JPH01200007A - Oil firing combined plant - Google Patents

Oil firing combined plant

Info

Publication number
JPH01200007A
JPH01200007A JP2198688A JP2198688A JPH01200007A JP H01200007 A JPH01200007 A JP H01200007A JP 2198688 A JP2198688 A JP 2198688A JP 2198688 A JP2198688 A JP 2198688A JP H01200007 A JPH01200007 A JP H01200007A
Authority
JP
Japan
Prior art keywords
vapor
turbin
steam
heat recovery
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2198688A
Other languages
Japanese (ja)
Inventor
Nobuo Shimizu
暢夫 清水
Seiichi Kirikami
桐上 清一
Isao Sato
勲 佐藤
Fumiyuki Hirose
文之 広瀬
Osamu Arai
修 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2198688A priority Critical patent/JPH01200007A/en
Publication of JPH01200007A publication Critical patent/JPH01200007A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve combustibility in a plant having a vapor turbin driven by a vapor formed in a waste heat recovery boiler without using an auxiliary equipment by utilizing and extracted vapor from the vapor turbin for atomization of a liquid fuel driving a gas turbin. CONSTITUTION:The pressurized air from a compressor 5 is supplied to a combustor 10 to combuste a fuel. The expanded air is also introduced into a gas turbin 6 for working, and then the high temperature exhaust gas after working is introduced into a waste heat recovery boiler 9 to form a vapor. A vapor turbin 2 is driven by the formed vapor, whereby a generator 1 is driven, utilizing the axial tension of each turbin 6, 2. On the other hand, the vapor worked in the vapor turbin 2 is concentrated in a condenser 3, pressurized by a condensate pump 4, and then supplied to a waste heat recovery boiler 9. The pressurized vapor extracted from the vapor turbin 2 is injected into the combustor 10 through a desuperheater 7, whereby atomization of liquid fuel is achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油焚コンバインドサイクル発電所に係り、特
にガスタービン燃焼器の低NOx化、燃料油の微粒子に
好適なガスタービン燃焼器バーナへの蒸気噴射に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an oil-fired combined cycle power plant, and in particular to a gas turbine combustor burner suitable for reducing NOx in a gas turbine combustor and reducing particulates in fuel oil. Regarding steam injection.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭47−16808号に記載のよう
に、空気と液体燃料を同一ノズルから噴霧することによ
り、液体燃料の微粒化を行うものであり、排気ガス中の
窒素酸化物の低減については考慮されていない。又、本
公知例では、ノズルに加圧空気を入れる為のコンプレッ
サーが必要である。
The conventional device, as described in JP-A-47-16808, atomizes liquid fuel by spraying air and liquid fuel from the same nozzle, and removes nitrogen oxides from exhaust gas. Reduction is not considered. Furthermore, this known example requires a compressor to introduce pressurized air into the nozzle.

2番目の公知例は、特開昭49−85412に記載のよ
うに、水を燃焼室内に噴射し、燃焼室内温度を下げ、゛
排気ガス中の窒素酸化物の濃度を低減する。
A second known example, as described in Japanese Patent Application Laid-Open No. 49-85412, injects water into the combustion chamber to lower the temperature inside the combustion chamber and reduce the concentration of nitrogen oxides in the exhaust gas.

又、ノズルから空気を噴射して液体燃料を微粒化する0
本公知例では水ポンプと、空気圧縮機が必要である。
Also, air is injected from the nozzle to atomize the liquid fuel.
This known example requires a water pump and an air compressor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、液体燃料の微粒化には加圧空気を用い
、排ガス中の窒素酸加物の低減には加圧水を用いる為、
補機として空気圧縮器、水ポンプを必要とする欠点があ
った。
The above conventional technology uses pressurized air to atomize liquid fuel and pressurized water to reduce nitrogen oxides in exhaust gas.
It had the disadvantage of requiring an air compressor and water pump as auxiliary equipment.

本発明の目的は、補機を用いずに、液体燃料の微粒化、
排ガス中の窒素酸化物の低減を行うことにある。
The purpose of the present invention is to atomize liquid fuel without using auxiliary equipment.
The objective is to reduce nitrogen oxides in exhaust gas.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、コンバインド発電プラントに於いて加圧蒸
気を得易いことにより、廃熱回収ボイラーで得られた加
圧蒸気の一部を、ガスタービンの燃焼器内に噴射し、液
体燃料の微粒化、排気ガス中の窒素酸化物の低減に用い
ることにより達成される。
The above purpose is to make it easier to obtain pressurized steam in a combined power generation plant, so that a part of the pressurized steam obtained in the waste heat recovery boiler can be injected into the gas turbine combustor to atomize the liquid fuel. This can be achieved by using it to reduce nitrogen oxides in exhaust gas.

〔作用〕[Effect]

油焚コンバインドプラントでは、廃熱回収ボイラーで、
加圧蒸気が発生するので、この蒸気の一部をガスタービ
ンの燃焼器内に噴射することにより、液体燃料の微粒化
を行ない、燃焼の均−化及び安定化を計る。又、同時に
燃焼温度を適度に下げることにより、排気ガス中の窒素
酸化物の濃度を低減させることができる。
In oil-fired combined plants, waste heat recovery boilers
Since pressurized steam is generated, a portion of this steam is injected into the combustor of the gas turbine to atomize the liquid fuel and equalize and stabilize combustion. At the same time, by appropriately lowering the combustion temperature, the concentration of nitrogen oxides in the exhaust gas can be reduced.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は、一般的なコンバインドプラント発電所の概略
システムを示した図である。
FIG. 1 is a diagram showing a schematic system of a general combined plant power plant.

コンバインドプラントの概略系統を第1図に添って説明
する。
The schematic system of the combined plant will be explained with reference to FIG.

燃焼器10に供給された燃料が燃焼する。燃焼器10に
は、圧縮機5から加圧空気が流入し、燃焼反応が起こる
。膨張した空気はタービン6に入り、仕事をする。ター
ビンで仕事をした排気は温度が高い為、廃熱回収ボイラ
ー9にて蒸気を発生させる。この蒸気により、蒸気ター
ビン2を回転させる。ガスタービン6と、蒸気タービン
2の軸力で発電機1を回し電気を得る。蒸気タービン2
で仕事をした蒸気は、復水器3で凝縮し、復水ポンプ4
で加圧し廃熱回収ボイラー9に至る。
The fuel supplied to the combustor 10 is combusted. Pressurized air flows into the combustor 10 from the compressor 5, and a combustion reaction occurs. The expanded air enters the turbine 6 and does work. Since the temperature of the exhaust gas that has been worked by the turbine is high, steam is generated in the waste heat recovery boiler 9. This steam causes the steam turbine 2 to rotate. The axial forces of the gas turbine 6 and the steam turbine 2 rotate the generator 1 to obtain electricity. steam turbine 2
The steam that has worked in
The heat is pressurized and the heat is transferred to the waste heat recovery boiler 9.

蒸気タービン2から抽気した加圧蒸気は、減温器7を経
て燃焼器10に噴射され、液体燃料の微粒化、排ガス中
の窒素酸化物の低減を計る為に使用される。
Pressurized steam extracted from the steam turbine 2 is injected into the combustor 10 through the attemperator 7, and is used to atomize the liquid fuel and reduce nitrogen oxides in the exhaust gas.

従来の蒸気(又は水)噴射のプラクテイスは、ガスター
ビン負荷約25〜100%の間である。
Conventional steam (or water) injection practice is between about 25 and 100% gas turbine load.

この範囲が運用負荷範囲となっている5無負荷条件にお
いては、排気ガス温度が低く、充分に高圧で過熱された
蒸気を得ることができず、約25%負荷にてようやく蒸
気噴射に適した蒸気が得られるためである。
Under 5 no-load conditions, where this range is the operational load range, the exhaust gas temperature is low and it is not possible to obtain sufficiently high-pressure and superheated steam, which is suitable for steam injection only at about 25% load. This is because steam can be obtained.

従って本発明も同様なレンジにて蒸気噴射を行ない、モ
ータ駆動により空気圧縮器8を動かす噴霧空気の供給は
約25%負荷まで行う。
Therefore, the present invention also performs steam injection in a similar range, and supplies atomized air that drives the air compressor 8 by motor drive up to about 25% load.

起動時は、廃熱回収ボイラが充分な蒸気を発生させるこ
とができない為、空気噴霧方式から蒸気噴霧方式へ、G
T負荷約25%にて切換えざるを得なかった。
At startup, the waste heat recovery boiler cannot generate enough steam, so the G
I had no choice but to switch at a T load of about 25%.

しかし、停止時は廃熱回収ボイラに於いて、蒸気量、残
圧とも充分確保されている為、蒸気噴霧は、無負荷まで
保持してもかまわない。
However, when the waste heat recovery boiler is stopped, a sufficient amount of steam and residual pressure are secured in the waste heat recovery boiler, so the steam spray can be maintained until no load is applied.

又、デイリースタートストップ運転を行う、中間負荷を
背負う発電所として使用される場合、夜間、ガスタービ
ンが停止していても廃熱回収ボイラの蒸気量、残圧とも
充分確保される為、翌日のガスタービン起動(所謂ホッ
トスタート)に於いて、無負荷から蒸気噴霧方式に切換
えて良い。
In addition, when used as a power plant that performs daily start-stop operation and carries intermediate loads, even if the gas turbine is stopped at night, sufficient steam volume and residual pressure in the waste heat recovery boiler are ensured, so the next day's When starting the gas turbine (so-called hot start), it is possible to switch from no-load to the steam spray method.

燃焼器10に噴射する蒸気は、適切な圧力、温度でなけ
ればならない為、所定の蒸気温度になる様制御する。本
実施例の場合は流量調整弁11゜12.13.減温器7
で、制御することになる。
The steam injected into the combustor 10 must have appropriate pressure and temperature, so it is controlled to a predetermined steam temperature. In the case of this embodiment, the flow rate regulating valve 11°12.13. Desuperheater 7
And it will be controlled.

第2図は、第1図と殆ど同じ実施例であるが、昇圧ポン
プ15により復水を昇圧し、減温器7を直接接触式交換
器とし、熱交換性能を向上させた実施例である。
Fig. 2 shows an embodiment almost the same as Fig. 1, but it is an embodiment in which the pressure of condensate is increased by a boost pump 15, and the desuperheater 7 is a direct contact type exchanger to improve heat exchange performance. .

〔発明の効果〕〔Effect of the invention〕

空気と蒸気の燃料微粒化の為の噴霧流量を比較する。燃
料噴霧の効果が同じである為には、空気。
Compare the spray flow rates for air and steam fuel atomization. In order for the effect of fuel spray to be the same, air.

蒸気の運動エネルギーが等しくなければならない。The kinetic energy of the steam must be equal.

すなわち。Namely.

pav&2=ρs V s 2         ・・
・(1)但し、 a;空気 S:水蒸気 ρ:重密 度:流速 これを流量比に直すと ところで、 ・・・(3) RaT ・・・(4) sT 但し T:温度 P:圧力 R:気体定数 圧力、温度が両者とも等しいとすると(1)と(3)と
(4)式より。
pav&2=ρsVs2...
・(1) However, a; Air S: Water vapor ρ: Heavy density: Flow velocity By the way, converting this into a flow rate ratio, ...(3) RaT ...(4) sT However, T: Temperature P: Pressure R: If the gas constant pressure and temperature are both equal, then from equations (1), (3), and (4).

Rs V a 2=V s 2Ra すなわち蒸気の流量は空気の0.789  にて充分で
ある。
Rs V a 2=V s 2 Ra That is, the flow rate of steam is sufficient at 0.789 that of air.

従来噴霧空気流量は、圧縮機入口空気流量の約1.3%
 を使っており、従って蒸気流量は、1.3%X O,
789= 1% で良い。定格条件に於ける燃料流量は、圧縮器入口空気
流量の約2%、すなわち、 (蒸気流量)/(燃料流量)=0.5 である。
The conventional atomizing air flow rate is approximately 1.3% of the compressor inlet air flow rate.
Therefore, the steam flow rate is 1.3%X O,
789 = 1% is fine. The fuel flow rate under rated conditions is approximately 2% of the compressor inlet air flow rate, or (steam flow rate)/(fuel flow rate) = 0.5.

本(蒸気流量)/(燃料流量)=0.5 ではNOx低
下率0.6 である。
When (steam flow rate)/(fuel flow rate) = 0.5, the NOx reduction rate is 0.6.

現在環境保全の為要求されているNOx値は、45〜7
5ppmであり、上記蒸気流量は、燃料噴霧用に充分利
用できる。
The NOx value currently required for environmental conservation is 45 to 7.
5 ppm, and the above steam flow rate can be fully utilized for fuel atomization.

蒸燃比(蒸気と燃料の流量比)に対し、NOx濃度は指
数関数的に低下し、蒸燃比=1にて約35%になる。例
えば、オリジナルNOx値=180ppmVの場合、蒸
燃比=1の蒸気噴射にて180X0.35〜63ppm
V となる。
The NOx concentration decreases exponentially with respect to the vapor-fuel ratio (flow rate ratio of steam and fuel), and reaches approximately 35% at vapor-fuel ratio=1. For example, when the original NOx value = 180 ppmV, steam injection with vapor fuel ratio = 1 produces 180X0.35 to 63 ppm.
It becomes V.

従って蒸気流量として、圧縮器入口空気流量の約2%近
傍を利用すれば、環境保全NOx濃度制限値を満足する
ことができる。
Therefore, if the vapor flow rate is approximately 2% of the compressor inlet air flow rate, the environmental protection NOx concentration limit value can be satisfied.

本発明を用いれば、コンバインドプラントの効率が向上
する。従来の技術に比較して、運用負荷範囲で噴霧空気
圧縮機を駆動する必要がなくなり、定格負荷のガスター
ビン単体効率は、約0.75%向上する。又、コンバイ
ンドプラント効率は、コンバインド負荷寄与率を2/3
とすると、約0.5%向上する。
Using the present invention, the efficiency of combined plants is improved. Compared to conventional technology, there is no need to drive the atomizing air compressor in the operational load range, and the gas turbine unit efficiency at rated load is improved by about 0.75%. In addition, combined plant efficiency is calculated by reducing the combined load contribution rate to 2/3.
If this is the case, the improvement will be approximately 0.5%.

本発明を用いれば、システムの簡略化が可能である。運
用負荷範囲(25〜100%)にて高速回転体を有する
噴霧空気圧縮機の使用は不要となり、コンバインドプラ
ントのメカニカルな信頼性は向上する。
Using the present invention, it is possible to simplify the system. In the operational load range (25-100%), there is no need to use a spray air compressor with a high-speed rotating body, and the mechanical reliability of the combined plant is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるコンバインドプラント発電所概略
系統図、第2図は本発明による直接接触式減温器を用い
たコンバインドプラント発電所概略系統図である。 1・・・発電機、2・・・蒸気タービン、3・・・復水
器、4・・・復水ポンプ、5・・・圧縮機、6・・・タ
ービン、7・・・減温器、8・・・空気圧縮機、9・・
・廃熱回収ボイラー、10・・・燃焼器、11・・・流
量調整弁、12・・・流量調整弁、13・・・流量調整
弁、14・・・流量調整弁、15・・・昇圧ポンプ。
FIG. 1 is a schematic system diagram of a combined plant power plant according to the present invention, and FIG. 2 is a schematic system diagram of a combined plant power plant using a direct contact type attemperator according to the present invention. 1... Generator, 2... Steam turbine, 3... Condenser, 4... Condensate pump, 5... Compressor, 6... Turbine, 7... Desuperheater , 8... air compressor, 9...
・Waste heat recovery boiler, 10... Combustor, 11... Flow rate adjustment valve, 12... Flow rate adjustment valve, 13... Flow rate adjustment valve, 14... Flow rate adjustment valve, 15... Pressure increase pump.

Claims (1)

【特許請求の範囲】[Claims] 1、液体燃料により運転されるガスタービンと、ガスタ
ービンの排ガスを熱源とする排熱回収ボイラと、排熱回
収ボイラで発生した蒸気で駆動される蒸気タービンとを
有するコンバインドプラントにおいて、前記蒸気タービ
ンの抽気蒸気を液体燃料の微粒化に用いたことを特徴と
する油焚コンバインドプラント。
1. In a combined plant having a gas turbine operated by liquid fuel, an exhaust heat recovery boiler using the exhaust gas of the gas turbine as a heat source, and a steam turbine driven by steam generated in the exhaust heat recovery boiler, the steam turbine An oil-fired combined plant characterized in that extracted steam is used to atomize liquid fuel.
JP2198688A 1988-02-03 1988-02-03 Oil firing combined plant Pending JPH01200007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2198688A JPH01200007A (en) 1988-02-03 1988-02-03 Oil firing combined plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2198688A JPH01200007A (en) 1988-02-03 1988-02-03 Oil firing combined plant

Publications (1)

Publication Number Publication Date
JPH01200007A true JPH01200007A (en) 1989-08-11

Family

ID=12070349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2198688A Pending JPH01200007A (en) 1988-02-03 1988-02-03 Oil firing combined plant

Country Status (1)

Country Link
JP (1) JPH01200007A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769977A (en) * 1995-03-19 1998-06-23 Bridgestone Corporation Pneumatic tire with grooves having bending or winding portion
WO2001038699A1 (en) * 1999-11-29 2001-05-31 Siemens Westinghouse Power Corporation Sequential use of steam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769977A (en) * 1995-03-19 1998-06-23 Bridgestone Corporation Pneumatic tire with grooves having bending or winding portion
WO2001038699A1 (en) * 1999-11-29 2001-05-31 Siemens Westinghouse Power Corporation Sequential use of steam

Similar Documents

Publication Publication Date Title
US20010039797A1 (en) Advanced Cheng combined cycle
US8631657B2 (en) Thermodynamic cycles with thermal diluent
US5689948A (en) Method of operating a reheat power plant with steam injection
RU2015353C1 (en) Method of operation of steam-gas-turbine power plant
US8136740B2 (en) Thermodynamic cycles using thermal diluent
US5906095A (en) Method of operating a power station plant with steam cooling
US6223523B1 (en) Method of operating a power station plant
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
JP2001020757A (en) Method for humidifying and heating fuel gas and system for the same
EP0949406A3 (en) Method of heating gas turbine fuel in a combined cycle power plant using multi-component flow mixtures
US5715682A (en) Combined-cycle power generation system using waste matter as fuel
CN106871102B (en) The denitrating technique of full load
US5839269A (en) Method of operating a combined gas and power steam plant
JPH09217603A (en) Driving method of power plant
US6286297B1 (en) Steam cooled type combined cycle power generation plant and operation method thereof
JP2699808B2 (en) Steam-cooled gas turbine combined plant
JPH01200007A (en) Oil firing combined plant
JP3683521B2 (en) Cogeneration system operation method
JPH0323807B2 (en)
JPH11280413A (en) Nox concentration suppressing device for combined cycle power generation plant
JPH066908B2 (en) Cogeneration facility
US20200392844A1 (en) Conversion Chamber Power Device
JP2002004814A (en) Regeneration-type steam injection gas turbine generating apparatus
JPH048088B2 (en)
JPH11303647A (en) Combined power generation system