JPH01201385A - Method of bonding fiber-reinforced plastic - Google Patents
Method of bonding fiber-reinforced plasticInfo
- Publication number
- JPH01201385A JPH01201385A JP63024020A JP2402088A JPH01201385A JP H01201385 A JPH01201385 A JP H01201385A JP 63024020 A JP63024020 A JP 63024020A JP 2402088 A JP2402088 A JP 2402088A JP H01201385 A JPH01201385 A JP H01201385A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- bonding
- adhesive
- reinforced plastic
- reinforced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920002430 Fibre-reinforced plastic Polymers 0.000 title claims abstract description 28
- 239000011151 fibre-reinforced plastic Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 14
- 239000000853 adhesive Substances 0.000 claims abstract description 26
- 230000001070 adhesive effect Effects 0.000 claims abstract description 26
- 238000011282 treatment Methods 0.000 claims description 8
- 239000012783 reinforcing fiber Substances 0.000 abstract description 20
- 239000012790 adhesive layer Substances 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 10
- 229920003023 plastic Polymers 0.000 abstract description 7
- 239000004033 plastic Substances 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000835 fiber Substances 0.000 description 9
- 239000003822 epoxy resin Substances 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 8
- 229920000647 polyepoxide Polymers 0.000 description 8
- 238000009864 tensile test Methods 0.000 description 6
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000012784 inorganic fiber Substances 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/02—Preparation of the material, in the area to be joined, prior to joining or welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
- B29C65/4805—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
- B29C65/483—Reactive adhesives, e.g. chemically curing adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C2791/00—Shaping characteristics in general
- B29C2791/004—Shaping under special conditions
- B29C2791/009—Using laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
- B29C66/7212—Fibre-reinforced materials characterised by the composition of the fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
- B29C66/7214—Fibre-reinforced materials characterised by the length of the fibres
- B29C66/72141—Fibres of continuous length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/72—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
- B29C66/721—Fibre-reinforced materials
- B29C66/7214—Fibre-reinforced materials characterised by the length of the fibres
- B29C66/72143—Fibres of discontinuous lengths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7394—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/06—Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、繊維強化プラスチックを接着剤により強固に
接着するための改良方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an improved method for firmly bonding fiber-reinforced plastics with an adhesive.
従来の技術
繊維強化プラスチック、特にガラス繊維、炭素繊維、金
属繊維などの無機繊維による強化プラスチックは、その
素材のプラスチックに比べて、耐熱性、機械的強度が優
れているために板、管、ロッド、機械部品などの成形材
料として広く用いられている。Conventional technology Fiber-reinforced plastics, especially plastics reinforced with inorganic fibers such as glass fibers, carbon fibers, and metal fibers, have superior heat resistance and mechanical strength compared to the plastics they are made from, so they are used in plates, tubes, and rods. It is widely used as a molding material for machine parts, etc.
ところで、この繊維強化プラスチックの成形体を機械部
品、各種器具、積層体などに二次加工するに際し、しば
しば接着剤による接着を必要とすることがあるが、この
繊維強化プラスチック成形体を接着する場合、一般にそ
の接合面を平滑に仕上げ、かつ清浄化することが行われ
ている。By the way, when secondary processing this fiber-reinforced plastic molded product into mechanical parts, various appliances, laminates, etc., bonding with an adhesive is often required. Generally, the joint surfaces are finished smooth and cleaned.
しかしながら、このような状態で接着を行うと、被接着
体は全体にわたって繊維で強化されているにかかわらず
被接着体表面と接着剤層との間には繊維が存在せず、単
に接着剤と被接着体表面との間の接合力と、接着剤の層
が収縮することにより生じる変形拘束力のみによって結
合しているため、その強度は被接着体に比べかなり低下
するのを免れない。However, when bonding is performed in such a state, there are no fibers between the surface of the bonded object and the adhesive layer, even though the bonded object is reinforced with fibers throughout, and the adhesive layer is simply Since it is bonded only by the bonding force with the surface of the object to be adhered and the deformation restraint force generated by the shrinkage of the adhesive layer, its strength is inevitably considerably lower than that of the object to be adhered.
発明が解決しようとする課題
本発明は、このような従来の繊維強化プラスチックの接
着方法における欠点を克服し、繊維強化プラスチック表
面同士又は繊維強化プラスチック表面と他の物体表面と
を強固に接着するための改良方法を提供することを目的
としてなされt;ものである。Problems to be Solved by the Invention The present invention overcomes the drawbacks of such conventional bonding methods for fiber-reinforced plastics, and provides a method for firmly bonding fiber-reinforced plastic surfaces to each other or to the surface of another object. This was done with the purpose of providing an improved method for.
課題を解決するための手段
本発明者らは、繊維強化プラスチックの接着方法につい
て種々研究を重ねた結果、繊維強化プラスチックにレー
ザーを照射すると、基材プラスチックと、強化繊維との
間にレーザーエネルギーの吸収率の差があるため、前者
か優先的に蒸発し、後者が露出した状態になること、し
たがってこの上に接着剤層を設けると、被接着体表面と
接着剤層との間に露出した強化繊維によるアンカー効果
を生じることを見出し、この知見に基づいて本発明をな
すに至った。Means for Solving the Problems The present inventors have conducted various studies on bonding methods for fiber-reinforced plastics, and have found that when fiber-reinforced plastics are irradiated with a laser, laser energy is transferred between the base plastic and the reinforcing fibers. Because of the difference in absorption rate, the former will preferentially evaporate, leaving the latter exposed. Therefore, if an adhesive layer is placed on top of this, the exposed evaporation will occur between the surface of the adherend and the adhesive layer. It was discovered that the reinforcing fibers produce an anchor effect, and the present invention was developed based on this finding.
すなわち、本発明は、接着剤を用いて繊維強化プラスチ
ック成形体を接着するに当り、その接合面にあらかじめ
レーザー照射処理を施すことを特徴とする繊維強化プラ
スチックの接着方法を提供するものである。That is, the present invention provides a method for bonding fiber-reinforced plastics, which is characterized in that, when bonding fiber-reinforced plastic molded bodies using an adhesive, the bonded surfaces are subjected to laser irradiation treatment in advance.
本発明方法において被接着体となる繊維強化プラスチッ
ク成形体は、熱硬化性樹脂を基材とするもの、いわゆる
FRP及び熱可塑性樹脂を基材とするもの、いわゆるF
RPTのいずれでもよい。In the method of the present invention, the fiber-reinforced plastic molded bodies to be adhered are those based on thermosetting resin, so-called FRP, and those based on thermoplastic resin, so-called FRP.
Either RPT may be used.
この熱硬化性樹脂基材の例としては、エポキシ樹脂、不
飽和ポリエステル樹脂、フェノール樹脂、尿素樹脂、メ
ラミン樹脂、アルキド樹脂を、また熱可塑性樹脂基材の
例としては、ポリアミド、ポリカーボネート、ポリアセ
タール、ABS樹脂、AS樹脂、ポリプロピレン、高密
度ポリエチレン、ポリエステルをそれぞれ挙げることが
できる。Examples of the thermosetting resin base material include epoxy resin, unsaturated polyester resin, phenol resin, urea resin, melamine resin, and alkyd resin, and examples of the thermoplastic resin base material include polyamide, polycarbonate, polyacetal, Examples include ABS resin, AS resin, polypropylene, high density polyethylene, and polyester.
次に、この基材中に含有させる強化繊維としては、例え
ばガラス繊維、炭素繊維、金属繊維、セラミンク繊維の
ような無機繊維やアラミド繊維、ポリオキシメチレンホ
イスカーのような有機繊維のいずれをも使用しうるが、
レーザーエネルギーの吸収率の差による露出を容易に行
いうるという点で無機繊維を用いたものの方が好ましい
。これらの強化繊維は、長繊維状、短繊維状、撚糸状、
カーリング加工糸状、編布状、織布状など任意の形状で
基材と複合させることができる。Next, as reinforcing fibers to be contained in this base material, for example, inorganic fibers such as glass fibers, carbon fibers, metal fibers, and ceramic fibers, and organic fibers such as aramid fibers and polyoxymethylene whiskers can be used. I can do it, but
It is preferable to use inorganic fibers because exposure can be easily carried out based on the difference in absorption rate of laser energy. These reinforcing fibers are long fibers, short fibers, twisted fibers,
It can be composited with a base material in any shape such as curled thread, knitted fabric, or woven fabric.
本発明方法における被接着体としては、これら繊維強化
プラスチック中の強化繊維含有率、基材中に含まれる添
加剤の種類などには制限はなく、これまで一般に使用さ
れている繊維強化プラスチックのいずれに対しても適用
することができる。The object to be adhered in the method of the present invention is not limited to the content of reinforcing fibers in these fiber-reinforced plastics or the types of additives contained in the base material, and any of the fiber-reinforced plastics commonly used up to now can be used. It can also be applied to
また、この繊維強化プラスチックの成形体の形状につい
ても特に制限はなく、接着面を平滑にしうるものであれ
ば、板状、管状、ロンド状、異形状などどのようなもの
でもよい。Further, there is no particular restriction on the shape of this fiber-reinforced plastic molded article, and it may be of any shape, such as a plate, a tube, a rond, or an irregular shape, as long as the bonding surface can be made smooth.
他方、この繊維強化プラスチック成形体を接着するため
の接着剤についても、特に制限はなく、これまで繊維強
化プラスチック成形体に使用されていたものをそのまま
用いることができる。このような接着剤の例としては、
エポキシ系接着剤、ポリエステル系接着剤、アクリル系
接着剤、ウレタン系接着剤、レゾルシノール系接着剤、
合成ゴム系接着剤などを挙げることができる。On the other hand, there are no particular restrictions on the adhesive for bonding this fiber-reinforced plastic molded product, and any adhesive that has been used for fiber-reinforced plastic molded products can be used as is. Examples of such adhesives include:
Epoxy adhesives, polyester adhesives, acrylic adhesives, urethane adhesives, resorcinol adhesives,
Examples include synthetic rubber adhesives.
本発明方法に従い、繊維強化プラスチック成形体を接着
させるには、先ず常法により成形体の接合面に対し、研
摩地理を施し、平滑化し、さらに必要に応じ薬液による
清浄化処理を施す。In order to adhere fiber-reinforced plastic molded bodies according to the method of the present invention, first, the bonding surfaces of the molded bodies are polished and smoothed by a conventional method, and further, if necessary, a cleaning treatment with a chemical solution is performed.
次に、このように処理した接合面にレーザー照射処理を
施し、基材プラスチックを蒸発させて、強化繊維を表面
上に露出させ、巨視的な平滑性を維持したまま微視的な
凹凸を形成させる。Next, laser irradiation treatment is applied to the joint surface treated in this way to evaporate the base plastic and expose the reinforcing fibers on the surface, forming microscopic irregularities while maintaining macroscopic smoothness. let
この際、レーザーの照射量は、強化繊維自体が損傷を受
けずに、基材プラスチックのみが効率よく蒸発しうるよ
うに制御することが必要である。At this time, it is necessary to control the amount of laser irradiation so that only the base plastic can be efficiently evaporated without damaging the reinforcing fibers themselves.
例えば強化繊維として、ガラス繊維を用いた場合、照射
量があまり高くなるとガラス繊維の一部が溶融蒸発して
、脆弱なSiCを生じ、このため接着強度がむしろ低下
することになる。For example, when glass fibers are used as the reinforcing fibers, if the irradiation dose is too high, a portion of the glass fibers will melt and evaporate to form brittle SiC, which will actually reduce the adhesive strength.
適正なレーザー照射量は、基材プラスチックの種類、強
化繊維の種類などにより変わるが、通常、平均入熱とし
て0.0004〜0.0I7Wmin/mがの範囲であ
る。ただし、
平均入熱−(レーザー出力)/(唄射幅)X(1分間の
レーザー移動距離)このようにして、レーザー照射処理
を施したのち、接着すべき面に所定の接着剤を塗布し、
この接着剤層を介して常法に従い接着させる。この際の
接着剤層の厚さとしては、0.05〜0.5mmの範囲
が適当である。The appropriate amount of laser irradiation varies depending on the type of base plastic, the type of reinforcing fiber, etc., but is usually in the range of 0.0004 to 0.017 Wmin/m as an average heat input. However, average heat input - (laser output) / (emission width) x (laser movement distance per minute) After performing laser irradiation treatment in this way, apply the specified adhesive to the surface to be bonded. ,
Bonding is performed using this adhesive layer in accordance with a conventional method. The thickness of the adhesive layer at this time is suitably in the range of 0.05 to 0.5 mm.
本発明方法は、繊維強化プラスチックの成形体同士を接
着する場合に、特に効果的であるか、繊維強化プラスチ
ック成形体と他の物体との接着にも利用することかでき
る。The method of the present invention is particularly effective when bonding fiber-reinforced plastic molded bodies together, and can also be used to bond fiber-reinforced plastic molded bodies to other objects.
本発明方法においては、各被接着体の接合面を接着剤層
を介して接触させ、保持するだけでも十分に強固な接着
か(−リられるが、接着時に圧力を加えることにより、
さらに接着強度を高めることができる。また、強化繊維
と接着剤との間の親和性を高めるために通常行われてい
る処理、例えは強化繊維としてガラス繊維を用いたとき
に行われる7ラン処理を併用することによっても、接着
強度を高めることができる。In the method of the present invention, it is possible to obtain a sufficiently strong bond by simply bringing the joint surfaces of each adherend into contact and holding them through the adhesive layer, but by applying pressure during bonding,
Furthermore, adhesive strength can be increased. In addition, the adhesive strength can be improved by combining treatments that are normally performed to increase the affinity between reinforcing fibers and adhesives, such as the 7-run treatment that is performed when glass fibers are used as reinforcing fibers. can be increased.
作 用
本発明においては、繊維強化プラスチック成形体の接合
面に多数の強化繊維が露出しているため、従来の接着の
際に生しる被接着体表面と接着剤層との間の接着力、接
着剤層の収縮による変形拘束力に加えて、さらに強化繊
維と接着剤層との間のアンカー効果、強化繊維露出面に
基づく接着面積の増加、両接合面に露出した強化繊維同
士の絡み合い等による接着力向上が達成される。Function In the present invention, since a large number of reinforcing fibers are exposed on the bonding surface of the fiber-reinforced plastic molded article, the adhesive force between the surface of the adherend and the adhesive layer that occurs during conventional bonding is reduced. In addition to the deformation restraining force due to the contraction of the adhesive layer, there is also an anchor effect between the reinforcing fibers and the adhesive layer, an increase in the bonding area based on the exposed surface of the reinforcing fibers, and entanglement of the reinforcing fibers exposed on both bonding surfaces. Improved adhesion strength can be achieved.
実施例 次に実施例により本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.
なお、各個におけるレーザー照射は、CO2レーザー発
振器〔(株)ダイヘン製E L tool、焦光レンズ
(2nSc)、焦点距離5インチ〕を用い、アシストガ
スのArの流量50Q/分、レーザー出力200W。The laser irradiation at each point was performed using a CO2 laser oscillator [EL tool manufactured by Daihen Co., Ltd., focusing lens (2 nSc), focal length 5 inches], the flow rate of Ar as assist gas was 50 Q/min, and the laser output was 200 W.
加工速度5m/分、焦点から処理面までの距離115m
m、平均入熱0.6X10−2W−分/mm2の条件下
で行った。Processing speed 5m/min, distance from focal point to processing surface 115m
The test was carried out under conditions of 0.6×10 −2 W-min/mm 2 and an average heat input of 0.6×10 −2 W-min/mm 2 .
実施例1
2本のガラス繊維強化エポキシ樹脂棒状体(150X2
2X20I+Im)の最小面積面をそれぞれ研摩し、さ
らにアセトンで脱脂、洗浄して接合面とした。Example 1 Two glass fiber reinforced epoxy resin rods (150x2
The minimum area surface of 2×20I+Im) was polished, and further degreased and washed with acetone to form a bonding surface.
次にこの接合面に対し、レーザー中心を5mmずつ移動
させながら、全面にわたってレーザー照射したのち、一
方の棒状体の接合面に、エポキシ樹脂系接着剤を0.3
mmの厚さで塗布し、各接合面を密着させ、テフロン7
0ログラス粘着テープで固定し、lOO′Cにおいて1
時間硬化させた。Next, the laser beam is irradiated over the entire surface of the bonded surface while moving the laser center in 5 mm increments, and then 0.3 epoxy resin adhesive is applied to the bonded surface of one of the rods.
Apply it to a thickness of mm, make each joint surface adhere, and apply Teflon
Fix with 0 log glass adhesive tape and 1 at lOO'C.
Allowed to cure for hours.
このようにして得られた試料について引張速度0 、5
mm7分で引張試験したところ、その最大引張応力は
0 、48 kg/ mm2であった。For the samples thus obtained, the tensile speed was 0,5
When a tensile test was carried out at 7 minutes, the maximum tensile stress was 0.48 kg/mm2.
また、比較のために、レーザー照射処理を行わない棒状
体を用いて同じように接着した試料について引張試験し
たところ、その最大引張応力は0 、20 kg/ m
m2であった。For comparison, a tensile test was conducted on a sample bonded in the same way using a bar without laser irradiation treatment, and the maximum tensile stress was 0 and 20 kg/m.
It was m2.
実施例2
ガラス繊維強化エポキシ樹脂板状体(+50X 100
x100x20枚の最小面積面に対し、実施例1と同様
にしてレーザー照射を行ったのち、この一方の処理面に
スタイキャスト+266 (エマーツン・アンド・カジ
ング社製工′ポキシ樹脂系接着剤)を厚さ0.3mmに
塗布し、2枚の接合面を突き合わせて密着させた。次に
加圧治具を用いて接合面に垂直な圧力0 、01179
1/ mm”又は0 、1 kgI/ mrn2を加え
て48時間保持し、硬化させた。このようにして得た試
料について引張試験を行ったところ、圧力0 、01
kgI/ mm2を加えたものの最大引張応力は3 、
26 kg/ mm2であり、0 、1 kgf/ m
m2を加えたものの最大張応力は3 、32 kg/
mm2であった。Example 2 Glass fiber reinforced epoxy resin plate (+50X 100
After laser irradiation was performed on the minimum area surface of 20 x 100 x 20 sheets in the same manner as in Example 1, a thick layer of Stycast+266 (poxy resin adhesive manufactured by Emerson & Kasing) was applied to one of the treated surfaces. It was applied to a thickness of 0.3 mm, and the two bonded surfaces were brought into close contact. Next, use a pressure jig to reduce the pressure perpendicular to the joint surface to 0,01179
1/mm" or 0.1 kgI/mrn2 was added and held for 48 hours to cure. When a tensile test was conducted on the sample thus obtained, the pressure was 0.0, 0.1 kgI/mrn2.
The maximum tensile stress of kgI/mm2 is 3,
26 kg/mm2, 0,1 kgf/m
The maximum tensile stress after adding m2 is 3,32 kg/
It was mm2.
また、比較のためにレーザー照射を行わないものを同様
にして接着した試料について引張試験したところ、前記
に対応する最大引張応力は、それぞれ0 、95 kg
/ mm2.0 、98 kg/ IIIys”であっ
た。In addition, for comparison, a tensile test was performed on samples bonded in the same manner without laser irradiation, and the corresponding maximum tensile stresses were 0 and 95 kg, respectively.
/ mm2.0, 98 kg/IIIys”.
実施例3
カラス繊維強化エポキシ樹脂の代りに炭素繊維強化エポ
キシ樹脂を用い、かつレーザー照射の際の加工速度を2
m/分にすること以外は全〈実施例1と同様にして接着
を行い、このようにして得た試料の引張試験を行ったと
ころ最大引張応力は0.123kg/mm”であった。Example 3 Carbon fiber-reinforced epoxy resin was used instead of glass fiber-reinforced epoxy resin, and the processing speed during laser irradiation was set to 2.
Adhesion was carried out in the same manner as in Example 1, except for changing the bonding speed to m/min. When the tensile test of the sample thus obtained was conducted, the maximum tensile stress was 0.123 kg/mm''.
比較のために、同じ炭素繊維強化エポキシ樹脂について
レーザー照射を行わずに、同様の接着を行って得た試料
を引張試験したところ、このものは装着時に接着部が破
断し、測定することができなかった。For comparison, we performed a tensile test on a sample of the same carbon fiber-reinforced epoxy resin that was bonded in the same way without laser irradiation, but the bonded part broke when it was installed, making it impossible to measure. There wasn't.
実施例4
実施例1で用いたのと同じガラス繊維強化エポキシ樹脂
から成る2枚の板(50x22x20mm)の間に、同
じ材料から成る2枚の板(IsOX 30x 20 a
m)を挟み込み、各接合面を実施例1と同じようにして
接着した。Example 4 Between two plates (50 x 22 x 20 mm) made of the same glass fiber reinforced epoxy resin as used in Example 1, two plates (IsOX 30 x 20 a) made of the same material were placed.
m) was sandwiched, and each joint surface was adhered in the same manner as in Example 1.
このようにして得た試料について、引張速度0 、5
rrutr/分で長手方向のせん断強度を測定した。For the samples obtained in this way, the tensile speeds were 0 and 5.
The longitudinal shear strength was measured in rrutr/min.
その結果、各接合面の全てについてレーザー照射を行っ
たものの最大ぜん断強度は0.480kg/ mm”で
あり、レーザー照射を行わないものの最大ぜん断強度は
O,122kg/mm”であった。As a result, the maximum shear strength when laser irradiation was applied to all of the joint surfaces was 0.480 kg/mm'', and the maximum shear strength when no laser irradiation was performed was 0.122 kg/mm''.
発明の効果
本発明方法によると、接着剤を用いて繊維強化プラスチ
ックを接着するに当り、その接合面をあらかじめレーザ
ー照射するだけで、その接着強度を2倍以上増大させる
ことができる。Effects of the Invention According to the method of the present invention, when bonding fiber-reinforced plastics using an adhesive, the adhesive strength can be increased by more than double by simply irradiating the bonding surface with a laser in advance.
特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.
Claims (1)
するに当り、その接合面にあらかじめレーザー照射処理
を施すことを特徴とする繊維強化プラスチックの接着方
法。1. A method for adhering fiber-reinforced plastics, which comprises subjecting the bonded surfaces to laser irradiation treatment in advance when bonding fiber-reinforced plastic molded objects using an adhesive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63024020A JPH01201385A (en) | 1988-02-05 | 1988-02-05 | Method of bonding fiber-reinforced plastic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63024020A JPH01201385A (en) | 1988-02-05 | 1988-02-05 | Method of bonding fiber-reinforced plastic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01201385A true JPH01201385A (en) | 1989-08-14 |
Family
ID=12126852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63024020A Pending JPH01201385A (en) | 1988-02-05 | 1988-02-05 | Method of bonding fiber-reinforced plastic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01201385A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140071595A1 (en) * | 2012-09-07 | 2014-03-13 | Apple Inc. | Laser ablation adhesion promotion |
JP2018058541A (en) * | 2016-10-07 | 2018-04-12 | 東洋ゴム工業株式会社 | Non-pneumatic tire and manufacturing method of the same |
JP2019171620A (en) * | 2018-03-27 | 2019-10-10 | マツダ株式会社 | Method of joining thermoset resin member, thermoset resin member used in the same, and joined body |
-
1988
- 1988-02-05 JP JP63024020A patent/JPH01201385A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140071595A1 (en) * | 2012-09-07 | 2014-03-13 | Apple Inc. | Laser ablation adhesion promotion |
JP2018058541A (en) * | 2016-10-07 | 2018-04-12 | 東洋ゴム工業株式会社 | Non-pneumatic tire and manufacturing method of the same |
JP2019171620A (en) * | 2018-03-27 | 2019-10-10 | マツダ株式会社 | Method of joining thermoset resin member, thermoset resin member used in the same, and joined body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lambiase et al. | Experimental analysis of laser assisted joining of Al-Mg aluminium alloy with Polyetheretherketone (PEEK) | |
US5643390A (en) | Bonding techniques for high performance thermoplastic compositions | |
EP0229159B1 (en) | Method for producing enhanced bonds between surfaces and articles produced by the method | |
Ageorges et al. | Advances in fusion bonding techniques for joining thermoplastic matrix composites: a review | |
US4861407A (en) | Method for adhesive bonding articles via pretreatment with energy beams | |
US4968383A (en) | Method for molding over a preform | |
EP3475060B1 (en) | Ultrasonic welding of fibre reinforced thermosetting resin sections | |
JPH021303A (en) | Thermoplastic composite material for structure | |
US4361606A (en) | Method for irradiation of polymeric laminates and product | |
Song et al. | Excimer laser surface modification of ultra-high-strength polyethylene fibers for enhanced adhesion with epoxy resins. Part 1. Effect of laser operating parameters | |
WO2017068159A1 (en) | Impregnation process using ultrasound energy | |
US5227229A (en) | Nonwoven polyester articles and method of making same | |
CN113557115B (en) | Molded article of carbon fiber composite material and method for producing same | |
JP6471290B2 (en) | Laser processing method of carbon fiber reinforced composite laminate sheet and laser processed carbon fiber reinforced composite laminate sheet | |
JPWO2013084963A1 (en) | Manufacturing method of joining member, joining method of carbon fiber composite material, and joining member | |
JP2016036884A (en) | Polishing material | |
JPH01201385A (en) | Method of bonding fiber-reinforced plastic | |
JP3272519B2 (en) | Laminated body and method for producing the same | |
Rotel et al. | Preadhesion laser surface treatment of carbon fiber reinforced PEEK composite | |
Lee | Correlation between resin material variables and transverse cracking in composites | |
Delmdahl et al. | Ultraviolet laser cleaning of carbon fiber composites | |
Palmieri et al. | Laser surface preparation of epoxy composites for secondary bonding: optimization of ablation depth | |
CN108956670A (en) | Prepare the method for modifying with high cohesive force polyvinyl chloride surface | |
JPS62270630A (en) | Production of plastic material showing resistance against stress cracking and high temperature, duromer and thermoplastic resin therefor | |
JP2614923B2 (en) | Method for bonding polyphenylene sulfide molded article |