small test roll for 5 minutes at 80 to 180°C,
The thickness was adjusted to 2 mm and taken out as a 30cm x 30cm tile piece.

配合 ポリ塩化ビニール   13重量部 重質炭酸カルシウム  78重量部 DHP         4重量部 粘結剤        5重量部 合成繊維       1重量部 (ロ)タイル表面平滑性の判定 タイル片(30cm X 30cm)の表面を目視で観
察し凸欠点の個数をカウントして下記基準で採点した。
Compounded polyvinyl chloride 13 parts by weight Heavy calcium carbonate 78 parts by weight DHP 4 parts by weight Binder 5 parts by weight Synthetic fiber 1 part by weight (b) Judgment of tile surface smoothness Visually inspect the surface of a tile piece (30 cm x 30 cm) The number of convex defects was observed and scored according to the following criteria.

1 個以下/ 30aa X 30cm  :  52
〜3個 / 30c!l X 30(IJ  :  4
4〜10個 / 30cm x 3Qcm  :  3
11〜20個 / 30cm X 30cm  :  
221個以上/ 30cn x 30cm  :  1
(ハ)タイル強度の判定 3°Cに調整された恒温室で、床に水平においた上記試
験タイル片上に50gの鉄球を1.5 mの高さから落
として、クランクの発生状態を観察し、大きなりラック
が生じたものを1、全くクラックが生じなかったものを
10として、1〜10に等綴付けした。
1 piece or less / 30aa x 30cm: 52
~3 pieces / 30c! l x 30 (IJ: 4
4-10 pieces / 30cm x 3Qcm: 3
11-20 pieces / 30cm x 30cm:
221 or more / 30cn x 30cm: 1
(c) Judgment of tile strength In a constant temperature room adjusted to 3°C, drop a 50g iron ball from a height of 1.5m onto the above test tile piece placed horizontally on the floor, and observe the occurrence of cranking. The samples were numbered from 1 to 10, with 1 being a large crack and 10 being no crack at all.

実施例1−15、比較例1〜8 第1表に示した各種合成繊維の複数の未延伸ザブトつを
引揃えて延伸した後2.該延伸トウを第1表に示す熱接
着性樹脂の水分散液(濃度3重量96)に浸漬走行させ
、次いで一対の絞りローラで樹脂付着量を制御した。こ
の場合絞りローラを通過する際のトウの厚さは、40 
、000de / ca+、熱固定後のトウの繊度は4
0.000〜50.0OOde/ Cl11であった。
Examples 1-15, Comparative Examples 1-8 After aligning and stretching a plurality of unstretched fibers of various synthetic fibers shown in Table 1, 2. The stretched tow was run while immersed in an aqueous dispersion of a heat-adhesive resin shown in Table 1 (concentration 3 weight 96), and then the amount of resin adhesion was controlled with a pair of squeezing rollers. In this case, the thickness of the tow when passing through the squeezing roller is 40
, 000de/ca+, the fineness of tow after heat setting is 4
It was 0.000-50.0OOde/Cl11.

絞りローラを通過したトウは、乾燥、熱固定後、所定の
長さに切断した。単糸繊度及び繊維長は、第1表に示す
ように変更した。
The tow that passed through the squeezing roller was dried, heat-set, and then cut into a predetermined length. The single yarn fineness and fiber length were changed as shown in Table 1.

また、比較例1は、合成繊維を使用−Uず、従来のアス
ベストを配合したもので、タイルへのアスベスト配合量
は2重量部であった。
Furthermore, in Comparative Example 1, conventional asbestos was blended without using synthetic fibers, and the amount of asbestos blended into the tile was 2 parts by weight.

結果は第1表に示す通りであり、この表から明らかなよ
うに、本発明の合成繊維を使用したポリ塩化ビニールタ
イル(実施例1〜15)は、表面平滑性に優れ、繊維配
合量をアスベストの1/2に減らしても、従来のアスベ
ス斗を使用したタイル(比較例1)に比較し、同等もし
くはそれ以上のタイル強度が得られなかった。
The results are shown in Table 1, and as is clear from this table, the polyvinyl chloride tiles (Examples 1 to 15) using the synthetic fibers of the present invention had excellent surface smoothness, and the fiber content was reduced. Even when the asbestos was reduced to 1/2, the same or higher tile strength could not be obtained compared to the tile using conventional asbestos (Comparative Example 1).

これに対して、単糸繊度が30デニールを越えた場合(
比較例2)及び繊維長がl am未満の場合(比較例3
)はタイル強度が不充分であった。
On the other hand, when the single yarn fineness exceeds 30 denier (
Comparative Example 2) and when the fiber length is less than lam (Comparative Example 3)
) had insufficient tile strength.

合成繊維の種類として融点ガ250℃以下の繊維を使用
した場合(比較例7,8)は混練時に受ける熱のため軟
化もしくは溶融によると思われる分散不良が発生し、タ
イル表面平滑性が不良となり、タイル強度が従来のアス
ベストタイル(比較例1)よりも低かった。
When synthetic fibers with a melting point of 250°C or lower are used (Comparative Examples 7 and 8), poor dispersion occurs, likely due to softening or melting due to the heat received during kneading, resulting in poor tile surface smoothness. , the tile strength was lower than that of the conventional asbestos tile (Comparative Example 1).

又、繊維長が20m−を越えた場合(比較例4)は繊維
の絡みによる凸欠点が発生し、同時に分散不良によるタ
イル強度低下が認められた。
Furthermore, when the fiber length exceeded 20 m (Comparative Example 4), convex defects occurred due to fiber entanglement, and at the same time, a decrease in tile strength was observed due to poor dispersion.

熱接着性樹脂の種類として水分散性ポリエステル(実施
例1〜9.12〜14)、ポリウレタン(実施例10)
及び、エチレン・酢酸ビニル共重合体(実施例11)を
適量付着させた原綿を使用したものは原綿の比容積が低
く、原料中への分散が良好なため、良好な表面平滑性と
充分なタイル強力が得られたが、高密度ポリエチレン(
比較例5)を使用したものは比容積が高いため分散不良
となり、平滑性、タイル強度とも不良となった。
Water-dispersible polyester (Examples 1 to 9.12 to 14) and polyurethane (Example 10) as types of thermoadhesive resin
In addition, the raw cotton coated with an appropriate amount of ethylene/vinyl acetate copolymer (Example 11) has a low specific volume and is well dispersed in the raw material, resulting in good surface smoothness and sufficient surface smoothness. Tile strength was obtained, but high-density polyethylene (
In the case of using Comparative Example 5), the specific volume was high, resulting in poor dispersion, and both smoothness and tile strength were poor.

熱接着性樹脂の付着量を変更して、原綿の比容積を変化
させた所、付着量が多く、比容積が3−7gになった場
合(実施例12)でもアスベストを使用したもの(比較
例1)と同等の性能が得られた。又、熱接着性樹脂の付
着量が少な過ぎて、比容積が15cd/gを越えた場合
(比較例6)は、他原料との比容積の差が大きくなって
、分散不良となり、表面平滑性が劣り、タイル強度も低
かった。
When the specific volume of the raw cotton was changed by changing the amount of heat-adhesive resin adhered, the amount of adhesion was large and the specific volume was 3-7 g (Example 12), but even when asbestos was used (comparison) Performance equivalent to Example 1) was obtained. In addition, if the amount of heat-adhesive resin deposited is too small and the specific volume exceeds 15 cd/g (Comparative Example 6), the difference in specific volume with other raw materials becomes large, resulting in poor dispersion and a smooth surface. The properties of the tiles were poor, and the tile strength was also low.

(本頁、以下余白) 実施例16.1?、比較例9,10 実施例2において、絞りローラを通過する際のトウの厚
さを変更して、熱固定後のトウ幅11当たりの繊度を第
2表に示すように種々変更した。
(This page, below margin) Example 16.1? , Comparative Examples 9 and 10 In Example 2, the thickness of the tow when passing through the squeezing roller was changed, and the fineness per tow width 11 after heat setting was variously changed as shown in Table 2.

結果は、第2表に示す通りであり、熱固定後のトウの繊
度(トウ幅1cIII当たり)が30.000〜70.
000deである場合(実施例16.17)はタイル表
面平滑性及びタイル強度のいずれも良好な結果が得られ
たが、30.000de未溝の場合(比較例9)は原綿
の比容積が高過ぎるため、タイル製造時の分散不良とな
り、表面平滑性及びタイル強度が不充分であった。また
70.000deを越える場合(比較例10)は、単繊
維間の集束力が強ずぎるため、比容積が低く、タイル製
造の混練工程での単繊維単位の分散が困難となり、タイ
ル表面平滑性及び、タイル強度が不充分となった。
The results are shown in Table 2, and the fineness of the tow after heat setting (per 1 cIII of tow width) was 30.000 to 70.00.
000 de (Examples 16 and 17), good results were obtained for both tile surface smoothness and tile strength, but in the case of 30.000 de and no grooves (Comparative Example 9), the specific volume of raw cotton was high. This resulted in poor dispersion during tile production, resulting in insufficient surface smoothness and tile strength. In addition, when it exceeds 70.000 de (Comparative Example 10), the binding force between the single fibers is too strong, resulting in a low specific volume, making it difficult to disperse the single fiber units in the kneading process of tile manufacturing, and making the tile surface smooth. The properties and tile strength were insufficient.

(本頁、以下余白) (発明の効果) 本発明の塩ビタイル補強用合成繊維によれば、アスベス
トを使用しないので、労働衛生上の問題がなく、しかも
アスベストを用いた塩ビタイルと同等乃至それ以上の性
能(タイル表面平滑性、タイル強度)を有する塩ビタイ
ルを得ることができる。
(This page, blank spaces below) (Effects of the invention) Since the synthetic fiber for reinforcing PVC tiles of the present invention does not use asbestos, there is no problem in terms of occupational health, and it is equivalent to or even better than PVC tiles using asbestos. A PVC tile having the above performance (tile surface smoothness, tile strength) can be obtained.

Claims (1)

【特許請求の範囲】 1、融点が250℃以上の熱可塑性重合体から成り、単
糸繊度が0.1〜30de、繊維長が1〜20mmであ
り、かつ熱接着性樹脂が付与されている短繊維を、比容
積が3〜15cm^3/gとなるように束状に集束した
ことを特徴とするポリ塩化ビニール系樹脂タイル補強用
合成繊維。 2、融点が250℃以上の熱可塑性重合体から成る合成
繊維末延伸糸を延伸し、熱接着性樹脂を付与して、乾燥
、熱固定を行い、単糸繊度が0.1〜30de、トウ幅
1cm当たりの繊度が30,000〜70,000のト
ウとなるように集束した後、繊維長1〜20mmの短繊
維に切断することを特徴とするポリ塩化ビニール系樹脂
タイル補強用合成繊維の製造法。
[Claims] 1. It is made of a thermoplastic polymer with a melting point of 250°C or higher, has a single filament fineness of 0.1 to 30 de, a fiber length of 1 to 20 mm, and is provided with a thermoadhesive resin. A synthetic fiber for reinforcing polyvinyl chloride resin tiles, characterized by short fibers bundled into bundles with a specific volume of 3 to 15 cm^3/g. 2. A synthetic fiber end drawn yarn made of a thermoplastic polymer with a melting point of 250°C or higher is drawn, a thermoadhesive resin is applied, and the yarn is dried and heat-set to produce a yarn with a single yarn fineness of 0.1 to 30 de and a tow. A synthetic fiber for reinforcing polyvinyl chloride resin tiles, which is bundled into tows with a fineness of 30,000 to 70,000 per 1 cm width, and then cut into short fibers with a fiber length of 1 to 20 mm. Manufacturing method.
JP2298188A 1988-02-02 1988-02-02 Synthetic fiber for reinforcing polyvinyl chloride-based resin tile and production of said fiber Pending JPH01201583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2298188A JPH01201583A (en) 1988-02-02 1988-02-02 Synthetic fiber for reinforcing polyvinyl chloride-based resin tile and production of said fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2298188A JPH01201583A (en) 1988-02-02 1988-02-02 Synthetic fiber for reinforcing polyvinyl chloride-based resin tile and production of said fiber

Publications (1)

Publication Number Publication Date
JPH01201583A true JPH01201583A (en) 1989-08-14

Family

ID=12097727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2298188A Pending JPH01201583A (en) 1988-02-02 1988-02-02 Synthetic fiber for reinforcing polyvinyl chloride-based resin tile and production of said fiber

Country Status (1)

Country Link
JP (1) JPH01201583A (en)

Similar Documents

Publication Publication Date Title
US4420534A (en) Conductive composite filaments and methods for producing said composite filaments
US4457973A (en) Conductive composite filaments and methods for producing said composite filaments
US4323626A (en) Heat-adhesive composite fibers
CA2370140C (en) Tapered brush bristles with clay or silica additive and brushes made therefrom
DE3315360C2 (en) Melt-adhesive fibers made from polyethylene and their use in composite fibers
CN1157642A (en) Wettable polyolefin fiber compositions and its preparing method
JPH01321916A (en) Two-component fiber
CN1105201C (en) Cardable blends of dual glass fibers
NO154345B (en) ANALOGY PROCEDURE FOR PREPARING CARDIOTONIC ACTIVITY 5- (PYRIDINYL) -2 (1H) -PYRIDINONES.
EP0311860B1 (en) Nonwoven fabric made of heat bondable fibers
EP3382069A1 (en) Manufacture of bi-component continuous filaments and articles made therefrom
JP2819186B2 (en) Aromatic polyamide short fiber for reinforcing thermoplastic resin, method for producing the same, and thermoplastic resin composition reinforced with the fiber
JPH01201583A (en) Synthetic fiber for reinforcing polyvinyl chloride-based resin tile and production of said fiber
DE602004009450T9 (en) METHOD FOR PRODUCING A FUNCTIONALIZED POLYOLEFIN, FUNCTIONALIZED POLYOLEFIN, TWO-COMPONENT FIBER, NONWOVEN FABRIC AND HYGIENIC ABSORPTION PRODUCT
JP3600928B2 (en) Polyvinyl chloride fiber and method for producing the same
Bajaj et al. Modification of acrylic fibres for specific end uses
JP2001348725A (en) Water-repellent fiber and water-repellent fiber sheet prepared by using the same
JP2000064116A (en) Fiber for reinforcing concrete
JP4199242B2 (en) Pile yarn and dust control mop for dust control mop
JPH0197207A (en) Special monofilament made of synthetic resin and production thereof
CA2499237A1 (en) Polyolefin fibres and their use in the preparation of nonwovens with high bulk and resilience
CN110067039A (en) A kind of novel styrene block copolymer mixture elastomer and its manufacturing method
JP4031435B2 (en) Polyester binder fiber for papermaking
CN112251843B (en) Colored high-strength high-modulus polyarylate fiber and preparation method thereof
JPH04263637A (en) Spun yarn for summer sweater