JPH01200663A - Semiconductor storage device - Google Patents

Semiconductor storage device

Info

Publication number
JPH01200663A
JPH01200663A JP63024544A JP2454488A JPH01200663A JP H01200663 A JPH01200663 A JP H01200663A JP 63024544 A JP63024544 A JP 63024544A JP 2454488 A JP2454488 A JP 2454488A JP H01200663 A JPH01200663 A JP H01200663A
Authority
JP
Japan
Prior art keywords
bit
bit line
line
polycide
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63024544A
Other languages
Japanese (ja)
Inventor
Yasuhiro Konishi
康弘 小西
Mikio Asakura
幹雄 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63024544A priority Critical patent/JPH01200663A/en
Publication of JPH01200663A publication Critical patent/JPH01200663A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor storage device whose operation margin is wide, whose access time is short and whose manufacture is easy by a method wherein bit-line pairs are composed of different wiring layers and whose which have been crossed at the middle point and those which have been crossed two times at 1/4 and 1/3 points are arranged alternately. CONSTITUTION:Aluminum wires as indicated by (A) and polycide wires as indicated by (B) are used as bit lines; they are crossed mutually at the 1/2 point of their length; a first bit-line pair composed of a bit line 3a continued from polycide aluminum and a bit line 3b continued from aluminum polycide is constituted; similarly, two each of said wires are crossed at the 1/4 point and the 1/3 point of their length; a second bit-line pair composed of a bit line 3c continued from aluminum polycide aluminum and a bit line 3d continued from polycide aluminum polycide is constituted; the first bit-line pair and the second bit-line pair are arranged alternately. Because the adjacent bit lines are composed of different wire materials and are situated in different wiring layers in this manner, a capacitance value between the lines is small; in addition, because a half of the length of the bit line is constituted by the wire material whose resistance value is low, a read-out signal can be transmitted at high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はビット線部にビット線対を用いる半導体記憶
装置に関するもので、以下、MOS形のダイナミック・
ランダムアクセスメモリ(DRAM)を例にとって説明
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device using a bit line pair in a bit line portion, and hereinafter, a MOS type dynamic memory device.
This will be explained using random access memory (DRAM) as an example.

〔従来の技術〕[Conventional technology]

第3図は従来の折り返しビット線方式を用いたDRAM
のメモリアレイ部の概念的構成図で、図において、1は
メモリのロウデコーダ、2はロウデコーダ1によって選
択されるワード線、3はワード線2と交差するビット線
、4はワードvA2とビット線3との所要交点に設けら
れたメモリセル、5はビット線3を経てメモリセル4の
内容を読み出すセンス増幅器(センスアンプと略称し、
アクティブ・リストア回路をふくむ)である。なお、図
中Cff1lはビット線3相互間の寄生容量で、C3゜
はビット線3の対地容量である。
Figure 3 shows a DRAM using the conventional folded bit line method.
1 is a conceptual configuration diagram of the memory array section of the memory array section. In the figure, 1 is a memory row decoder, 2 is a word line selected by the row decoder 1, 3 is a bit line that intersects the word line 2, and 4 is a word vA2 and a bit line. A memory cell 5 provided at a required intersection with the line 3 is a sense amplifier (abbreviated as a sense amplifier) that reads the contents of the memory cell 4 via the bit line 3.
(including an active restore circuit). In the figure, Cff1l is the parasitic capacitance between the bit lines 3, and C3° is the ground capacitance of the bit lines 3.

256 kbit マチ(7)DRAMテハ、ビットv
A3の配線材料として通常アルミニウムが広く用いられ
てきたが、I Mbitになるに及んで、ポリサイドビ
ット線が主流になってきた。その理由は、メモリ容量カ
月M b i tにもなると、ビット線ピッチが4μm
以下になるが、アルミニウム配線の場合、その膜厚は周
辺回路の配線抵抗や、エレクトロマイグレーシコンを考
慮して、1μm程度以下にあまり薄くできないので、上
述の寄生容* Cm sが急激に増大し、ビット線間に
おける信号の干渉により動作マージンを著しく損うから
である。ポリサイドは膜厚を0.3 μm程度まで薄く
できるので、ビット線幅を細く、ビット線間隔を広(取
れるという効果もあって、]Mbitレベルでは線間寄
生容量C1lが小さく (対地容量C8゜の3%以下)
、上記の問題は生じない。しかし、ポリサイドは配線抵
抗がアルミニウムに比べて大きく(〜10” 倍)、ア
クセスタイムに遅延を生じる。これについて図ゝを用い
て簡単に説明する。
256 kbit gusset (7) DRAM tech, bit v
Aluminum has generally been widely used as the wiring material for A3, but with the advent of IMbit, polycide bit lines have become mainstream. The reason is that when the memory capacity reaches Mbit, the bit line pitch becomes 4 μm.
As shown below, in the case of aluminum wiring, the film thickness cannot be reduced to less than about 1 μm considering the wiring resistance of the peripheral circuit and the electromigration resistor, so the above-mentioned parasitic capacitance* Cms increases rapidly. This is because the operating margin is significantly impaired due to signal interference between the bit lines. Since polycide can be made as thin as 0.3 μm, the bit line width can be narrowed and the bit line spacing can be widened.At the Mbit level, the line-to-line parasitic capacitance C1l is small (capacitance to ground C8゜(3% or less)
, the above problem does not occur. However, polycide has a wiring resistance higher than that of aluminum (up to 10" times), which causes a delay in access time. This will be briefly explained using FIG.

第4図は一般的なりRAMの読み出し時の動作波形のタ
イミングを示す図である。プリチャージ期間に、ビット
線3はプリチャージ、イコライズされている。(a)に
示すように、時刻t。にワードvA2の電位が立ち上が
り、メモリセル4の蓄積容量に蓄えられていたtiがビ
ット線3に読み出される。
FIG. 4 is a diagram showing the timing of operation waveforms when reading from a general RAM. During the precharge period, the bit line 3 is precharged and equalized. As shown in (a), at time t. The potential of word vA2 rises, and ti stored in the storage capacitor of memory cell 4 is read out to bit line 3.

この読出し信号がビット線3を伝わり、(blに示すよ
うに、時刻1.にセンスアンプ5のノードに到達し始め
、完全に到達した後、(C)に示すように、時刻t2で
センスアンプ活性化信号が立ち上がり、これによって(
b)に示すように、低(“L”)レベルのビット線3を
■83レベルまで落とし、さらにアクティブ・リスドブ
活性化信号により高じH”)レベルのビット線3が■c
cまで引き上げられる。
This read signal propagates through the bit line 3 and begins to reach the node of the sense amplifier 5 at time 1, as shown in (bl), and after reaching the node completely, the sense amplifier 5 reaches the node at time t2, as shown in (C). The activation signal rises, which causes (
As shown in b), the bit line 3 at the low (“L”) level is lowered to the ■83 level, and then the bit line 3 at the high H”) level is lowered to the ■c
It is raised to c.

ここでt0〜1.の時間はセンスアンプ5から最も遠い
所にあるメモリセル4からの読み出し信号がセンスアン
プ5に到達するまでの時間、即ちビット線3抵抗により
決まっており、ポリサイドビット線の場合この時間がア
クセス時間全体に占める割合は約4分の1で、この割合
は集積度が上がるにつれ大きくなると予想される。
Here, t0 to 1. The time required for the read signal from the memory cell 4 located farthest from the sense amplifier 5 to reach the sense amplifier 5 is determined by the resistance of the bit line 3, and in the case of a polycide bit line, this time is determined by the access time. The proportion of the total time is about one-fourth, and this proportion is expected to increase as the degree of integration increases.

ここで、前に触れたビット線間の寄生容量CI!+によ
る信号の干渉の問題についてもう少し説明する。第4図
(a)のように、ワード線2の電位を立ち上がらせた後
、すべてのビット線3にメモリセル4から“H”レベル
の情報が読み出されたとき、リファレンスレベルのビッ
ト線は llH,Rレベルのビット線に挟まれた形にな
るので、ピント線間の寄生容量Cl1llによって隣接
ビット線からノイズを受け、電位がやや上昇し、又、”
H”レベルのビット線もその反作用を受けて、本来の“
H”レベルよりもやや低くなる。従って、ビット線3対
の読み出し電位差が小さくなり、読み出しマージンが減
少する。このことは、すべてのビット線3に“L″レベ
ル情報が読み出された場合も起こる。
Here, the parasitic capacitance CI between the bit lines mentioned earlier! Let me explain a little more about the problem of signal interference caused by +. As shown in FIG. 4(a), after raising the potential of the word line 2, when "H" level information is read from the memory cells 4 to all the bit lines 3, the reference level bit line is Since it is sandwiched between bit lines of llH and R levels, it receives noise from the adjacent bit line due to the parasitic capacitance Cl1ll between the focus lines, and the potential rises slightly.
The bit line at “H” level also receives the reaction and becomes the original “H” level bit line.
Therefore, the read potential difference between the 3 pairs of bit lines becomes smaller, and the read margin decreases.This means that even if "L" level information is read out to all bit lines 3, happen.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のDRAMは以上のように構成されているので、ビ
ット線間容量により動作特性を大きく損うか、もしくは
アクセス時間が長くなるという問題点があった。
Since the conventional DRAM is configured as described above, there is a problem that the capacitance between the bit lines greatly impairs the operating characteristics or increases the access time.

この発明は上記のような問題点を解消するためになされ
たもので、ビット線間容量が小さくビット線抵抗が小さ
い、また隣接ビット線からのノイズの影響を受けない、
即ち、動作特性のよい高速な半導体記憶装置を得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and has a low inter-bit line capacitance, low bit line resistance, and is not affected by noise from adjacent bit lines.
That is, the object is to obtain a high-speed semiconductor memory device with good operating characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体記憶装置は、ビット線として、抵
抗は低いがあまり薄くできない第1の線材料からなる第
1の線と、抵抗は比較的に高いが薄く形成できる第2の
線材料からなる第2の線とを並べ、その長さの1/2の
点で、上記2つの線が立体交差するように電気的に接続
して構成した第1のビット線対と、同じく長さの1/4
の点および3/4の点で上記2つの線が立体交差するよ
うに電気的に接続して構成した第2のビット線対とを交
互に配列したものである。
A semiconductor memory device according to the present invention has a first line made of a first line material that has a low resistance but cannot be made very thin, and a second line material that has a relatively high resistance but can be made thin. A first bit line pair is formed by arranging the second bit line pair and electrically connecting the two lines to intersect with each other at a point half the length of the first bit line pair. /4
A second bit line pair is arranged alternately with a second bit line pair configured by electrically connecting the above two lines so that they intersect with each other at the point 3/4 and the point 3/4.

〔作用〕[Effect]

この発明になる半導体記憶装置のビット線は、隣接する
ビット線が線材料を異にし、異なる配線層にあるので、
線間容量が小さく、しかも、各ビット線対ともそのいず
れのビット線も隣接するビット線から受けるノイズ量が
等しく、また、ビット線長の半分が抵抗の低い第1の線
材料で構成されるので、一般の第2の線材料ですべてを
構成したビット線に比べて読み出し信号の伝達が高速で
、しかも、ビット線対の各ビット線の容量および抵抗が
全く等しいので、センスアンプの誤動作を生じない。
In the bit lines of the semiconductor memory device according to the present invention, adjacent bit lines are made of different line materials and are located in different wiring layers.
The line capacitance is small, each bit line in each bit line pair receives the same amount of noise from the adjacent bit line, and half of the bit line length is made of the first line material with low resistance. Therefore, the transmission of read signals is faster than with bit lines that are all made of general second line material, and since the capacitance and resistance of each bit line in the bit line pair are exactly the same, malfunction of the sense amplifier is prevented. Does not occur.

〔実施例〕〔Example〕

第1図(alはこの発明の一実施例のビット線部を示す
模式平面図で、第1図(b)はI++−I++綿での略
断面図である。そして、第3図の従来例と同一符号は同
等部分を示す。この実施例では、図示のように、ビット
線にイで示すアルミニウム線と口で示すポリサイド線と
を用い、その長さの1/2の点で互いに交差接続して、
ポリサイド−アルミニウムとつづくビットL’A3a及
びアルミニウムーポリサイドとつづくビット線3bから
なる第1のビット線対を構成し、同じくその長さの1/
4および3/4の点で上記の2つの線を交差接続して、
アルミニウム→ポ、リサイド→アルミニウムとつづくビ
ットH3cおよびポリサイド→アルミニウム→ポリサイ
ドとつづくビット線3dからなる第2のビット線対を構
成し、第1および第2のビット線対を交互に配列したも
のである。と記交差接続部の橋渡しにはポリサイドおよ
びアルミニウムをそのまま用いてもよいが、別の配線層
を用いて、アルミニウムとポリサイドとを接続してもよ
い。
FIG. 1 (al is a schematic plan view showing the bit line part of one embodiment of the present invention, FIG. 1(b) is a schematic cross-sectional view of I++-I++ cotton, and FIG. 3 is a conventional example. The same reference numerals indicate equivalent parts. In this embodiment, as shown in the figure, an aluminum wire indicated by A and a polycide line indicated by A are used as the bit lines, and they are cross-connected to each other at a point 1/2 of the length. do,
The first bit line pair consists of a bit line L'A3a that is continuous with polycide-aluminum and a bit line 3b that is continuous with aluminum-polycide.
Cross-connect the above two lines at the 4 and 3/4 points,
A second bit line pair is formed of a bit line H3c that continues from aluminum to polycide, and a bit line 3d that continues from polycide to aluminum, and a bit line 3d that continues from polycide to aluminum, and the first and second bit line pairs are arranged alternately. be. Although polycide and aluminum may be used as they are to bridge the cross-connections, aluminum and polycide may be connected using another wiring layer.

第1図(a)において、各ビット″fLIA3a、3b
、3c、3dはその全長しの半分L/2がアルミニウム
、L/2がポリサイドで構成されているので、センスア
ンプから最遠端までの総抵抗は、どのビット線において
も等しく、しかもこの抵抗値は全長がポリサイドの場合
の約半分である。
In FIG. 1(a), each bit "fLIA3a, 3b
, 3c, and 3d, half of their total length L/2 is made of aluminum and L/2 is made of polycide, so the total resistance from the sense amplifier to the farthest end is the same for any bit line, and this resistance The value is about half of the total length of polycide.

また、各ビット線のビット線間容(jtcsm、対地容
量C1゜は等しく、特に隣接するビット線は第1図(b
lにみるように異なる配線層にあるので、線間距離が長
く、従ってC1@は極めて小さくなる。さらにζビット
線対のそれぞれのビット線が隣接ビット線から受けるノ
イズ量は第1図(a)から明らかなように全く等しくな
る。そして、アルミニウムとポリサイドの配線ピッチは
ビット線ピッチの倍になるので、作成時のパターニング
も容易になる。
In addition, the bit line spacing (jtcsm, ground capacitance C1°) of each bit line is equal, and in particular, adjacent bit lines are
As shown in 1, since they are in different wiring layers, the distance between the lines is long, and therefore C1@ becomes extremely small. Further, as is clear from FIG. 1(a), the amount of noise received by each bit line of the ζ bit line pair from the adjacent bit line is completely equal. Furthermore, since the wiring pitch between aluminum and polycide is twice the bit line pitch, patterning during production is also facilitated.

なお、上記実施例ではビット線の配線材料として、アル
ミニウムとポリサイドを用いたものを示したが、本発明
はこれに限定するものではなく、別の配線材料を用いて
もよい。また、1回交差の第1のビット線対と、2回交
差の第2のビット線対とで、交差部の抵抗(コンタクト
抵抗など)により、ビット線総抵抗にわずかな差異が生
じ、動作マージンを損うおそれがある。これを防止する
ために、中点交差Pを有する第1のビット線対には、第
2図に示す他の実施例のようにビット線のセンスアンプ
端に”偽似交差″ (Qで示す)を設けてもよい。
Although aluminum and polycide are used as the wiring materials for the bit lines in the above embodiments, the present invention is not limited thereto, and other wiring materials may be used. In addition, there is a slight difference in the total bit line resistance between the first bit line pair that crosses once and the second bit line pair that crosses twice due to the resistance at the intersection (contact resistance, etc.). There is a risk of hurting margins. To prevent this, the first bit line pair having a midpoint crossing P has a "pseudo crossing" (indicated by Q) at the sense amplifier end of the bit line as in the other embodiment shown in FIG. ) may be provided.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればビット線対を異なる配
線層を用いて、中点で交差したものと、1/4.3/4
の点で2回交差したものを交互に並べたので、動作マー
ジンの広い、アクセス時間の短い、製造の容易な半導体
記憶装置を得られる効果がある。
As described above, according to the present invention, bit line pairs are formed using different wiring layers, such as one that intersects at the midpoint, and one that intersects at the midpoint.
Since the points that intersect twice are arranged alternately, it is possible to obtain a semiconductor memory device that has a wide operating margin, short access time, and is easy to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例によるダイナミックR
AMのビット線部を示す模式平面図、第1図(b)は第
1図(alのl5−F線における略断面図、第2図は本
発明の他の実施例によるダイナミックRAMのビット線
部の略図、第3図は従来のダイナミックRAMのメモリ
アレイ部の概念的構成図、第4図は一般的なダイナミッ
クRAMの読み出し動作を説明するタイミング図である
。 図において、2はワード線、3a、3bは第1のビット
線対、3c、3dは第2のビット線対、4はメモリセル
、5はセンスアンプ、イはアルミニウム線部、口はポリ
サイド線部である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1(a) shows a dynamic R according to an embodiment of the present invention.
FIG. 1(b) is a schematic plan view showing the bit line portion of the AM, FIG. 3 is a conceptual block diagram of a memory array section of a conventional dynamic RAM, and FIG. 4 is a timing diagram illustrating a read operation of a general dynamic RAM. In the figure, 2 is a word line; 3a and 3b are a first bit line pair, 3c and 3d are a second bit line pair, 4 is a memory cell, 5 is a sense amplifier, A is an aluminum line portion, and the opening is a polycide line portion. Symbols indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)それぞれ相補なビット線が隣接して配置されてな
る複数のビット線対と、これに交差する複数のワード線
と、上記交差点の所要箇所に設けられたメモリセルとを
有するものにおいて、 上記ビット線対は1本おきに第1および第2の層にそれ
ぞれ配設され、抵抗は低いがあまり薄くできない第1の
線材料からなる第1の線、及び抵抗は比較的に高いが薄
く形成できる第2の線材料からなる第2の線で構成され
、 かつ、上記第1および第2の線がその長さの中央部で切
断され、互いに交差接続されて形成された第1のビット
線対と、上記第1および第2の線がその長さの1/4お
よび3/4の点で切断され、それぞれの点で互いに交差
接続されて形成された第2のビット線対とが交互に配列
されてなることを特徴とする半導体記憶装置。
(1) A device having a plurality of bit line pairs each having complementary bit lines arranged adjacent to each other, a plurality of word lines intersecting the bit line pairs, and memory cells provided at required locations at the intersections, The bit line pairs are arranged every other bit in the first and second layers, and the first line is made of a first line material that has a low resistance but cannot be made very thin, and the first line is made of a first line material that has a relatively high resistance but cannot be made thin. a second wire formed of a second wire material that can be formed, the first and second wires being cut midway along their lengths and cross-connected to each other; and a second bit line pair formed by cutting the first and second lines at 1/4 and 3/4 points of their lengths and cross-connecting them to each other at the respective points. A semiconductor memory device characterized by being arranged alternately.
JP63024544A 1988-02-04 1988-02-04 Semiconductor storage device Pending JPH01200663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63024544A JPH01200663A (en) 1988-02-04 1988-02-04 Semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63024544A JPH01200663A (en) 1988-02-04 1988-02-04 Semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH01200663A true JPH01200663A (en) 1989-08-11

Family

ID=12141092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63024544A Pending JPH01200663A (en) 1988-02-04 1988-02-04 Semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH01200663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258869A (en) * 1988-08-24 1990-02-28 Sony Corp Memory device
JPH06196655A (en) * 1992-11-27 1994-07-15 Nec Corp Semiconductor storage device
JP2000031420A (en) * 1998-05-30 2000-01-28 Lg Semicon Co Ltd Semiconductor memory element
WO2003044862A1 (en) * 2001-11-19 2003-05-30 Matsushita Electric Industrial Co., Ltd. Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258869A (en) * 1988-08-24 1990-02-28 Sony Corp Memory device
JPH06196655A (en) * 1992-11-27 1994-07-15 Nec Corp Semiconductor storage device
JP2000031420A (en) * 1998-05-30 2000-01-28 Lg Semicon Co Ltd Semiconductor memory element
WO2003044862A1 (en) * 2001-11-19 2003-05-30 Matsushita Electric Industrial Co., Ltd. Semiconductor device
CN1319173C (en) * 2001-11-19 2007-05-30 松下电器产业株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
US5629887A (en) Dynamic semiconductor memory device
US6501672B1 (en) Dynamic random access memory (DRAM) capable of canceling out complementary noise developed in plate electrodes of memory cell capacitors
US4694428A (en) Semiconductor memory
JP2660111B2 (en) Semiconductor memory cell
US6535451B2 (en) Semiconductor memory
US20030112695A1 (en) Dynamic ram-and semiconductor device
US4709351A (en) Semiconductor memory device having an improved wiring and decoder arrangement to decrease wiring delay
JPH0772991B2 (en) Semiconductor memory device
JP3464803B2 (en) Semiconductor memory cell
JP3212795B2 (en) Dynamic semiconductor memory device
KR20020018071A (en) Compact dual-port dram architecture system and method for making same
JPH01200663A (en) Semiconductor storage device
JP3237971B2 (en) Semiconductor storage device
JPH04278289A (en) Method for arranging word-line driver of semiconductor memory device
Min et al. Multiple twisted dataline techniques for multigigabit DRAMs
JP2000133784A (en) Ferroelectric memory device
US4511997A (en) Semiconductor memory device
JP3350241B2 (en) Semiconductor storage device
JPH01200662A (en) Semiconductor storage device
JPH0794597A (en) Dynamic semiconductor memory
JP3231931B2 (en) Semiconductor storage device
JPH04215472A (en) Structure for realization of balance of bit-line amplifier at dynamic ram (dram)
JPH02146769A (en) Semiconductor storage device having wiring structure
JP4063502B2 (en) DRAM memory
JPH0335490A (en) Dynamic semiconductor storage device