JPH01199485A - Manufacture of optical semiconductor element - Google Patents

Manufacture of optical semiconductor element

Info

Publication number
JPH01199485A
JPH01199485A JP63022701A JP2270188A JPH01199485A JP H01199485 A JPH01199485 A JP H01199485A JP 63022701 A JP63022701 A JP 63022701A JP 2270188 A JP2270188 A JP 2270188A JP H01199485 A JPH01199485 A JP H01199485A
Authority
JP
Japan
Prior art keywords
waveguide layer
optical waveguide
optical
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63022701A
Other languages
Japanese (ja)
Inventor
Shigeyuki Akiba
重幸 秋葉
Masatoshi Suzuki
正敏 鈴木
Hideaki Tanaka
英明 田中
Katsuyuki Uko
宇高 勝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP63022701A priority Critical patent/JPH01199485A/en
Publication of JPH01199485A publication Critical patent/JPH01199485A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To enable a semi-insulating semiconductor to grow stably and simply as it is in a buried state by a method wherein an element which forms a deep impurity level or its chemical compound is formed on the surface of an optical waveguide, and the above element is introduced at a process that a high resistive semiconductor is buried into a part or the whole of the side face of the optical waveguide layer. CONSTITUTION:Optical waveguide layers composed of an optical waveguide layer 3 and other waveguide layers formed of clad layers 2 and 4 whose refractive indexes are smaller than that of the waveguide layer 3 are provided, where at least the optical waveguide layer 3 out of the waveguide layers is formed into a mesa shape, and when an optical semiconductor element is manufactured through a process that a high resistive semiconductor is buried into the side face of the mesa-shaped optical waveguide layer 3, an element 12 which forms a deep impurity level or its chemical compound is formed on the face of the above optical waveguide layer 3 and the high resistive semiconductor 6 is buried into a part or the whole of the side face of the waveguide layer 3 by introducing the element 12 into a semiconductor of non-high resistance at a process that the high resistive semiconductor 6 is buried into a part or the whole of the side face of the waveguide layer 3. For instance, an element such as the element which forms a deep impurity level is iron.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は高抵抗半導体による埋め込み構造の光半導体素
子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing an optical semiconductor element having a buried structure using a high-resistance semiconductor.

(従来技術とその問題点) 光フアイバ通信技術は光ファイバの超低損失性と光が本
質的に有する超広帯域性を利用して進展し、伝送のます
ますの長距離化と大容量化の研究が世界的に進められて
いる。光ファイバの損失が理論的な限界にまで達した今
日では、特に伝送の高速化、大容量化の研究が重要にな
ってきている。
(Conventional technology and its problems) Optical fiber communication technology has progressed by taking advantage of the ultra-low loss properties of optical fibers and the ultra-broadband properties that light inherently has, and has enabled transmission of increasingly longer distances and larger capacities. Research is underway worldwide. Nowadays, the loss of optical fibers has reached its theoretical limit, and research into increasing transmission speed and capacity has become particularly important.

光信号を高速にオン・オフする技術としては、現在では
一般に半導体レーザを直接変調する方法がとられており
、数G)Iz以上の変調も容易に行われるようになりつ
つある。然るに、半導体レーザの高速直接変調では発振
素子である半導体レーザの電流を高速に変化させるため
、発振波長が時間的に大きく変動し、結果的に発振スペ
クトル幅が変調帯域のスペクトル幅に比べて異常に大き
く広がってしまう。従って、長距離、あるいは高速の伝
送では光ファイバの波長分散の影響を大きく受け、受信
される光パルスが歪んでしまうため、良好な伝送特性が
得られない。そこでこのような問題を避けるため、一方
では半導体レーザの出力は一定に保持し、外部の光変調
素子で高速な変調を行う方法も近年検討されている。
Currently, as a technique for rapidly turning on and off optical signals, a method of directly modulating a semiconductor laser is generally used, and modulation of several G)Iz or more is becoming easy to perform. However, in high-speed direct modulation of a semiconductor laser, the current of the semiconductor laser, which is the oscillation element, changes rapidly, so the oscillation wavelength fluctuates greatly over time, and as a result, the oscillation spectral width becomes abnormal compared to the spectral width of the modulation band. It will spread greatly. Therefore, long-distance or high-speed transmission is greatly affected by the wavelength dispersion of the optical fiber, and the received optical pulses are distorted, making it impossible to obtain good transmission characteristics. In order to avoid such problems, a method has recently been considered in which the output of the semiconductor laser is held constant and high-speed modulation is performed using an external optical modulation element.

このような半導体レーザや外部光変調素子は将来の光伝
送技術の分野では重要な光半導体素子となり、その変調
帯域として数GHz〜10GHz、あるいはそれ以上が
要求される。このように広帯域な変調帯域を実現するた
めには素子の寄生容量をきわめて小さく制限する必要が
あり、近年高抵抗半導体を用いた埋め込み構造の光半導
体素子の研究開発が行われつつある。
Such semiconductor lasers and external light modulation devices will become important optical semiconductor devices in the field of future optical transmission technology, and a modulation band of several GHz to 10 GHz or more will be required. In order to achieve such a wide modulation band, it is necessary to limit the parasitic capacitance of the device to an extremely low level, and in recent years, research and development of buried-structure optical semiconductor devices using high-resistance semiconductors has been underway.

第1図は従来の光変調素子の一例の模式図である。n型
InP基板1の上に、n型クラッド層となるn型1nP
層2、光導波路層となるI nGaAsP変調導波路層
3、p型りラッド層となるp型1nP層4、およびp型
1 nGaAsPキャップ層5が積層されており、かつ
、これらの層がメサ状に形成され、メサの周囲が半絶縁
性1nP6で埋め込まれている。ここで、n型1nP層
2とp型1nP層4の屈折率はInGaAsP変調導波
路層3の屈折率よりも小さく、このInGaAsP変調
導波路層3で基本的に光導波路層を構成している。そし
て、p型電極101およびn型電極102がそれぞれp
型1 nGaAsPキャップ層5とn型1nP基板1に
接するように形成されている。103はp型電極にワイ
ヤボンディングを行うためのp型電極101用のパッド
部を示す。
FIG. 1 is a schematic diagram of an example of a conventional light modulation element. On the n-type InP substrate 1, there is an n-type 1nP layer which becomes the n-type cladding layer.
A layer 2, an InGaAsP modulation waveguide layer 3 serving as an optical waveguide layer, a p-type 1nP layer 4 serving as a p-type rad layer, and a p-type 1nGaAsP cap layer 5 are stacked, and these layers form a mesa layer. The periphery of the mesa is filled with semi-insulating 1nP6. Here, the refractive index of the n-type 1nP layer 2 and the p-type 1nP layer 4 is smaller than the refractive index of the InGaAsP modulation waveguide layer 3, and this InGaAsP modulation waveguide layer 3 basically constitutes an optical waveguide layer. . Then, the p-type electrode 101 and the n-type electrode 102 are each p
It is formed so as to be in contact with the type 1 nGaAsP cap layer 5 and the n type 1nP substrate 1. Reference numeral 103 indicates a pad portion for the p-type electrode 101 for performing wire bonding to the p-type electrode.

このような光変調素子では1 nGaAs P変調導波
路層3に光を入射してp型電極101にマイナス、n型
電極102にプラスの電圧を印加することによって入射
光を変調することができる。例えば、入射光のフォトン
エネルギーがI nGaAsP変訓導波路層3のエネル
ギーバンドギャップよりも30〜60 m e V程度
小さくなるように設計すると、印加電圧がない場合には
入射光はInGaAs P変調導波路層3ではほとんど
吸収されずそのまま透過する。しかし、電圧を印加する
と入射光はほとんど吸収される。従って、入射光は強度
変調される。また、入射光のフォトンエネルギーがI 
nGaAs P変調導波路層3のエネルギーバンドギャ
ップよりも十分小さくなるように設計すれば、入射光の
強度は一定に保ったまま位相を変富周することができる
In such a light modulation element, the incident light can be modulated by inputting light into the 1 nGaAs P modulation waveguide layer 3 and applying a negative voltage to the p-type electrode 101 and a positive voltage to the n-type electrode 102. For example, if the photon energy of the incident light is designed to be approximately 30 to 60 m e V smaller than the energy bandgap of the InGaAsP modulated waveguide layer 3, the incident light will pass through the InGaAsP modulated waveguide layer 3 when no voltage is applied. In layer 3, almost no light is absorbed and it passes through as is. However, when a voltage is applied, most of the incident light is absorbed. Therefore, the incident light is intensity modulated. Also, the photon energy of the incident light is I
If designed to be sufficiently smaller than the energy bandgap of the nGaAs P modulation waveguide layer 3, the phase of the incident light can be varied while keeping the intensity of the incident light constant.

以上は、第1図の構成を光変調素子として説明したが、
p型電極101にプラス、n型電極102にマイナスの
電源を供給することにより、発光素子として用いること
も可能である。
The configuration shown in FIG. 1 has been described above as a light modulation element, but
By supplying a positive power to the p-type electrode 101 and a negative power to the n-type electrode 102, it is also possible to use it as a light emitting element.

第1図のような光半導体素子を製造する場合には、従来
n型[nP基板lの全面上にn型1nP層2、InGa
AsP変調導波路層3、p型InP層4、およびp型1
nGaAsPキャップ層5をエピタキシャル成長させた
後、半絶縁性InP6を埋め込む領域を選択的にエツチ
ングしてメサ状の光導波路層を形成し、エツチングした
部分に高抵抗の半絶縁性1nP6をエピタキシャル成長
させている。半絶縁性InP6のエピタキシャル成長は
ハイドライド気相成長や有機金属気相成長によって行わ
れており、成長時の不純物ドーパントとして鉄が主に用
いられている。然るに、ハイドライド気相成長や有機金
属気相成長によって半絶縁性のInF3を成長させる技
術は、ドーパントとして不安定な鉄の化合物ガスとして
成長装置に導入するため、導入するガスの制御が複雑で
難しい上に、成長装置を著しく汚染する。従って、−度
このような半絶縁性1nP6の成長を行うと、通常のn
型InP層2やp型1nP層4の結晶成長はできな(な
るか、又は、新たに鉄ドーパント専用の成長装置を必要
とする。
When manufacturing an optical semiconductor device as shown in FIG.
AsP modulation waveguide layer 3, p-type InP layer 4, and p-type 1
After epitaxially growing the nGaAsP cap layer 5, the region where semi-insulating InP6 is to be buried is selectively etched to form a mesa-shaped optical waveguide layer, and high-resistance semi-insulating 1nP6 is epitaxially grown on the etched portion. . Epitaxial growth of semi-insulating InP6 is performed by hydride vapor phase epitaxy or organometallic vapor phase epitaxy, and iron is mainly used as an impurity dopant during growth. However, in the technique of growing semi-insulating InF3 by hydride vapor phase epitaxy or organometallic vapor phase epitaxy, control of the introduced gas is complicated and difficult because it is introduced into the growth apparatus as an unstable iron compound gas as a dopant. Moreover, it can seriously contaminate the growth equipment. Therefore, if you grow semi-insulating 1nP6 in this way, normal nP6 will grow
Crystal growth of the type InP layer 2 and the p-type 1nP layer 4 is impossible (or a new growth apparatus exclusively for iron dopants is required).

このように、従来の半絶縁性半導体6の埋め込み成長を
伴う光半導体素子の製造方法では、良好な半絶縁性半導
体の埋め込み成長が複雑困難である上に、成長装置の汚
染が著しいという欠点があった。
As described above, in the conventional manufacturing method of an optical semiconductor device that involves buried growth of a semi-insulating semiconductor 6, not only is it complicated and difficult to achieve good buried growth of a semi-insulating semiconductor 6, but also the growth equipment is significantly contaminated. there were.

(発明の目的及び特徴) 本発明は、上述した従来技術の問題点を解決するために
なされたもので、半絶縁性半導体の埋め込み成長を安定
かつ簡単に行うことが可能な光半導体素子の製造方法を
提供することを目的とする。
(Objects and Features of the Invention) The present invention has been made to solve the problems of the prior art described above, and is to manufacture an optical semiconductor device that can stably and easily perform embedded growth of a semi-insulating semiconductor. The purpose is to provide a method.

本発明の特徴は、光導波路層と該光導波路層よりも屈折
率の小なる複数のクラッド層とから形成される光半導体
導波路のうち、少なくとも前記光導波路層をメサ状に形
成した後、該メサ状に形成された前記光導波路層の側面
を高抵抗半導体で埋め込む工程を含む光半導体素子の製
造方法において、深い不純物準位を形成する元素または
該元素の化合物を前記光導波路の表面に形成し、前記光
導波路層の側面の一部もしくは全部に前記高抵抗半導体
を埋め込む工程時に高抵抗を有しない半導体内に前記元
素が取り込まれるように形成することにより、前記光導
波路層の側面の一部もしくは全部が前記高抵抗半導体で
埋め込まれるようにしたことにある。
A feature of the present invention is that in an optical semiconductor waveguide formed from an optical waveguide layer and a plurality of cladding layers having a lower refractive index than the optical waveguide layer, after forming at least the optical waveguide layer into a mesa shape, A method for manufacturing an optical semiconductor device including a step of burying a side surface of the optical waveguide layer formed in a mesa shape with a high-resistance semiconductor, wherein an element that forms a deep impurity level or a compound of the element is applied to the surface of the optical waveguide. By forming the element so that it is incorporated into a semiconductor that does not have high resistance during the step of forming and embedding the high resistance semiconductor in a part or all of the side surface of the optical waveguide layer, the side surface of the optical waveguide layer is The reason lies in that a portion or the entirety thereof is embedded with the high-resistance semiconductor.

(発明の構成及び作用) 以下、図面を用いて本発明の詳細な説明する。(Structure and operation of the invention) Hereinafter, the present invention will be explained in detail using the drawings.

(実施例1) 第2図(a)〜(e)は本発明による第1の実施例であ
り、第1図に示した光変調素子を用いて製造する場合の
工程図である。以下に、図面の番号に従って説明する。
(Example 1) FIGS. 2(a) to 2(e) show a first example of the present invention, and are process diagrams for manufacturing using the light modulation element shown in FIG. 1. Description will be made below according to the drawing numbers.

(a)まず、第2図(a)のようにn型InP基板上1
に光半導体導波路を形成するn型1nP層2、InGa
AsP変調導波路層3、P型1nP層4およびp型1n
GaAsPキャンプ層5を気相成長方法や液相成長方法
などによって順次エピタキシャル成長させる。
(a) First, as shown in Fig. 2(a), 1
n-type 1nP layer 2 forming an optical semiconductor waveguide, InGa
AsP modulation waveguide layer 3, P type 1nP layer 4 and p type 1n
The GaAsP camp layer 5 is epitaxially grown in sequence by a vapor phase growth method, a liquid phase growth method, or the like.

(b)次に、p型1nGaAsPキャyプ層5の表面に
窒化シリコン膜11及び本発明の特徴である鉄やクロム
などの深い不純物準位を半導体内に形成する元素または
その元素の化合物を形成する。
(b) Next, on the surface of the p-type 1nGaAsP cap layer 5, a silicon nitride film 11 and an element or a compound of the element that forms a deep impurity level in the semiconductor, such as iron or chromium, which is a feature of the present invention, are applied. Form.

なお、本実施例では、鉄からなる薄膜12を例にとり説
明するが、酸化鉄等の化合物でも良い。
In this embodiment, the thin film 12 made of iron will be explained as an example, but a compound such as iron oxide may also be used.

(c)少なくとも光半導体導波路となるI nGaAs
P変調導波路層3をメサ状にエツチングする。
(c) InGaAs which becomes at least an optical semiconductor waveguide
The P modulation waveguide layer 3 is etched into a mesa shape.

ここではn型1nP層2の一部とp型1nP層4も同様
にメサエッチングされている。
Here, a part of the n-type 1nP layer 2 and the p-type 1nP layer 4 are also mesa-etched in the same way.

(d)ハイドライド気相成長や有機金属気相成長を用い
てInPエピタキシャル成長を行う。このとき、本発明
では光半導体導波路の表面に形成された鉄薄膜12の鉄
が埋め込み半導体であるInF3中に取り込まれて、エ
ピタキシャル成長した半導体層6は半絶縁性となる。
(d) InP epitaxial growth is performed using hydride vapor phase epitaxy or organometallic vapor phase epitaxy. At this time, in the present invention, the iron of the iron thin film 12 formed on the surface of the optical semiconductor waveguide is incorporated into the buried semiconductor InF3, and the epitaxially grown semiconductor layer 6 becomes semi-insulating.

(e)最後に、同図(e)のように窒化シリコン膜11
と鉄薄膜12をエツチングにより除去した後、p型電極
101とn型電極102とを真空蒸着により形成する。
(e) Finally, as shown in (e) of the same figure, the silicon nitride film 11
After removing the iron thin film 12 by etching, a p-type electrode 101 and an n-type electrode 102 are formed by vacuum evaporation.

このように本発明では半導体を半絶縁性とするための不
純物ドーパントが光半導体導波路の表面に形成された鉄
薄膜I2より自然に供給されるため、従来のように、鉄
化合物のガスなどを流す必要がない。従って、製造プロ
セスが大幅に簡略化されると共に、成長装置が汚染され
ることもない。
In this way, in the present invention, the impurity dopant for making the semiconductor semi-insulating is naturally supplied from the iron thin film I2 formed on the surface of the optical semiconductor waveguide. No need to flush. Therefore, the manufacturing process is greatly simplified and the growth equipment is not contaminated.

(実施例2) 第3図(a)〜(f)は本発明による第2の実施例であ
り、実施例1と同様に第1図による光変調素子を用いて
製造する場合の工程図である。
(Example 2) FIGS. 3(a) to 3(f) show a second example according to the present invention, and are process diagrams for manufacturing using the light modulation element shown in FIG. 1 as in Example 1. be.

(a)まずn型1nP基板1上に光半導体導波路を形成
するn型1nP層2、I nGaAs P変調導波路層
3、p型1nP層4、およびp型1nGaAs Pキャ
ン1層5を気相成長方法や液相成長方法などによって順
次エピタキシャル成長させる。
(a) First, an n-type 1nP layer 2, an InGaAs P modulation waveguide layer 3, a p-type 1nP layer 4, and a p-type 1nGaAs P can 1 layer 5, which form an optical semiconductor waveguide, are placed on an n-type 1nP substrate 1. Epitaxial growth is performed sequentially using a phase growth method, a liquid phase growth method, or the like.

(b)次に、p型1 nCyaAs Pキャン1層5の
表面に窒化シリコン膜11及び本発明の特徴である鉄や
クロムなどの深い不純物準位を半導体内に形成する元素
またはその元素の化合物を形成する。
(b) Next, on the surface of the p-type 1 nCyaAs P can 1 layer 5, a silicon nitride film 11 and an element or a compound of the element that forms a deep impurity level in the semiconductor, such as iron or chromium, which is a feature of the present invention, are added. form.

なお、本実施例では、鉄からなる薄膜12を例にとり説
明するが、酸化鉄等の化合物でも良い。
In this embodiment, the thin film 12 made of iron will be explained as an example, but a compound such as iron oxide may also be used.

(C)少なくとも光導波路となるI nGaAs P変
調導波路層3をメサ状にエツチングする。ここではn型
1nP層2の一部とp型1nP層4も同様にメサエッチ
ングされている。ここまでは、実施例1と同じである。
(C) At least the InGaAsP modulation waveguide layer 3, which will become an optical waveguide, is etched into a mesa shape. Here, a part of the n-type 1nP layer 2 and the p-type 1nP layer 4 are also mesa-etched in the same way. The steps up to this point are the same as in the first embodiment.

(d)さらに、実施例2の特徴として第3図(c)のご
とく、光導波路層であるI nGaAs P変調導波路
層3のみを選択的にエツチングする。
(d) Further, as a feature of the second embodiment, as shown in FIG. 3(c), only the InGaAs P modulation waveguide layer 3, which is an optical waveguide layer, is selectively etched.

(e)ハイドライド気相成長や有機金属気相成長を用い
てjnPエピタキシャル成長を行う。ただし、本実施例
ではエツチングした溝の全てを埋め込まずに、(d)の
工程でエツチングした部分にrnP6が成長したところ
で停止している。このとき光半導体導波路の表面に形成
された鉄薄膜12の鉄が埋め込み半導体であるInP層
6中に取り込まれて、エピタキシャル成長した半導体層
6は半絶縁性となる。
(e) Perform jnP epitaxial growth using hydride vapor phase epitaxy or organometallic vapor phase epitaxy. However, in this example, the etched grooves were not completely filled, and the etching stopped when rnP6 grew in the etched portion in the step (d). At this time, the iron of the iron thin film 12 formed on the surface of the optical semiconductor waveguide is incorporated into the InP layer 6, which is a buried semiconductor, and the epitaxially grown semiconductor layer 6 becomes semi-insulating.

(f)溝の部分をポリイミド13で埋めた後、窒化シリ
コン膜11をエツチングにより除去し、p型電極101
とn型電極102とを真空蒸着により形成する。
(f) After filling the trench with polyimide 13, the silicon nitride film 11 is removed by etching, and the p-type electrode 101 is etched.
and n-type electrode 102 are formed by vacuum evaporation.

実施例2では、溝部分がInP層6に比べて誘電率の小
さい絶縁体であるポリイミドによって埋め込まれている
ため、寄生容量がより小さくなり高周波特性が改善され
る。また、埋め込み成長時間も短縮されるため、製造プ
ロセスの一層の簡略化が図られる。
In Example 2, the groove portion is filled with polyimide, which is an insulator with a lower dielectric constant than the InP layer 6, so that the parasitic capacitance is further reduced and the high frequency characteristics are improved. Further, since the buried growth time is shortened, the manufacturing process can be further simplified.

以上の説明では、半導体としてInP系を用いて説明を
行ったが、GaAs系の半導体やほかの材料にも応用で
きる。また、不純物ドーパントとして鉄をもちいたがク
ロムやコバルトなど深い不純物準位を形成するほかの元
素及びそれらの元素の化合物でも適用可能である。
Although the above explanation has been made using an InP-based semiconductor, the present invention can also be applied to GaAs-based semiconductors and other materials. Furthermore, although iron is used as the impurity dopant, other elements that form deep impurity levels, such as chromium and cobalt, and compounds of these elements can also be used.

(発明の効果) 以上、詳細に説明したように、本発明は半導体を半絶縁
性とするための不純物ドーパントが光半導体導波路の表
面に形成された不純物ドーパントの元素もしくはその元
素の化合物により自然に供給されるため、従来のように
鉄化合物のガスなどを流す必要がなく、製造プロセスが
大幅に簡略化されると共に成長装置が汚染されることも
なくなる。
(Effects of the Invention) As described above in detail, the present invention provides an impurity dopant for making a semiconductor semi-insulating by naturally forming an impurity dopant element or a compound of the element formed on the surface of an optical semiconductor waveguide. Therefore, there is no need to flow an iron compound gas or the like as in the conventional case, and the manufacturing process is greatly simplified and the growth apparatus is not contaminated.

また、光導波路層の側面全部を高抵抗半導体で埋め込む
ことにより、製造プロセスが簡単となる。
Furthermore, the manufacturing process is simplified by filling all the side surfaces of the optical waveguide layer with a high-resistance semiconductor.

光導波路層の側面のうち光導波路層の近傍を高抵抗半導
体で埋め込み、他の光導波路層の側面を前記高抵抗半導
体よりも誘電率の小なる絶縁体で埋め込むことにり、寄
生容量がより小さくなり高周波特性が改善される。不純
物ドーパントとして鉄、クロム及びコバルトを用いるこ
とにより、深い不純物単位を形成することができる。
By burying the side surface of the optical waveguide layer near the optical waveguide layer with a high-resistance semiconductor, and burying the side surface of the other optical waveguide layer with an insulator having a lower permittivity than the high-resistance semiconductor, parasitic capacitance can be further reduced. It becomes smaller and the high frequency characteristics are improved. By using iron, chromium, and cobalt as impurity dopants, deep impurity units can be formed.

従って、本発明により、半絶縁性半導体を用いた埋め込
み構造の半導体レーザや光変調素子などの高性能の光半
導体素子が容易に製造され、超高速光フアイバ伝送など
の素子として応用が可能となり、その効果は極めて大で
ある。
Therefore, according to the present invention, high-performance optical semiconductor devices such as buried structure semiconductor lasers and optical modulation devices using semi-insulating semiconductors can be easily manufactured, and can be applied as devices for ultra-high-speed optical fiber transmission, etc. The effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光半導体素子の例を示す斜視図、第2図
(a)〜(e)及び第3図(a)〜(f)は本発明によ
る第1及び第2の実施例としての光半導体素子の製造工
程を説明するための断面図である。 1 ・n型InP基板、 2 ・n型1nP層、3・・
・I nGaAs P変調導波路層、 4・・・p型I
nP層、 5 ・P型1nGaAsPキャンプ層、 6
・・・半絶縁性InP層、  11・・・窒化シリコン
膜、  12・・・鉄薄膜、  13・・・ポリイミド
、lot・・・p型電極、  102・・・n型電極、
103・・・p弔電極用のパッド。 特許出願人  国際電信電話株式会社
FIG. 1 is a perspective view showing an example of a conventional optical semiconductor device, and FIGS. 2(a) to (e) and 3(a) to (f) show first and second embodiments of the present invention. FIG. 3 is a cross-sectional view for explaining the manufacturing process of the optical semiconductor device. 1 ・n-type InP substrate, 2 ・n-type 1nP layer, 3...
・InGaAs P modulation waveguide layer, 4...p type I
nP layer, 5 ・P type 1nGaAsP camp layer, 6
... Semi-insulating InP layer, 11... Silicon nitride film, 12... Iron thin film, 13... Polyimide, lot... P-type electrode, 102... N-type electrode,
103... Pad for p-electrode. Patent applicant International Telegraph and Telephone Corporation

Claims (8)

【特許請求の範囲】[Claims] (1)光導波路層と該光導波路層よりも屈折率の小なる
複数のクラッド層とから形成される光半導体導波路のう
ち、少なくとも前記光導波路層をメサ状に形成した後、
該メサ状に形成された前記光導波路層の側面を高抵抗半
導体で埋め込む工程を含む光半導体素子の製造方法にお
いて、 深い不純物準位を形成する元素または該元素の化合物を
前記光導波路の表面に形成し、 前記光導波路層の側面の一部もしくは全部に前記高抵抗
半導体を埋め込む工程時に高抵抗を有しない半導体内に
前記元素が取り込まれるように形成することにより、前
記光導波路層の側面の一部もしくは全部が前記高抵抗半
導体で埋め込まれることを特徴とする光半導体素子の製
造方法。
(1) Of an optical semiconductor waveguide formed from an optical waveguide layer and a plurality of cladding layers having a refractive index lower than that of the optical waveguide layer, after forming at least the optical waveguide layer into a mesa shape,
A method for manufacturing an optical semiconductor device including a step of burying a side surface of the optical waveguide layer formed in a mesa shape with a high-resistance semiconductor, wherein an element that forms a deep impurity level or a compound of the element is added to the surface of the optical waveguide. and embedding the high-resistance semiconductor in a part or all of the side surface of the optical waveguide layer, the element is incorporated into the semiconductor that does not have high resistance, so that the side surface of the optical waveguide layer is A method for manufacturing an optical semiconductor device, characterized in that a part or all of the device is embedded with the high-resistance semiconductor.
(2)前記光導波路層の側面全部が前記高抵抗半導体で
埋め込まれることを特徴とする特許請求の範囲第1項記
載の光半導体素子の製造方法。
(2) The method for manufacturing an optical semiconductor device according to claim 1, wherein the entire side surface of the optical waveguide layer is filled with the high-resistance semiconductor.
(3)前記光導波路層の側面のうち前記光導波路層の近
傍を前記高抵抗半導体で埋め込み、他の前記光導波路層
の側面が前記高抵抗半導体よりも誘電率の小なる絶縁体
で埋め込まれることを特徴とする特許請求の範囲第1項
記載の光半導体素子の製造方法。
(3) A side surface of the optical waveguide layer near the optical waveguide layer is buried with the high-resistance semiconductor, and another side surface of the optical waveguide layer is buried with an insulator having a dielectric constant lower than that of the high-resistance semiconductor. A method for manufacturing an optical semiconductor device according to claim 1, characterized in that:
(4)前記深い不純物準位を形成する元素が鉄であるこ
とを特徴とする特許請求の範囲第1項記載の光半導体素
子の製造方法。
(4) The method for manufacturing an optical semiconductor device according to claim 1, wherein the element forming the deep impurity level is iron.
(5)前記深い不純物準位を形成する元素がクロムであ
ることを特徴とする特許請求の範囲第1項記載の光半導
体素子の製造方法。
(5) The method for manufacturing an optical semiconductor device according to claim 1, wherein the element forming the deep impurity level is chromium.
(6)前記深い不純物準位を形成する元素がコバルトで
あることを特徴とする特許請求の範囲第1項記載の光半
導体素子の製造方法。
(6) The method for manufacturing an optical semiconductor device according to claim 1, wherein the element forming the deep impurity level is cobalt.
(7)前記深い不純物準位を形成する元素の化合物が酸
化鉄であることを特徴とする特許請求の範囲第1項記載
の光半導体素子の製造方法。
(7) The method for manufacturing an optical semiconductor device according to claim 1, wherein the compound of the element forming the deep impurity level is iron oxide.
(8)前記絶縁体がポリイミドであることを特徴とする
特許請求の範囲第3項記載の光半導体素子の製造方法。
(8) The method for manufacturing an optical semiconductor device according to claim 3, wherein the insulator is polyimide.
JP63022701A 1988-02-04 1988-02-04 Manufacture of optical semiconductor element Pending JPH01199485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63022701A JPH01199485A (en) 1988-02-04 1988-02-04 Manufacture of optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63022701A JPH01199485A (en) 1988-02-04 1988-02-04 Manufacture of optical semiconductor element

Publications (1)

Publication Number Publication Date
JPH01199485A true JPH01199485A (en) 1989-08-10

Family

ID=12090170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63022701A Pending JPH01199485A (en) 1988-02-04 1988-02-04 Manufacture of optical semiconductor element

Country Status (1)

Country Link
JP (1) JPH01199485A (en)

Similar Documents

Publication Publication Date Title
US11550099B2 (en) Photonics optoelectrical system
US8741684B2 (en) Co-integration of photonic devices on a silicon photonics platform
US5917981A (en) Semiconductor optical waveguide
US8938134B2 (en) Hybrid optical modulator for photonic integrated circuit devices
US20200166703A1 (en) Photonics structure with integrated laser
JPH05502761A (en) Novel structure of indium phosphide/indium gallium phosphide arsenide buried heterostructure semiconductor laser and its manufacturing method
US11251326B2 (en) Method of fabrication of a photonic chip comprising an SACM-APD photodiode optically coupled to an integrated waveguide
US20220393432A1 (en) Bragg grating and method for manufacturing the same and distributed feedback laser device
CN113050304B (en) Electroabsorption modulator with improved electro-optic uniformity
EP1719003B1 (en) Buried heterostructure device fabricated by single step mocvd
JP2943510B2 (en) Tunable semiconductor laser device
CN114284865B (en) Active feedback distributed feedback laser and manufacturing method thereof
US6835585B2 (en) Method of fabricating electro-absorption modulator integrated laser
US20220244580A1 (en) Capacitor resonator modulator
EP3416252A1 (en) One step sibh for integrated circuits
JPH01199485A (en) Manufacture of optical semiconductor element
JPH01199484A (en) Manufacture of optical semiconductor element
WO2001067570A2 (en) Buried mesa semiconductor device
JPH02212804A (en) Optical semiconductor element and production thereof
EP4210185A1 (en) Integrated opto-electronic device for flip-chip integration
KR100320172B1 (en) Semiconductor laser diode and its manufacturing method
US20230244029A1 (en) Photonics optoelectrical system
US20230318263A1 (en) Optoelectronic device comprising a iii-v semiconductor membrane laser source forming a lateral p-i-n junction
KR900005128B1 (en) Photo array manufacturing method
KR20050018169A (en) Integrated optical device and method for fabricating the same