JPH01200852A - Maximum likelihood receiver - Google Patents
Maximum likelihood receiverInfo
- Publication number
- JPH01200852A JPH01200852A JP2499488A JP2499488A JPH01200852A JP H01200852 A JPH01200852 A JP H01200852A JP 2499488 A JP2499488 A JP 2499488A JP 2499488 A JP2499488 A JP 2499488A JP H01200852 A JPH01200852 A JP H01200852A
- Authority
- JP
- Japan
- Prior art keywords
- correlation
- memory
- signal
- state
- maximum likelihood
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007476 Maximum Likelihood Methods 0.000 title claims description 30
- 230000007704 transition Effects 0.000 claims abstract description 20
- 230000003111 delayed effect Effects 0.000 claims description 6
- 239000000284 extract Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 8
- 238000005070 sampling Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Landscapes
- Error Detection And Correction (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Dc Digital Transmission (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は符号化された信号の受信復調に利用する。特に
、遅延波形歪のある無線ディジタル伝送路を経由した信
号を受信する最尤受信機に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is used for receiving and demodulating encoded signals. In particular, the present invention relates to a maximum likelihood receiver that receives signals via a wireless digital transmission path with delayed waveform distortion.
一般に、信号伝送を行う場合には、伝送路上に配置され
た伝送装置および伝送媒体の帯域特性により、送信機か
ら送出された信号は線形歪を受ける。このため、ディジ
タル信号伝送では符号量干渉が生じ、受信機の性能が低
下する。このような線形歪による伝送特性劣化を軽減す
るために従来から種々の等化器が提案されているが、特
に性能が高いものとして、最尤受信機が知られている。Generally, when performing signal transmission, the signal sent from the transmitter is subjected to linear distortion due to the band characteristics of the transmission device and transmission medium disposed on the transmission path. Therefore, in digital signal transmission, code amount interference occurs and receiver performance deteriorates. Various equalizers have been proposed in the past to reduce the deterioration of transmission characteristics caused by such linear distortion, and a maximum likelihood receiver is known as one with particularly high performance.
第6図は第一の従来例最尤受信機のブロック構成図であ
る。FIG. 6 is a block diagram of a first conventional maximum likelihood receiver.
受信信号は入力端子1に供給され、さらに、整合フィル
タ61、標本化回路62を経由して最尤符号系列推定器
63に供給される。最尤符号系列推定器63の出力は出
力端子11に接続される。The received signal is supplied to input terminal 1, and further supplied to maximum likelihood code sequence estimator 63 via matched filter 61 and sampling circuit 62. The output of the maximum likelihood code sequence estimator 63 is connected to the output terminal 11.
この最尤受信機の動作について、変調方式として搬送波
変調を用い、等化器の処理を行うまえに直交検波を行う
場合について、ベースバンド検波波形の複素数表示を用
いて説明する。The operation of this maximum likelihood receiver will be described using a complex number representation of a baseband detection waveform when carrier modulation is used as the modulation method and orthogonal detection is performed before equalizer processing.
符号列(a、)を1/Tの速度で伝送するための線形変
調信号の複素包絡線S (t)は、基本波形g (t)
を用いて、
で表される。これに伝送路の線形歪に対応するインパル
ス応答h (t)が作用する。このため、入力端子1に
おける受信波R(t)は、
となる。ここで、「*」はコンポリニージョン演算を表
し、N (t)は雑音を表す。The complex envelope S (t) of the linear modulation signal for transmitting the code string (a,) at a speed of 1/T is the basic waveform g (t)
Using , it is expressed as . An impulse response h (t) corresponding to the linear distortion of the transmission path acts on this. Therefore, the received wave R(t) at the input terminal 1 is as follows. Here, "*" represents a compound operation, and N (t) represents noise.
整合フィルタ61はg (t) * h (t)のイン
パルス信号に整合しており、出力波形の信号対雑音非が
最も高くなる特性のフィルタである。標本化回路62は
、複素包絡線S (t)に同期して時間T毎に、整合フ
ィルタ2の出力波形を標本化する。最尤符号系列推定器
63は、可能性のある符号列(a、)の組み合わせに対
応した整合フィルタ理想出力を内部で発生させ、その波
形を複素包絡線S (t)に同期して標本化したものと
実際に入力されたものとの信号空間距離を演算し、その
距離が最も近い波形に対応する符号列(al)の組み合
わせを出力端子11に出力する。The matched filter 61 is matched to the impulse signal of g (t) * h (t), and has the characteristic that the signal-to-noise ratio of the output waveform is the highest. The sampling circuit 62 samples the output waveform of the matched filter 2 at every time T in synchronization with the complex envelope S (t). The maximum likelihood code sequence estimator 63 internally generates matched filter ideal outputs corresponding to possible combinations of code sequences (a,), and samples the waveform in synchronization with the complex envelope S (t). The signal spatial distance between the input signal and the actually input signal is calculated, and a combination of code strings (al) corresponding to the waveform with the closest distance is output to the output terminal 11.
第7図は第二の従来例最尤受信機のブロック構成図であ
る。FIG. 7 is a block diagram of a second conventional maximum likelihood receiver.
非線形変調波を用いる場合には、線形の整合フィルタを
形成することができないので、変調波をいくつかの搬送
波の組み合わせにより近似的に表す。例えば、TFM
(Tamed FM)や、ガウス型ベースバンドフィル
タの正規化3dB帯域幅B、T (片側)が0.21
のGMSK (Gaussian−filtered
Minimum ShiftKeying)の変調波を
近似的に発生させるには、1タイムスロツトの信号波形
を周波数f0の搬送波と、±Δfおよび±2Δfの周波
数オフセットをもつ搬送波との五つの波を1タイムスロ
ツト毎に位相連続となるように接続する。When using a nonlinear modulated wave, it is not possible to form a linear matched filter, so the modulated wave is approximately represented by a combination of several carrier waves. For example, TFM
(Tamed FM) and Gaussian baseband filter normalized 3dB bandwidth B, T (one side) is 0.21
GMSK (Gaussian-filtered
In order to approximately generate a modulated wave of (Minimum Shift Keying), the signal waveform of one time slot is divided into five waves for each time slot: a carrier wave with frequency f0 and a carrier wave with frequency offsets of ±Δf and ±2Δf. Connect them so that they are phase continuous.
第7図は例で説明すると、入力端子1から入力された受
信波を乗算器71−1〜71−5に供給する。乗算器7
1−1〜71−5にはさらに、それぞれ、e、=cos
2π(fc+2Δf)t
ez=cos2π(fc+Δf)t
e、=cos2πfct
e、= CO52π(fc−Δf)t
es = C092π(fc−2Δf)tが入力される
。乗算器71−1〜71−5の出力はそれぞれ積分器7
2−1〜72−5に供給される。これらの乗算器71−
1〜71−5および積分器72−1〜72−5により、
受信波と五つの搬送波との相関がそれぞれ求められる。To explain FIG. 7 by way of example, a received wave input from input terminal 1 is supplied to multipliers 71-1 to 71-5. Multiplier 7
1-1 to 71-5 further include e,=cos
2π(fc+2Δf)t ez=cos2π(fc+Δf)te,=cos2πfct e,=CO52π(fc−Δf)tes=C092π(fc−2Δf)t are input. The outputs of the multipliers 71-1 to 71-5 are respectively output to the integrator 7.
2-1 to 72-5. These multipliers 71-
1 to 71-5 and integrators 72-1 to 72-5,
The correlation between the received wave and each of the five carrier waves is determined.
これらの乗算器71−1〜71−5および積分器72−
1〜72−5を用いて1タイムスロツトの波形に対応す
る整合フィルタを形成し、その出力を標本化回路62−
1〜62−5により標本化する。最尤符号系列推定器6
3は、標本化回路62−1〜62−5により標本化され
た値をもとに符号系列を推定する。符号系列の拘束長が
長い場合には、最尤符号系列推定器63のハードウェア
規模が拘束長に対して指数関数的に増加する。そこで通
常は、ビタビ・アルゴリズムを用いて信号を推定する。These multipliers 71-1 to 71-5 and integrator 72-
1 to 72-5 to form a matched filter corresponding to the waveform of one time slot, and its output is sent to a sampling circuit 62-5.
1 to 62-5. Maximum likelihood code sequence estimator 6
3 estimates a code sequence based on the values sampled by the sampling circuits 62-1 to 62-5. When the constraint length of the code sequence is long, the hardware scale of the maximum likelihood code sequence estimator 63 increases exponentially with respect to the constraint length. Therefore, the signal is usually estimated using the Viterbi algorithm.
最尤符号系列推定器63は、推定した符号列を出力端子
11から出力する。The maximum likelihood code sequence estimator 63 outputs the estimated code sequence from the output terminal 11.
しかし、伝送路の帯域特性のために非線形変調波に線形
歪が付加された場合には、受信波を(2)式のような線
形結合で表すことができず、整合フィルタを得ることが
困難であった。そのため、非線形変調信号に対する従来
の最尤受信機をそのまま使用しても、誤り率特性は改善
されない欠点があった。However, if linear distortion is added to the nonlinear modulated wave due to the band characteristics of the transmission path, the received wave cannot be expressed by a linear combination as shown in equation (2), making it difficult to obtain a matched filter. Met. Therefore, even if a conventional maximum likelihood receiver for nonlinear modulated signals is used as is, the error rate characteristics cannot be improved.
本発明は、以上の問題点を解決し、線形歪の生じた非線
形変調信号を受信復調できる最尤受信機を提供すること
を目的とする。SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a maximum likelihood receiver that can receive and demodulate nonlinearly modulated signals with linear distortion.
本発明の最尤受信機は、受信ディジタル信号に含まれる
特定符号系列の成分を検出してその信号に含まれる遅延
成分を求める手段と、この遅延底−分のそれぞれに対応
する基本波を発生する手段とを含むことを特徴とする。The maximum likelihood receiver of the present invention includes a means for detecting a component of a specific code sequence included in a received digital signal and determining a delay component included in the signal, and generating a fundamental wave corresponding to each of the delay components. It is characterized by including means for.
遅延成分を求める手段は、受信ディジタル信号とあらか
じめ記憶された符号系列との相関により遅延成分の遅延
時間とその振幅とを測定する成分抽出用相関器を含むこ
とが望ましい。また、基本波を発生する手段は、遅延成
分のタイムスロット長で基本波を発生する構成であるこ
とが望ましい。Preferably, the means for determining the delay component includes a component extraction correlator that measures the delay time and amplitude of the delay component by correlating the received digital signal with a pre-stored code sequence. Further, it is preferable that the means for generating the fundamental wave is configured to generate the fundamental wave with the time slot length of the delay component.
この最尤受信機はさらに、最尤符号系列推定手段として
、相関手段の出力を定められたタイムスロット分にわた
り記憶する相関メモリと、受信側で推定している複数の
現状態に至るまでの状態遷移履歴データを記憶する状態
遷移メモリと、状態遷移の履歴の相対的な関係を抽出し
た複数の縮退化パスと各パスにおけるそれぞれのタイム
スロットの信号波形相互の内積値との関係、およびひと
つの縮退化パスに連続する次の縮退化パスの関係を記憶
する縮退化パスメモリと、相関メモリの記憶内容と、遅
延成分を求める手段の出力と、状態遷移メモリの記憶内
容と、縮退化パスメモリの記憶内容とにより、複数の現
状態に連続する次の状態へのタイムスロット内の信号空
間距離を算出する距離演算器と、次の状態をビタビ・ア
ルゴリズムで判定する状態判定器と、判定された複数の
現状態の累積信号空間距離が最も小さい状態の状態履歴
に対応する符号系列の符号を出力する手段とを含むこと
が望ましい。This maximum likelihood receiver further includes a correlation memory that stores the output of the correlation means for a predetermined time slot as a maximum likelihood code sequence estimation means, and a plurality of states up to the current state estimated on the receiving side. A state transition memory that stores transition history data, multiple degenerate paths that extract the relative relationship of state transition history, the relationship between the inner product value of the signal waveforms of each time slot in each path, and one A degenerate path memory that stores the relationship between the next degenerate path following the degenerate path, the storage contents of the correlation memory, the output of the means for determining the delay component, the storage contents of the state transition memory, and the degenerate path memory. A distance calculator calculates the signal spatial distance within a time slot to the next state following multiple current states, and a state determiner determines the next state using the Viterbi algorithm. It is preferable to include means for outputting a code of a code sequence corresponding to the state history of the state in which the cumulative signal spatial distance of the plurality of current states is the smallest.
本発明の最尤受信機は、受信ディジタル信号に含まれる
遅延成分に対応してそれぞれ基本波を発生し、この基本
波と受信ディジタル信号との相関を求める。このため、
遅延成分による線形歪が生じても良好に符号系列を再生
できる。The maximum likelihood receiver of the present invention generates a fundamental wave corresponding to each delay component included in a received digital signal, and finds a correlation between this fundamental wave and the received digital signal. For this reason,
Even if linear distortion occurs due to delay components, code sequences can be reproduced favorably.
また、本発明の最尤受信機は、1タイムスロツト毎に信
号空間距離を再起的に求める構成であり、また、縮退化
パステーブルを用いて状態判定を簡単化できる。Furthermore, the maximum likelihood receiver of the present invention is configured to recursively determine the signal spatial distance for each time slot, and can simplify state determination using a degenerate path table.
第1図は本発明実施例最尤受信機のブロック構成図であ
る。FIG. 1 is a block diagram of a maximum likelihood receiver according to an embodiment of the present invention.
ここでは、変調波がTFM信号またはab’r =Q。Here, the modulated wave is a TFM signal or ab'r=Q.
21のGMSK信号を例に説明する。この二種類の信号
はほとんど同等な信号であり、
j2πfct
S (t) = E (t) e −
−(3)jφ(1)
E (t) = e −−・・
・・−(4)で表される。ここで、2πfc=ω。は搬
送波の角周波数であり、E (t)は複素振幅である。This will be explained using the No. 21 GMSK signal as an example. These two types of signals are almost equivalent signals, and j2πfct S (t) = E (t) e −
−(3)jφ(1) E (t) = e −−・・
...-(4) is expressed. Here, 2πfc=ω. is the angular frequency of the carrier and E (t) is the complex amplitude.
第2図はφ(1)の変化を表すトレリスを示す。ここで
は4タイムスロツト分のトレリスを示す。各格子点が状
態を表し、図の番号によりその状態を示す。同一番号が
同一の状態を表し、16個の状態がある。タイムスロッ
ク■とタイムスロット■とは、タイムスロットIとタイ
ムスロット■と同一のトレリスとなる。また、I(t)
= cosφ(1)で表される包絡線は、第3図の波形
となる。FIG. 2 shows a trellis representing changes in φ(1). Here, a trellis for four time slots is shown. Each grid point represents a state, and the number in the figure indicates the state. The same number represents the same state, and there are 16 states. The time lock ■ and the time slot ■ form the same trellis as the time slot I and the time slot ■. Also, I(t)
The envelope represented by = cosφ (1) has the waveform shown in FIG.
第1図の実施例について説明を戻すと、入力端子1゛に
は(3)式で表される変調波が供給される。この変調波
は、フレーム信号として、一定周期毎に特定の符号系列
で変調された信号を含む。成分抽出用相関器2は、受信
信号とあらかじめ記憶された符号系列との相関をとり、
受信信号から特定符号系列を抽出する。このとき、受信
信号に複数の遅延波成分が重畳されていると、成分抽出
用相関器2の出力に、各成分の遅延時間差と遅延波の振
幅とに応じた複素遅延プロファイル(α。、α1、α2
、−)が出力される。ここで、α1はi番目の遅延成分
の複素数の係数を表す。この遅延プロファイルは基本波
形発生器3に供給される。基本波形生成器3は、遅延プ
ロファイルの遅延時間に対して、第3図に示したような
1タイムスロツト分の基本波形を生成する。この基本波
形は、基本波形相関器4内のそれぞれ対応する相関器に
供給される。Returning to the explanation of the embodiment shown in FIG. 1, a modulated wave expressed by equation (3) is supplied to the input terminal 1'. This modulated wave includes a signal modulated with a specific code sequence at regular intervals as a frame signal. The component extraction correlator 2 correlates the received signal with a pre-stored code sequence,
A specific code sequence is extracted from the received signal. At this time, if a plurality of delayed wave components are superimposed on the received signal, the output of the component extraction correlator 2 has a complex delay profile (α., α1) according to the delay time difference of each component and the amplitude of the delayed wave. , α2
, -) are output. Here, α1 represents a complex coefficient of the i-th delay component. This delay profile is supplied to the basic waveform generator 3. The basic waveform generator 3 generates a basic waveform for one time slot as shown in FIG. 3 for the delay time of the delay profile. This basic waveform is supplied to each corresponding correlator in the basic waveform correlator 4.
入力端子1の変調波はさらに、情報を伝送する符号系列
部分の信号を含み、これが基本波形相関器4に供給され
る。基本波形相関器4は、基本波形発生器3からの各基
本波と、符号系列部分との相関をとる。この相関出力は
、相関メモリ5内の対応する領域に蓄えられる。各領域
には、信号の拘束要分だけの記憶容量が設けられている
。変調波が第2図の波形をもつ場合には、拘束長が4タ
イムスロツトなので、4段のメモリを必要とする。The modulated wave at input terminal 1 further includes a signal of a code sequence portion that transmits information, and this is supplied to basic waveform correlator 4 . The fundamental waveform correlator 4 correlates each fundamental wave from the fundamental waveform generator 3 with the code sequence part. This correlation output is stored in a corresponding area in the correlation memory 5. Each area is provided with a storage capacity corresponding to the signal constraint. When the modulated wave has the waveform shown in FIG. 2, the constraint length is four time slots, so four stages of memory are required.
距離演算器7は、相関メモリ5、縮退化パスメモリ6ふ
よび状態遷移メモリ9の記憶内容に基づいて信号空間距
離を求める。信号空間距離は、受信信号の複素包絡線R
(t)と、予想されるいくつかの信号波形Uh(t)と
の類似度を表す指標であり、mT
で表される。ここで、複素包絡線R(t)が、直接波E
(t)と、この波が時間Tだけ遅延したE (t−T
) との二つの波の合成であるときには、
R(t) =α。E (t)+α、 E(t−T) +
N(t)・・−・−・・・・−・・・(6)
となる。ただしN (t)は雑音を表す。また、U k
(t)は、
U k (t) =αQEk(t)+αr Ek”(t
) ”−・ (7)となる。ここで、Ek(t)、E
k’(t)は、基本波形発生器3が出力する基本波形で
ある。The distance calculator 7 calculates the signal spatial distance based on the stored contents of the correlation memory 5, the degenerate path memory 6, and the state transition memory 9. The signal spatial distance is the complex envelope R of the received signal.
(t) and some expected signal waveforms Uh(t), and is expressed as mT. Here, the complex envelope R(t) is the direct wave E
(t), and E (t-T
), then R(t) = α. E(t)+α, E(t-T)+
N(t)・・・−・−・・・・−・・・(6) It becomes. However, N (t) represents noise. Also, Uk
(t) is expressed as U k (t) = αQEk (t) + αr Ek” (t
) ”-・ (7) Here, Ek(t), E
k'(t) is the fundamental waveform output by the fundamental waveform generator 3.
したがって、被積分項F (t)は、
F(t)= l R(t) l ” + lα。l’
l Eh(t)12+1αll” l Ek’(t
)12+2Re〔α。R(t) Eh”(t))+ 2
Re Cat R(t) Eh−”(t))+ 2Re
Ca。at Ek(t) Ek’(t)、1−・・−
・−−−一−−(8)
となる。第1項、第2項および第3項は信号レベルであ
り、その積分値は容易に求められる。第4項および第5
項は、受信信号と基本波との相関であるから、相関メモ
リ5の記憶内容により求めることができる。ただし、記
憶内容のうちどれを使用するかは状態の履歴に依存する
ので、状態遷移の履歴を記憶している状態遷移メモリ9
を参照する。信号空間距離を(5)式により再起的に求
められるので、状態遷移メモリ9は(m−1)Tまでの
信号空間距離り、についても記憶している。第6項は基
本信号波形相互間の内積値を表す。この値については、
あらかじめ計算した値を縮退化パステーブルとして縮退
化パスメモリ6に蓄えてお(。Therefore, the integrand F (t) is: F(t) = l R(t) l ” + lα.l'
l Eh(t)12+1αll'' l Ek'(t
)12+2Re[α. R(t) Eh”(t))+2
Re Cat R(t) Eh-”(t))+2Re
Ca. at Ek(t) Ek'(t), 1-...-
・---1---(8) becomes. The first term, second term, and third term are signal levels, and their integral values can be easily obtained. Sections 4 and 5
Since the term is the correlation between the received signal and the fundamental wave, it can be obtained from the stored contents of the correlation memory 5. However, since which of the memory contents to use depends on the state history, the state transition memory 9 that stores the state transition history
See. Since the signal spatial distance can be determined recursively using equation (5), the state transition memory 9 also stores the signal spatial distance up to (m-1)T. The sixth term represents the inner product value between the basic signal waveforms. For this value,
The pre-calculated values are stored in the degenerate path memory 6 as a degenerate path table (.
縮退化パステーブルは、状態遷移で決定されるパスのう
ち、相対的に同じものをグループ化したものである。例
えば、第2図に太線で示した13.16.1.2.9と
遷移するパスは、第4図のような縮退化パスの一例と考
えられる。縮退化パスメモリ6には、上述の内積値のほ
か、次のステップで採り得るパスが表として記憶される
。この表により次の状態を決定できる。このようにして
、状態kに対して、二つの次の状態に遷移したときの(
m−1)TからmTまでの信号空間距離d k l S
d k 2が求められる。The degenerate path table is a grouping of relatively similar paths determined by state transitions. For example, the path that transitions to 13.16.1.2.9 shown in bold line in FIG. 2 is considered to be an example of a degenerate path as shown in FIG. In addition to the above-mentioned inner product values, the degenerate path memory 6 stores paths that can be taken in the next step as a table. This table allows the next state to be determined. In this way, for state k, when transitioning to the two next states (
m-1) Signal spatial distance from T to mT d k l S
d k 2 is found.
状態判定器8は、遷移先の状態には二つの状態から遷移
することから、ビタビ・アルゴリズムによるその状態を
確定する。状態遷移メモリ9は、状態判定器8により新
しい状態が確定されると、その状態のうち信号空間距離
D k(n)が最も小さいものに対応する変調波を受信
したとみなし、それに対応する符号系列を復号器10に
出力する。The state determiner 8 determines the state using the Viterbi algorithm since the transition destination state is transitioned from two states. When a new state is determined by the state determiner 8, the state transition memory 9 considers that a modulated wave corresponding to the state with the smallest signal spatial distance Dk(n) has been received among the states, and stores the code corresponding to the modulated wave. The sequence is output to the decoder 10.
第5図は本実施例受信機と従来例受信機との誤り率特性
を示す。この特性図では、直接波の成分が「1」、遅延
時間3Tの遅延波の成分がeJのときの誤り率特性を示
す。この図に示すように、本実施例受信機は特性が大幅
に改善され、非線形変調波が離散的な遅延波として受信
した場合にも、特性よく受信復調できる。FIG. 5 shows the error rate characteristics of the receiver of this embodiment and the conventional receiver. This characteristic diagram shows the error rate characteristics when the direct wave component is "1" and the delayed wave component with a delay time of 3T is eJ. As shown in this figure, the characteristics of the receiver of this embodiment are greatly improved, and even when a nonlinear modulated wave is received as a discrete delayed wave, it can be received and demodulated with good characteristics.
以上説明したように、本発明の最尤受信機は、伝送路の
帯域特性のために非線形変調波に線形歪が生じた場合で
も、良好にその信号を受信できる。As explained above, the maximum likelihood receiver of the present invention can satisfactorily receive a signal even when linear distortion occurs in a nonlinear modulated wave due to the band characteristics of a transmission path.
しかも本発明の最尤受信機は、縮退化パステーブルを利
用して計算を簡単化できるので、高速処理を行うことが
できる効果がある。さらに、計算処理が簡単化され、消
費電力を削減できる効果がある。Moreover, since the maximum likelihood receiver of the present invention can simplify calculations by using a degenerate path table, it has the advantage of being able to perform high-speed processing. Furthermore, calculation processing is simplified and power consumption can be reduced.
第1図は本発明実施例最尤受信機のブロック構成図。
第2図はφ(1)の変化を表すトレリスを示す図。
第3図はI (t)= cosφ(1)で表される包絡
線のトレリスを示す図。
第4図は縮退化パスの一例を示す図。
第5図は本実施例受信機と従来例受信機との誤り率特性
を示す図。
第6図は第一の従来例最尤受信機のブロック構成図。
第7図は第二の従来例最尤受信機のブロック構成図。
1・・・入力端子、2・・・成分抽出用相関器、3・・
・基本波形発生器、4・・・基本波形相関器、5・・・
相関メモリ、6・・・縮退化パスメモリ、7・・・距離
演算器、8・・・状態判定器、9・・・状態遷移メモリ
、10・・・復号器、11・・・出力端子、61・・・
整合フィルタ、62.62−1〜62−5・・・標本化
回路、63・・・最尤符号系列推定器、71−1〜71
−5・・・乗算器、72−1〜72−5・・・積分器。
特許出願人 日本電信電話株式会社 、代理人 弁理士
井 出 直 孝。
タイムスロー2ト
扇 2 ロ
CNR(d81
尾 5 口FIG. 1 is a block diagram of a maximum likelihood receiver according to an embodiment of the present invention. FIG. 2 is a diagram showing a trellis representing changes in φ(1). FIG. 3 is a diagram showing a trellis of an envelope represented by I (t)=cosφ(1). FIG. 4 is a diagram showing an example of a degenerate path. FIG. 5 is a diagram showing the error rate characteristics of the receiver of this embodiment and the conventional receiver. FIG. 6 is a block diagram of a first conventional maximum likelihood receiver. FIG. 7 is a block diagram of a second conventional maximum likelihood receiver. 1...Input terminal, 2...Correlator for component extraction, 3...
- Basic waveform generator, 4... Basic waveform correlator, 5...
Correlation memory, 6... Degenerate path memory, 7... Distance calculator, 8... State determiner, 9... State transition memory, 10... Decoder, 11... Output terminal, 61...
Matched filter, 62.62-1 to 62-5... Sampling circuit, 63... Maximum likelihood code sequence estimator, 71-1 to 71
-5... Multiplier, 72-1 to 72-5... Integrator. Patent applicant: Nippon Telegraph and Telephone Corporation, agent: Naotaka Ide, patent attorney. Time slow 2 to fan 2 RoCNR (d81 tail 5 mouth
Claims (1)
生する基本波発生手段と、 この手段が発生した基本波と上記受信ディジタル信号と
の相関を求める相関手段と、 この相関手段の出力について最尤符号系列を求める最尤
符号系列推定手段と を備えた最尤受信機において、 上記基本波発生手段は、 上記受信ディジタル信号に含まれる特定符号系列の成分
を検出してその信号に含まれる遅延成分を求める手段(
2)と、 この遅延成分のそれぞれに対応する基本波を発生する手
段(3)と を含む ことを特徴とする最尤受信機。 2、最尤符号系列推定手段は、 相関手段の出力を定められたタイムスロット分にわたり
記憶する相関メモリ(5)と、 受信側で推定している複数の現状態に至るまでの状態遷
移履歴データを記憶する状態遷移メモリ(9)と、 状態遷移の履歴の相対的な関係を抽出した複数の縮退化
パスと各パスにおけるそれぞれのタイムスロットの信号
波形相互の内積値との関係、およびひとつの縮退化パス
に連続する次の縮退化パスの関係を記憶する縮退化パス
メモリ(6)と、上記相関メモリの記憶内容と、遅延成
分を求める手段の出力と、上記状態遷移メモリの記憶内
容と、上記縮退化パスメモリの記憶内容とにより、複数
の現状態に連続する次の状態へのタイムスロット内の信
号空間距離を算出する距離演算機(7)と、 次の状態をビタビ・アルゴリズムで判定する状態判定器
と、 判定された複数の現状態の累積信号空間距離が最も小さ
い状態の状態履歴に対応する符号系列の符号を出力する
手段(9、10)と を含む 請求項1記載の最尤受信機。[Claims] 1. Fundamental wave generation means for generating a fundamental wave corresponding to a modulated wave of a received digital signal; Correlation means for determining the correlation between the fundamental wave generated by this means and the received digital signal; and maximum likelihood code sequence estimating means for calculating a maximum likelihood code sequence for the output of the correlation means, wherein the fundamental wave generating means detects a component of a specific code sequence included in the received digital signal. A means of determining the delay component included in the signal (
2); and means (3) for generating a fundamental wave corresponding to each of the delayed components. 2. The maximum likelihood code sequence estimating means includes a correlation memory (5) that stores the output of the correlation means over a predetermined time slot, and state transition history data up to a plurality of current states estimated on the receiving side. A state transition memory (9) that stores the relative relationships of state transition histories, multiple degenerate paths extracted from which the relative relationships of state transition histories are extracted, the relationship between the inner product values of the signal waveforms of each time slot in each path, and one a degenerate path memory (6) that stores the relationship of the next degenerate path following the degenerate path, the stored contents of the correlation memory, the output of the means for determining the delay component, and the stored contents of the state transition memory. , a distance calculator (7) that calculates the signal spatial distance within a time slot to the next state following multiple current states based on the stored contents of the degenerate path memory, and a distance calculator (7) that calculates the next state using the Viterbi algorithm. 2. A state determining device according to claim 1, comprising: a state determiner for making a determination; and means (9, 10) for outputting a code of a code sequence corresponding to a state history of a state in which the accumulated signal spatial distance of the plurality of determined current states is the smallest. Maximum likelihood receiver.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2499488A JP2739318B2 (en) | 1988-02-05 | 1988-02-05 | Maximum likelihood receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2499488A JP2739318B2 (en) | 1988-02-05 | 1988-02-05 | Maximum likelihood receiver |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01200852A true JPH01200852A (en) | 1989-08-14 |
JP2739318B2 JP2739318B2 (en) | 1998-04-15 |
Family
ID=12153531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2499488A Expired - Lifetime JP2739318B2 (en) | 1988-02-05 | 1988-02-05 | Maximum likelihood receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2739318B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992009144A1 (en) * | 1990-11-19 | 1992-05-29 | Fujitsu Limited | Maximum likelihood decoding method and device thereof |
JPH0730437A (en) * | 1991-04-30 | 1995-01-31 | Nec Corp | Sequence estimating device |
-
1988
- 1988-02-05 JP JP2499488A patent/JP2739318B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992009144A1 (en) * | 1990-11-19 | 1992-05-29 | Fujitsu Limited | Maximum likelihood decoding method and device thereof |
US5432820A (en) * | 1990-11-19 | 1995-07-11 | Fujitsu Limited | Maximum-likelihood decoding method and device |
JPH0730437A (en) * | 1991-04-30 | 1995-01-31 | Nec Corp | Sequence estimating device |
Also Published As
Publication number | Publication date |
---|---|
JP2739318B2 (en) | 1998-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2526931B2 (en) | PSK signal demodulator | |
US5029186A (en) | Method of demodulation in digital communication systems with multipath propagation | |
EP3621259B1 (en) | Method and device for fsk/gfsk demodulation | |
KR101828790B1 (en) | Frequency shift keying signal receiving method and device | |
US9722845B2 (en) | Bluetooth low energy frequency offset and modulation index estimation | |
EP0716527B1 (en) | Maximum likelihood decoding and synchronous detecting method | |
US6721366B1 (en) | Phase tracking apparatus and method for continuous phase modulated signals | |
JPH09289529A (en) | Digital communication device | |
US6785348B2 (en) | Demodulator and method for demodulating CPFSK-modulated signals using a linear approximation of the CPFSK signal | |
CN112671684B (en) | Self-adaptive demodulation method of short-time burst BPSK signal | |
JPH01200852A (en) | Maximum likelihood receiver | |
JPH09214574A (en) | Phase detector for data synchronization device and its operating method | |
Tibenderana et al. | Low-complexity high-performance GFSK receiver with carrier frequency offset correction | |
US6940927B2 (en) | Simplified symbol timing tracking circuit for a CPM modulated signal | |
KR100564905B1 (en) | Maximum likelihood detection of mpsk bursts with inserted reference symbols | |
JP2966673B2 (en) | Diversity type synchronous detection circuit | |
JP2001177587A (en) | Synchronizing system for digital modulation/ demodulation | |
JP2000022771A (en) | Reception method in fallback mode and receiver | |
JPH05335893A (en) | Equalizing method and device | |
RU2224380C2 (en) | Method for demodulating signal whose carrier is modulated by digital character chain | |
JP2938289B2 (en) | Synchronous detection circuit | |
JPH06152674A (en) | Delay detector | |
Tibenderana et al. | A low-cost scalable matched filter bank receiver for GFSK signals with carrier frequency and modulation index offset compensation | |
JP3560546B2 (en) | Bit error rate estimation device | |
JPH06216959A (en) | Synchronous detection circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090123 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090123 Year of fee payment: 11 |