JPH01197456A - Removal of acrolein - Google Patents
Removal of acroleinInfo
- Publication number
- JPH01197456A JPH01197456A JP2359588A JP2359588A JPH01197456A JP H01197456 A JPH01197456 A JP H01197456A JP 2359588 A JP2359588 A JP 2359588A JP 2359588 A JP2359588 A JP 2359588A JP H01197456 A JPH01197456 A JP H01197456A
- Authority
- JP
- Japan
- Prior art keywords
- acrolein
- acetic acid
- allyl acetate
- gas
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 title claims abstract description 128
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 157
- HVAMZGADVCBITI-UHFFFAOYSA-M pent-4-enoate Chemical compound [O-]C(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-M 0.000 claims abstract description 43
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims abstract description 24
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims abstract description 24
- 239000003054 catalyst Substances 0.000 claims abstract description 19
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 9
- 239000007864 aqueous solution Substances 0.000 claims abstract description 8
- 238000004821 distillation Methods 0.000 claims abstract description 8
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 38
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- 238000010521 absorption reaction Methods 0.000 claims description 14
- 229910052763 palladium Inorganic materials 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 3
- 239000006227 byproduct Substances 0.000 abstract description 7
- 239000000243 solution Substances 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 description 18
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 239000002994 raw material Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000001569 carbon dioxide Substances 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- PQLVXDKIJBQVDF-UHFFFAOYSA-N acetic acid;hydrate Chemical compound O.CC(O)=O PQLVXDKIJBQVDF-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 6
- 238000007872 degassing Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 235000011056 potassium acetate Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- -1 potassium acetate Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- TXECTBGVEUDNSL-UHFFFAOYSA-N 1-acetyloxyprop-2-enyl acetate Chemical compound CC(=O)OC(C=C)OC(C)=O TXECTBGVEUDNSL-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 101100167062 Caenorhabditis elegans chch-3 gene Proteins 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はプロピレン、酸素及び酢酸を気相で反応させる
ことによって酢酸アリルを製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing allyl acetate by reacting propylene, oxygen and acetic acid in the gas phase.
さらに詳しくは、原料を循環使用することにより反応系
に混合されて供給されてくるアクロレインの濃度を一定
値以下にコントロールするためのアクロレインの除去方
法に関する。More specifically, the present invention relates to a method for removing acrolein for controlling the concentration of acrolein mixed and supplied to a reaction system to be below a certain value by recycling raw materials.
酢酸アリルは重合性の2型詰合を有するモノマーであり
、他のモノマーと共重合させるために用いたり、または
加水分解することによりアリルアルコールを合成するた
めの原料として用いられる。Allyl acetate is a polymerizable monomer having type 2 packing, and is used for copolymerization with other monomers or as a raw material for synthesizing allyl alcohol by hydrolysis.
パラジウム触媒の存在下にプロピレン、酸素及び酢酸を
気相で反応させるこ、とによって酢酸アリルを製造する
方法は公知であり、たとえば、特公昭44−29046
.特公昭48−23408゜特公昭50−28934号
公報などが知られている。これらの公報にはアルミナ、
シリカ、活性炭。A method for producing allyl acetate by reacting propylene, oxygen and acetic acid in the gas phase in the presence of a palladium catalyst is known, for example, as described in Japanese Patent Publication No. 44-29046.
.. Japanese Patent Publications No. 48-23408 and Japanese Patent Publication No. 50-28934 are known. These publications include alumina,
Silica, activated carbon.
スピネル類、軽石または酸化チタンなどの担体にパラジ
ウムを0.1〜10重量%、アルカリ金属、アルカリ土
類金属の酢酸塩を1〜20重量%および他の金属を担持
させた触媒の存在下にプロピレン。In the presence of a catalyst in which 0.1 to 10% by weight of palladium, 1 to 20% by weight of acetate of an alkali metal or alkaline earth metal, and other metals are supported on a carrier such as spinel, pumice, or titanium oxide. propylene.
酸素、酢酸を気相で反応させることによって酢酸アリル
を製造する方法が開示されている。A method for producing allyl acetate by reacting oxygen and acetic acid in the gas phase is disclosed.
しかしながら、これらの技術によると酢酸アリルの収率
、および選択率が低く、触媒活性の経時低下が大きい。However, according to these techniques, the yield and selectivity of allyl acetate are low, and the catalyst activity decreases significantly over time.
これらの欠点を改良した技術として特開昭61−238
759号公報に記載された方法がある。As a technique to improve these drawbacks, Japanese Patent Application Laid-Open No. 61-238
There is a method described in Japanese Patent No. 759.
この公報に開示されている技術によれば、触媒としてシ
リカからなる担体にパラジウム及びアルカリ金属の酢酸
塩、たとえば、酢酸カリを担持させたものを用い、プロ
ピレンガス°12容量%、酸素7容量%、ガス状の酢酸
9容量%及び希釈ガスである窒素72容量%からなる混
合°ガスを仕込み、5気圧、温度140℃で反応させ、
酢酸アリルを空時収率3.8T/rd日で得ている。According to the technology disclosed in this publication, a carrier made of silica supports palladium and an acetate of an alkali metal, such as potassium acetate, as a catalyst, propylene gas ° 12% by volume, oxygen 7% by volume. A mixed gas consisting of 9% by volume of gaseous acetic acid and 72% by volume of nitrogen as a diluting gas was charged, and the mixture was reacted at 5 atmospheres and a temperature of 140°C.
Allyl acetate was obtained at a space-time yield of 3.8 T/rd day.
工業的に効率良く酢酸アリルを得るためには、上記の従
来法においてこれらプロピレンガス及び酢酸ガスの未反
応物をリサイクル使用してオーバーオールの転化率を高
めて、原料の使用率を高めることが好ましい。In order to obtain allyl acetate industrially and efficiently, it is preferable to recycle and use the unreacted propylene gas and acetic acid gas in the above conventional method to increase the overall conversion rate and increase the usage rate of raw materials. .
本発明者らはパラジウム触媒存在下、プロピレン、酸素
、および酢酸を気相で反応させることによって酢酸アリ
ルを製造する際、各原料から目的物質への見掛けのR化
率を向上させるために未反応原料をリサイクル使用する
製法に於いて上記パラジウム触媒の活性が低下するのを
防止できる方法を提供する。The present inventors produced allyl acetate by reacting propylene, oxygen, and acetic acid in the gas phase in the presence of a palladium catalyst. The present invention provides a method that can prevent the activity of the palladium catalyst from decreasing in a manufacturing method that recycles raw materials.
本発明者らは、上記目的を達成するため、プロピレン、
酸素及び酢酸から気相反応によ゛り酢酸アリルを製造し
2次いでアリルアルコールを工業的に有利に製造するた
めの方法を鋭意検討した結果、リサイクルされた原料と
新しく供給される原料ガスとの混合されたトータル原料
ガス中に副生物であるアクロレインが一定量以上存在す
ると触媒活性が低下することを見出し、このアクロレイ
ンの除去方法を開発し1本発明に至った。In order to achieve the above object, the present inventors have discovered that propylene,
As a result of intensive studies on a method for producing allyl acetate from oxygen and acetic acid through a gas phase reaction, and then industrially advantageously producing allyl alcohol, we found that the combination of recycled raw materials and newly supplied raw material gas was It was discovered that the catalytic activity decreases when more than a certain amount of by-product acrolein is present in the mixed total raw material gas, and a method for removing this acrolein was developed, resulting in the present invention.
すなわち、本発明は
「パラジウム触媒の存在下、プロピレン、酸素及び酢酸
を気相で反応させることによって酢酸アリルを製造方法
において。That is, the present invention provides a method for producing allyl acetate by reacting propylene, oxygen, and acetic acid in the gas phase in the presence of a palladium catalyst.
(a)得られた反応生成ガスを冷却して非凝縮成分と凝
縮成分とに分離し、該非′am成分中に含有されるアク
ロレインを酢酸または酢酸水溶液に吸収させて除去した
後一部系外に排出し、大部分の非凝縮成分を酢酸アリル
製造工程に循環し。(a) The obtained reaction product gas is cooled and separated into a non-condensable component and a condensable component, and acrolein contained in the non-am component is removed by absorption in acetic acid or aqueous acetic acid solution, and then a portion is removed from the system. Most of the non-condensed components are recycled to the allyl acetate manufacturing process.
(b)該凝縮成分を蒸溜し、塔底より本質的に酢酸また
は酢酸水溶液を回収し、この大部分を前記酢酸アリル製
造工程に循環し、一部を前記アクロレイン吸収液として
使用し、アクロレインを吸収した酢酸または酢酸水溶液
を前記凝縮液と混合し、蒸溜することにより蒸溜塔の塔
頂より酢酸アリル、アクロレインを得る
ことを特徴とする酢酸アリルの製造工程におけるアクロ
レインの除去方法」
である。(b) The condensed component is distilled, essentially acetic acid or acetic acid aqueous solution is recovered from the bottom of the column, most of which is recycled to the allyl acetate manufacturing process, and a portion is used as the acrolein absorption liquid to remove acrolein. A method for removing acrolein in an allyl acetate manufacturing process, which comprises mixing the absorbed acetic acid or aqueous acetic acid solution with the condensate and distilling the mixture to obtain allyl acetate and acrolein from the top of a distillation column.
以下に本発明のアクロレインの除去方法を詳細に説明す
る。The method for removing acrolein according to the present invention will be explained in detail below.
まず、プロピレン、酸素及び酢酸からなる混合ガスをパ
ラジウム触媒の存在下、気相のまま通過させ、酢酸アリ
ルを製造する場合、以下のようにプロピレンが直接酸化
され、副生物としてアクロレインが生成する。First, when producing allyl acetate by passing a mixed gas consisting of propylene, oxygen, and acetic acid in the presence of a palladium catalyst in the gas phase, propylene is directly oxidized as shown below, and acrolein is produced as a by-product.
CH2=CHCH3+02
→CH2−CHCHO+H20
また、酢酸アリルにもう一分子の酢酸が付加する副反応
により生成するジアセテート類(アリリデンジアセテー
ト、1.3ジアセトキシプロペエンなど)が反応で生成
した水により加水分解されることによってもアクロレイ
ンが生成するが、これらの副生したアクロレインが、リ
サイクル使用されるプロピレンおよび酢酸中に含有され
ることによって前記のように触媒活性を低下させる。CH2=CHCH3+02 → CH2-CHCHO+H20 In addition, diacetates (allylidene diacetate, 1.3 diacetoxypropeene, etc.) produced by a side reaction in which another molecule of acetic acid is added to allyl acetate are hydrated by the water produced in the reaction. Acrolein is also produced by decomposition, but these by-produced acrolein are contained in recycled propylene and acetic acid, thereby reducing the catalytic activity as described above.
反応生成物中のアクロレイン濃度は条件によって変動す
るが、200〜11000ppの範囲である。The acrolein concentration in the reaction product varies depending on the conditions, but is in the range of 200 to 11,000 pp.
一般に空時収率を増加させる目的で反応温度、反応圧力
を上昇させたり酸素濃度を増加させた条件を選択した場
合、および反応系に不活性ガスとして水を添加した場合
はアクロレインの副生量が増加する。In general, when conditions are selected to increase the reaction temperature, reaction pressure, or oxygen concentration for the purpose of increasing the space-time yield, or when water is added as an inert gas to the reaction system, the amount of acrolein by-product is increases.
逆に、反応温度、反応圧力を低下させたり酸素濃度を減
少させた条件を選択した場合はアクロレインの副生を抑
制することはできるが、空時収率が低下するので好まし
くない。On the other hand, if conditions are selected in which the reaction temperature and pressure are lowered or the oxygen concentration is decreased, the by-product of acrolein can be suppressed, but this is not preferable because the space-time yield decreases.
また、生成したアクロレインを績極的に除去しない場合
はリサイクル使用されるプロピレン、酸素、酢酸中にア
クロレインが含有されるため系内にアクロレインが蓄積
され、触媒活性を著しく低下させるので好ましくない。Furthermore, if the generated acrolein is not removed thoroughly, acrolein will be contained in the recycled propylene, oxygen, and acetic acid, which will accumulate in the system and significantly reduce the catalyst activity, which is not preferable.
本発明者はアクロレインを含有するリサイクルガスを含
んだトータルの仕込みガス中のアクロレイン濃度と触媒
活性について検討した結果、アクロレイン濃度が高くな
ると触媒活性の低下が著しいが、新しく供給される原料
ガスとリサイクルカスとのトータルの混合ガス中のアク
ロレインの濃度が1100pp以下ならば触媒活性に対
して実質的に影響を及ぼさないことが判明し、本発明者
は昭和63年2月3日出願の願書に添付した明細書〈発
明の名称:酢酸アリルの製造法)に開示した。As a result of studying the acrolein concentration and catalytic activity in the total charged gas containing recycled gas containing acrolein, the inventor found that as the acrolein concentration increases, the catalytic activity decreases markedly. It was found that if the concentration of acrolein in the total mixed gas with the residue is 1100 pp or less, it does not substantially affect the catalyst activity, and the present inventor attached this to the application filed on February 3, 1988. The invention was disclosed in the specification (title of the invention: Process for producing allyl acetate).
プロピレン、酸素、酢酸を気相で反応させることによっ
て、酢酸アリルを製造する一般的な方法は反応生成ガス
を冷却などの方法により非凝縮成分と凝縮成分とに分離
後、非凝縮成分中の生成炭酸ガスを吸収除去または炭酸
ガスの蓄積を防止する目的で非凝縮成分の一部とともに
炭酸ガスを系外に排出した後、反応仕込み系に循環し、
未反応のプロピレン、酸素を再利用する。The general method for producing allyl acetate by reacting propylene, oxygen, and acetic acid in the gas phase is to separate the reaction product gas into non-condensable components and condensable components by cooling or other methods, and then For the purpose of absorbing and removing carbon dioxide gas or preventing the accumulation of carbon dioxide gas, carbon dioxide gas is discharged from the system together with some of the non-condensable components, and then circulated to the reaction preparation system.
Reuse unreacted propylene and oxygen.
凝縮成分は蒸溜により本質的に酢酸アリル、水、および
アクロレインまたは酢酸アリル、水、アクロレインおよ
び酢酸からなる液を得て、さらに蒸溜することにより酢
酸アリルを得る。The condensed component is distilled to obtain a liquid consisting essentially of allyl acetate, water, and acrolein or allyl acetate, water, acrolein, and acetic acid, and further distilled to obtain allyl acetate.
一方、塔底において、本質的に酢酸、酢酸−水からなる
液を得て、この酢酸を酢酸アリル製造用の原料として再
利用する。On the other hand, at the bottom of the tower, a liquid consisting essentially of acetic acid and acetic acid-water is obtained, and this acetic acid is reused as a raw material for producing allyl acetate.
副生じたアクロレインは反応生成ガスを非凝縮成分と凝
縮成分とに分離する条件に応じである一定の比率に分離
されるが、非凝縮成分中のアクロレインを反応に悪影響
を与えない程度の量まで低減させることは困難である。Acrolein, which is a by-product, is separated into a certain ratio depending on the conditions for separating the reaction product gas into non-condensable components and condensable components, but the acrolein in the non-condensable components is separated to an extent that does not adversely affect the reaction. It is difficult to reduce it.
本発明者は非凝縮成分中に含有されているアクロレイン
を工業的に有利な方法で除去する手段として以下の方法
を提供する。The present inventor provides the following method as a means for removing acrolein contained in non-condensed components in an industrially advantageous manner.
すなわち、凝縮成分中から酢酸アリル、アクロレインを
除去した本質的には酢酸または酢酸−水からなる液をア
クロレインの吸収液として使用し本質的にはアクロレイ
ンを含有しない非凝縮成誉を得る。That is, a liquid essentially consisting of acetic acid or acetic acid-water from which allyl acetate and acrolein have been removed from the condensed component is used as an acrolein absorption liquid to obtain a non-condensed product that essentially does not contain acrolein.
一方、アクロレインを吸収した酢酸は凝縮液と混合し蒸
溜によりアクロレインを含有しない液としてリサイクル
使用される。On the other hand, the acetic acid that has absorbed acrolein is mixed with the condensate and distilled to be recycled as a liquid that does not contain acrolein.
本発明の酢酸アリルの製造法に用いられる触媒は、プロ
ピレン、酸素及び酢酸から酢酸アリルを製造する一般的
なパラジウム触媒が使用される。The catalyst used in the method for producing allyl acetate of the present invention is a general palladium catalyst that produces allyl acetate from propylene, oxygen, and acetic acid.
さらに好ましくは、パラジウム触媒にアルカリ金属の酢
酸塩を添加したものを使用するのが良い。More preferably, a palladium catalyst to which an alkali metal acetate is added is used.
プロピレン、酸素および酢酸の混合割合、窒素、炭酸ガ
スなどによる希釈率、仕込み速度などは触媒の活性、お
よび製造能力などで決定すべきものであり、本願とは直
接には関係ない。The mixing ratio of propylene, oxygen, and acetic acid, the dilution rate with nitrogen, carbon dioxide, etc., the charging rate, etc. should be determined based on the activity of the catalyst, production capacity, etc., and are not directly related to the present application.
本発明の方法に用いられる触媒の形状は特に規定されず
2球状、タブレット状またはペレット状などいずれでも
よい。The shape of the catalyst used in the method of the present invention is not particularly limited, and may be bispherical, tablet-like, pellet-like, or the like.
反応器に充填し100〜200℃の温度で、反応圧力は
1〜30気圧の圧力下で反応を行なわれる。第1図は本
発明による酢酸アリルを製造する場合の一実施態様を示
した概略ブロック図であり、これに基づいて説明する。The reactor is filled and the reaction is carried out at a temperature of 100 to 200°C and a reaction pressure of 1 to 30 atm. FIG. 1 is a schematic block diagram showing one embodiment of producing allyl acetate according to the present invention, and the explanation will be based on this.
本発明の方法は、まず、触媒の存在下にプロピレン、酸
素および酢酸を反応器1−1において。In the method of the present invention, propylene, oxygen and acetic acid are first mixed in a reactor 1-1 in the presence of a catalyst.
100〜200℃の温度、1〜30気圧の圧力下で気相
で反応させる。The reaction is carried out in the gas phase at a temperature of 100-200°C and a pressure of 1-30 atmospheres.
酢酸アリルの合成反応によって得られた反応生成ガスを
冷却器2−2で冷却し、非811M成分と凝縮成分とに
分離する。The reaction product gas obtained by the synthesis reaction of allyl acetate is cooled by a cooler 2-2 and separated into a non-811M component and a condensed component.
冷却温度が低い場合はアクロレインなどの低沸点物の凝
縮量は増加するが、有用なプロピレンの溶解量が増加す
るため、次工程の蒸溜においてプロピレンの損失量が増
加するので得策ではない。If the cooling temperature is low, the amount of condensation of low-boiling substances such as acrolein will increase, but the amount of useful propylene dissolved will increase, which is not a good idea because the amount of propylene lost in the next step of distillation will increase.
冷却温度は操作圧力と関係するが、10〜90°Cが良
い。The cooling temperature is related to the operating pressure, but is preferably 10 to 90°C.
非凝縮成分はアクロレイン吸収塔3−3に導き、塔頂よ
り冷却した酢酸、酢酸−水を仕込み、非凝縮成分中のア
クロレインを吸収除去し、アクロレインを除去した非凝
縮成分は酢酸アリル合成反応工程に循環する。The non-condensed components are led to the acrolein absorption tower 3-3, and cooled acetic acid and acetic acid-water are charged from the top of the tower, and acrolein in the non-condensed components is absorbed and removed.The non-condensed components from which acrolein has been removed are transferred to the allyl acetate synthesis reaction step circulates.
吸収された酢酸、または酢酸−水の液温度は10〜40
℃程度にするのが好ましい。Absorbed acetic acid or acetic acid-water liquid temperature is 10-40
It is preferable to keep the temperature at about ℃.
凝縮成分はアクロレインを吸収した酢酸、または酢酸−
水の液と混合し、蒸溜塔4−4に導き、塔底より酢酸、
または酢酸−水の液を得る。The condensed component is acetic acid that has absorbed acrolein, or acetic acid-
It is mixed with water and led to distillation tower 4-4, where acetic acid and
Or obtain an acetic acid-water solution.
塔底より得た酢酸、または酢酸−水の混合液の一部を前
記3−3の吸収液として利用し、残りの液は酢酸アリル
合成反応工程に循環して使用する。A part of the acetic acid or acetic acid-water mixture obtained from the bottom of the column is used as the absorption liquid in 3-3 above, and the remaining liquid is recycled and used in the allyl acetate synthesis reaction step.
なお、5−5は脱気塔であり、これは加圧系から常圧系
に移動した液体中に発生した気泡を除去するためのもの
である。Note that 5-5 is a degassing tower, which is for removing air bubbles generated in the liquid transferred from the pressurized system to the normal pressure system.
塔頂液より酢酸アリル、アクロレイン、水の混合液を得
る。A mixed solution of allyl acetate, acrolein, and water is obtained from the top liquid.
以下に実施例及び比較例を挙げて本発明の効果を詳細に
説明する。EXAMPLES The effects of the present invention will be explained in detail below with reference to Examples and Comparative Examples.
(実施例1)
市販の5mmΦのシリカ担体(表面積96m2/g、細
孔容槓0.78mJl/g、平均細孔半径150A、嵩
密度540g/、1! )IJI当たりパラジウム3.
3g、および酢酸カリウム30gを担持させた触媒2.
61を反応器に充填し、反応圧力4.0kg/cJ(ゲ
ージ圧)、温度140℃でプロピレン12%、酸素7.
5%、酢酸9.0%、水6.0%、および炭酸ガス、プ
ロパン、窒素からなるガスが65.5%になるように調
節し、4゜6Nm3/hrの速度で供給することによっ
て酢酸アリルの合成反応を行った。(Example 1) Commercially available 5 mmΦ silica carrier (surface area 96 m2/g, pore volume 0.78 mJl/g, average pore radius 150 A, bulk density 540 g/, 1!) palladium 3.
3g of potassium acetate, and 30g of potassium acetate.2.
61 was charged into a reactor, the reaction pressure was 4.0 kg/cJ (gauge pressure), the temperature was 140°C, and propylene was 12% and oxygen was 7.
5% acetic acid, 9.0% acetic acid, 6.0% water, and a gas consisting of carbon dioxide, propane, and nitrogen were adjusted to 65.5% and acetic acid was supplied at a rate of 4°6 Nm3/hr. Allyl synthesis reaction was performed.
得られた反応生成ガスを50°Cに冷却し、非凝縮成分
と凝縮成分とに分離した。The resulting reaction product gas was cooled to 50°C and separated into non-condensable components and condensed components.
非凝縮成分が3.8Nm3/hrで、この中にアクロレ
インを246ppm含有していた。The non-condensed component was 3.8 Nm3/hr, and contained 246 ppm of acrolein.
このガスをアクロレイン吸収塔(吸収部内径42 m
m 、長さ140cmで、充填物として磁製の5mmφ
X 5 m m長のラツシヒリングを充填した塔)の下
部より供給し、次工程の蒸溜で塔底より回収した83%
酢酸水溶液を16℃に冷却し、吸収塔の塔頂より814
g/hrの速度で供給してアクロレインを吸収させた。This gas was transferred to an acrolein absorption tower (absorption part inner diameter 42 m
m, length 140cm, porcelain 5mmφ as filling
83% was supplied from the bottom of the column (a column packed with a 5 mm long Ratschig ring) and recovered from the bottom of the column in the next step of distillation.
The acetic acid aqueous solution was cooled to 16°C, and 814°C was added from the top of the absorption tower.
Acrolein was absorbed by feeding at a rate of g/hr.
この結果、塔頂よりアクロレインを81ppm含有した
ガスを得た。As a result, a gas containing 81 ppm of acrolein was obtained from the top of the column.
このガスから一部を炭酸ガスの蓄積を防止する目的で系
外ヘパージし、残りのガスを酢酸アリル反応工程に循環
する。A portion of this gas is purged outside the system in order to prevent the accumulation of carbon dioxide gas, and the remaining gas is recycled to the allyl acetate reaction process.
凝縮成分はアクロレインを吸収した吸収液と混合した後
、脱気槽5−5で非凝縮成分中酢酸アリル19.8%、
水20.0%、酢酸57゜4%、アクロレイン0.04
%、炭酸ガスなど2゜72%を含有した液を得た。The condensed component is mixed with the absorption liquid that has absorbed acrolein, and then in the degassing tank 5-5, 19.8% of allyl acetate is removed from the non-condensed component.
Water 20.0%, acetic acid 57°4%, acrolein 0.04
%, a liquid containing 2.72% carbon dioxide gas was obtained.
脱気槽5−5でパージした非凝縮成分をアクロレイン吸
収塔に導き、有効成分を回収することも可能である。It is also possible to introduce the non-condensed components purged in the degassing tank 5-5 to an acrolein absorption tower and recover the effective components.
この脱気55−5で得られた液を蒸溜し、83%酢酸水
溶液を得てこの液の一部を前記アクロレイン吸収液とし
て用い、残りの液は酢酸アリル合成反応工程に循環して
再利用した。The liquid obtained in this degassing step 55-5 is distilled to obtain an 83% aqueous acetic acid solution. A part of this liquid is used as the acrolein absorption liquid, and the remaining liquid is recycled and recycled to the allyl acetate synthesis reaction process. did.
なお、プロピレン、酸素、酢酸を所定の反応仕込み組成
になるように追加する。Note that propylene, oxygen, and acetic acid are added so as to have a predetermined reaction charge composition.
反応仕込み原料ガス中のアクロレインの濃度は66pp
mであり、この場合の酢酸アリルの生成速度は毎時56
3gであった。The concentration of acrolein in the reaction raw material gas is 66pp.
m, and the production rate of allyl acetate in this case is 56 per hour.
It was 3g.
(比較例1)
アクロレイン吸収工程を省略した以外は実施例1と全く
同一の反応を行なった。(Comparative Example 1) The same reaction as in Example 1 was conducted except that the acrolein absorption step was omitted.
その結果、非凝縮成分中のアクロレイン濃度は1300
ppmまでの濃度に蓄積され、反応仕込み原料ガス中の
アクロレインの濃度は11070ppであり、酢酸アリ
ルの生成速度は毎時93gであった。As a result, the acrolein concentration in the non-condensed component was 1300.
The concentration of acrolein in the reaction raw material gas was 11,070 ppm, and the production rate of allyl acetate was 93 g/hour.
第1図は本発明による酢酸アリルをV造する場合の一実
施態様を示した概略ブロック図であり。
1−1は反応器、2−2は冷却器、3−3はアクロレイ
ン吸収塔、4−4は蒸溜塔、5−5は脱気塔である。
特許出願人 ダイセル化学工業株式会社第1図FIG. 1 is a schematic block diagram showing one embodiment of V-manufacturing allyl acetate according to the present invention. 1-1 is a reactor, 2-2 is a cooler, 3-3 is an acrolein absorption tower, 4-4 is a distillation tower, and 5-5 is a degassing tower. Patent applicant: Daicel Chemical Industries, Ltd. Figure 1
Claims (1)
気相で反応させることによって酢酸アリルを製造方法に
おいて、 (a)得られた反応生成ガスを冷却して非凝縮成分と凝
縮成分とに分離し、該非凝縮成分中に含有されるアクロ
レインを酢酸または酢酸水溶液に吸収させて除去した後
一部系外に排出し、大部分の非凝縮成分を酢酸アリル製
造工程に循環し、 (b)該凝縮成分を蒸溜し、塔底より本質的に酢酸また
は酢酸水溶液を回収し、この大部分を前記酢酸アリル製
造工程に循環し、一部を前記アクロレイン吸収液として
使用し、アクロレインを吸収した酢酸または酢酸水溶液
を前記凝縮液と混合し、蒸溜することにより蒸溜塔の塔
頂より酢酸アリル、アクロレインを得る ことを特徴とする酢酸アリルの製造工程におけるアクロ
レインの除去方法。[Claims] A method for producing allyl acetate by reacting propylene, oxygen and acetic acid in the gas phase in the presence of a palladium catalyst, comprising: (a) cooling the resulting reaction product gas and condensing it with non-condensable components; After removing the acrolein contained in the non-condensed component by absorbing it into acetic acid or an acetic acid aqueous solution, a part of the non-condensed component is discharged from the system, and most of the non-condensed component is recycled to the allyl acetate production process, (b) The condensed component is distilled, essentially acetic acid or acetic acid aqueous solution is recovered from the bottom of the column, most of which is recycled to the allyl acetate manufacturing process, and a portion is used as the acrolein absorption liquid to remove acrolein. A method for removing acrolein in an allyl acetate manufacturing process, which comprises mixing the absorbed acetic acid or acetic acid aqueous solution with the condensate and distilling the mixture to obtain allyl acetate and acrolein from the top of a distillation column.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63023595A JP2552160B2 (en) | 1988-02-03 | 1988-02-03 | How to remove acrolein |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63023595A JP2552160B2 (en) | 1988-02-03 | 1988-02-03 | How to remove acrolein |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01197456A true JPH01197456A (en) | 1989-08-09 |
JP2552160B2 JP2552160B2 (en) | 1996-11-06 |
Family
ID=12114945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63023595A Expired - Lifetime JP2552160B2 (en) | 1988-02-03 | 1988-02-03 | How to remove acrolein |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2552160B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120094037A (en) * | 2009-12-17 | 2012-08-23 | 라이온델 케미칼 테크놀로지, 엘.피. | Allyl acetate purification |
-
1988
- 1988-02-03 JP JP63023595A patent/JP2552160B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120094037A (en) * | 2009-12-17 | 2012-08-23 | 라이온델 케미칼 테크놀로지, 엘.피. | Allyl acetate purification |
JP2013514354A (en) * | 2009-12-17 | 2013-04-25 | ライオンデル ケミカル テクノロジー、 エル.ピー. | Allyl acetate purification |
Also Published As
Publication number | Publication date |
---|---|
JP2552160B2 (en) | 1996-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5214185A (en) | Continuous process for preparing dimethyl carbonate | |
JPS6327333B2 (en) | ||
JPS60239429A (en) | Method of reducing ethylene carbonate content in ethylene glycol | |
JP4011286B2 (en) | Process for producing diaryl carbonate | |
EP2174937B1 (en) | Synthesis process of polyol carbonate from polyols, conducted in using a solvent selective for polyols carbonates | |
JPH1017529A (en) | Continuous production of aryl carbonate | |
JPH08301818A (en) | Continuous production of dimethyl carbonate | |
JP3810144B2 (en) | Continuous production method of diaryl carbonate | |
JP4529885B2 (en) | Method for producing carbon monoxide, method for producing phosgene, and method for producing diaryl carbonate | |
JP3856351B2 (en) | Continuous production method of aryl carbonate | |
WO2006072766A1 (en) | Process for the manufacture of ethylene oxide | |
EP0655433B1 (en) | Process for continuously producing dimethyl carbonate | |
JPH0572371B2 (en) | ||
EP0655432B1 (en) | Process for continuously producing dimethyl carbonate | |
JPH01197456A (en) | Removal of acrolein | |
JP2795360B2 (en) | Continuous production of dimethyl carbonate | |
JP2552168B2 (en) | Treatment of by-products allylidene diacetate and acrolein in the production of allyl acetate | |
JP2514071B2 (en) | Method for producing allyl acetate | |
TW201021892A (en) | Process for the recovery of monoethylene glycol | |
JP2552161B2 (en) | Method for producing allyl acetate | |
JP2662965B2 (en) | Preparation of allyl acetate and allyl alcohol | |
EP0183160A1 (en) | Preparation process of indole | |
JP2962454B2 (en) | Continuous production method of dimethyl carbonate | |
JP2000001458A (en) | Production of methyl methacrylate | |
US4228301A (en) | Process for the preparation of diacetoxybutene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 12 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080822 Year of fee payment: 12 |