JPH0119700B2 - - Google Patents

Info

Publication number
JPH0119700B2
JPH0119700B2 JP9691883A JP9691883A JPH0119700B2 JP H0119700 B2 JPH0119700 B2 JP H0119700B2 JP 9691883 A JP9691883 A JP 9691883A JP 9691883 A JP9691883 A JP 9691883A JP H0119700 B2 JPH0119700 B2 JP H0119700B2
Authority
JP
Japan
Prior art keywords
baking
boiling point
paint
solvent
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9691883A
Other languages
Japanese (ja)
Other versions
JPS59223758A (en
Inventor
Shoichi Oosuga
Atsuhiko Murao
Takashi Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP9691883A priority Critical patent/JPS59223758A/en
Publication of JPS59223758A publication Critical patent/JPS59223758A/en
Publication of JPH0119700B2 publication Critical patent/JPH0119700B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鋼管内面防食被覆等に用いられる厚
膜塗装可能な焼付塗料に関するものである。 防食に使用される塗料は、その乾燥過程の態様
により常乾塗料と焼付塗料に分類される。このう
ち前者は常温で乾燥硬化して塗膜が形成されるタ
イプの、また後者は塗布後炉等で加熱することに
より硬化反応が進行し、硬化塗膜が形成されるタ
イプの塗料であるが、その塗膜性能は、次のよう
な理由により常温塗料より焼付塗料のほうが優れ
ていると言える。 (1) 反応に十分な熱を与えることを前提としてお
り、常乾塗料より架橋密度を高く設計すること
が可能であること。 (2) 塗膜中に残存する未反応の硬化剤あるいは溶
剤等の低分子量物質が少ないこと。 (3) 硬化反応に利用される官能基は焼付温度付近
で十分活性となるものであり、それが万一残存
したとしても常温付近では反応性が低いために
環境物質の浸入を受けにくい塗膜となること。 ところで鋼管の内面には、内部を流れる流体の
種類や温度に応じて種々の防食塗装が施されるの
が通常であり、このうち特に苛酷な環境で使用さ
れるドリルパイプやチユービング等の内面には、
焼付フエノール塗料や焼付フエノールエポキシ塗
料等の焼付塗料が4〜6回塗りで200μ程度の膜
厚に塗装される。このような焼付塗料は厚く
(150〜300μ)塗装したほうが優れた耐食性を発
揮し、比較的温度が高く(50℃以上)且つ水分、
油分及び腐食性ガス(H2S,CO2等)が存在する
環境の下でも長期間の耐食効果が得られることが
判つており、このため上記した油井管をはじめと
して、ギヤザリングラインやトランクライン等の
比較的厳しい環境下の鋼管に対して適用されてい
る。ところが、このような優れた耐食性能を有す
る焼付塗料にも次のような主として作業上の欠点
がある。 (1) 作業能率の面からいえば、焼付塗料を塗装後
直ちに焼付炉に装入して焼付硬化するのが理想
であるが、そのようにした場合、溶剤や反応副
生物(主に縮合水)の急激な揮散により焼き膨
れを生じやすい。焼き膨れの程度は塗装膜厚に
依存し、厚いほど焼き膨れがでやすくなる。現
状の焼付塗料の焼膨れ限界膜厚は約100μ程度
である。 (2) 焼付時、温度の上昇に伴ない少しずつ重合反
応が進行するが、塗装された塗料の粘度はむし
ろ温度自体の影響を強くうけて大巾に低下す
る。このためタレが生じやすくなるが、タレは
膜厚に依存しており厚くなるほどタレやすい。
現行焼付塗料のタレ限界はwet膜厚150μ(dry膜
厚50〜70μ)程度である。 このような理由により、塗装後直ちに焼付ける
ことを前提とした場合、従来の焼付塗料では1回
当りせいぜいdry膜厚で70μ程度しか塗装できな
いという問題がある。このため、ギヤザリングラ
イン等の厳しい腐食環境に適用するために200μ
以上の塗装膜厚を必要とする場合には、4コート
―4ベーク程度の繁雑な工程を採らざるを得ず、
塗装作業性が非常に悪いという問題がある。 本発明はこのような従来の焼付塗料の欠点を解
消し、1回の塗装で200μ以上の厚膜を得ること
ができ、これによつて効率的な塗装・焼付処理を
行うことができる焼付塗料の提供をその目的とす
る。 このため本発明は、エポキシ樹脂に硬化剤とし
て酸無水物、芳香族アミンまたはノボラツクフエ
ノールのいずれかを配合した焼付硬化性樹脂と、
沸点(bp)が下記(3)式を満足する複数の成分を
混合してなり、沸点(bp)が下記(1)式を満足す
る成分を90重量%以上、沸点(bp)が下記(2)式
を満足する成分を40〜80重量%含む溶剤と、 bp(℃)焼付温度(℃)−50(℃) ……(1) bp(℃)焼付温度(℃) ……(2) bp(℃)焼付温度(℃)+40(℃) ……(3) 低分子量ポリエチレン系添加剤とを含むことを
その基本的特徴とする。 上記したように従来の焼付塗料は、厚塗りした
場合に焼膨れとタレの問題を生じていたものであ
り、本発明はこのような2つの問題を同時に解決
した新たな塗料を提供したものである。本発明の
塗料は樹脂、溶剤及び添加剤を含み、必要に応じ
てこれに顔料が添加される。 樹脂は縮合でない架橋反応により硬化する系を
使用する必要があり、エポキシ―酸無水物、エポ
キシ―芳香族アミン、またはエポキシ―ノボラツ
クフエノール系のものが使用される。これ以外の
樹脂では硬化(反応)時に水、アルデヒド等、低
沸点反応生成物を副生し、この生成物がガス化し
て焼膨れの原因となる。 溶剤は複数成分からなり、しかも焼膨れ防止の
観点から次の条件を満足する必要がある。即ち、
使用溶剤の90重量%以上についてはその沸点が下
記(1)式を、また同じく40重量%以上についてはそ
の沸点が(2)式をそれぞれ満足させるようにしなけ
ればならない。 沸点焼付温度−50℃ ……(1) 沸点焼付温度 ……(2) このような条件を満足する溶剤と上記樹脂とを
用いることにより、本発明の第1の主眼とする焼
膨れ防止を達成することができる。この溶剤に関
して言えば、従来では塗膜がゲル化する以前に溶
剤をできるだけ揮散させるという基本的な考え方
から、焼付塗料中に沸点150℃以下の低・中沸点
溶剤をかなりの割合で用いるのが通例とされてい
た。しかし、本発明者等が研究したところによれ
ば、塗料を厚膜塗装(例えばwet400μ)する場
合、上記した従来の考え方が必ずしも妥当せず、
むしろ溶剤が早期に揮散してしまう結果生ずる塗
膜の不均一化が、焼膨れの発生を逆に助長してい
ることが判明したものであり、このような知見に
基づき実験を重ねた結果、上記(1)及び(2)式の条件
を満足させる程度の比較的高沸点の溶剤を多量に
用いることにより、厚塗りしても焼膨れの生じな
い塗膜が得られることが判つた。溶剤は上記した
ように焼付温度との関係でその沸点が規制され
る。ここで必要とされる焼付温度は樹脂系によつ
てもそれぞれ異るとともに、焼付時間との関係で
も異つたものとなる。例えば注型品を製作するた
めにビスフエノールA型エポキシ樹脂(分子量約
360)をメタフエニレンジアミンで硬化させる場
合、通常24時間常温放置後150℃で6時間程度の
長時間加熱が行われる。また無水フタル酸で硬化
させる場合には150℃で8時間程度の加熱が必要
である。一方、焼付塗料としてこれらの樹脂系を
用いる場合には、長時間加熱は作業能率の点から
実用上無理であり、焼付温度を高め焼付時間を短
縮する必要がある。先に述べたビスフエノールA
型エポキシ樹脂をメタフエニレンジアミンで硬化
させる場合、焼付温度を190℃にすれば約1時間
で硬化する。従つて、本発明で例えばこのような
樹脂を用い190℃で1時間焼付を行う場合、使用
する溶剤の90重量%以上は沸点が140℃以上、ま
た40重量%以上は沸点が190℃以上であることが
必要となる。 但し、沸点が焼付温度よりも高い溶剤は、その
配合量が多くなると当然溶剤の残留という問題を
生じ、塗膜の耐久性を劣化させる。このため、上
記(2)式を満足させる溶剤の配合量は実用上80重量
%程度に制限することが好ましい。 第1図は、上記(1),(2)式における溶剤の沸点と
焼付温度との関係を示したものである。ここで例
えば焼付温度を180℃とし、またそれぞれが200
℃、170℃、150℃、110℃の沸点を有するa,b,
c,dの成分からなる溶剤を使用することとした
場合、上記各成分の重量百分率をそれぞれ〔a〕,
〔b〕,〔c〕,〔d〕で表わせば、 〔a〕40% 〔a〕+〔b〕+〔c〕90% の条件を満足させるよう成分の割合を調整する必
要がある。このような溶剤としては、例えばソル
ベスト#150(沸点190〜204℃)50部、メトキシブ
チルアセテート(沸点173℃)20部、シクロヘキ
サノン(沸点156℃)20部、及びキシレン(沸点
138℃)10部からなるもの、或いは、イソホロン
(沸点210℃)40部、ブチルセロソルブ(沸点170
℃)30部、シクロヘキサノン(沸点156℃)20部、
及びキシレン(沸点138℃)10部からなるもの等
が用いられる。 なお、溶剤の沸点の上限は焼付温度プラス40℃
(実施例C参照)、特に焼付温度プラス30℃とする
ことが実用上好ましい。これ以上の沸点の溶剤で
は、溶剤が焼付後の塗膜に残存し、これが徐々に
蒸発することによつて膜内に歪を生ぜしめ、この
結果塗膜の密着性を低下させてしまう。 添加剤としては、低分子量ポリエチレン系添加
剤の使用が不可欠である。この添加剤は通常ター
ルエポキシ或いはエポキシ塗料など常乾塗料の顔
料沈降防止剤として使用されている。これは低分
子ポリエチレンが溶剤で膨潤しチクソトロピツク
性を塗料に与えるという性質を利用したものであ
る。チクソトロピツク性は、塗料の粘度測定を低
剪断速度(例えばB型粘度計で5〜10rpm)と高
剪断速度(60〜100rpm)で行つた場合、後者に
おける粘度が前者における場合よりも低くなる性
質であり、塗料液がゆるい内部構造をつくるため
に生じる性質と考えられている。そして、この性
質が塗料に付与されるならば、エアスプレー等で
塗装を行う際には吐出時の高剪断速度のため粘度
が低下して霧化性が良くなり、一方被塗装物に付
着した後は剪断力がかからないため粘度が上昇し
てタレにくくなる、という厚膜塗装に好ましい結
果を生む。そして、このような事実を基に本発明
者等が検討した結果、上記比較的高沸点の溶剤と
の組合せで低分子量ポリエチレン系添加剤を用い
た場合、焼付による塗料温度の上昇に伴いチクソ
トロピツク性が強化され、これにより温度上昇に
起因する粘度低下が打ち消され、この結果タレが
生じる限界膜厚が大幅に向上せしめられるとを見
い出したものである。このチクソトロピツク性の
強化はおそらく、塗料温度の上昇とともに低分子
量ポリエチレン系添加剤の膨潤度が大きくなるこ
とに基づくものと推定される。 また顔料は特に限定されないが、形状が偏平で
ある顔料、例えばタルク等の使用は避けることが
好ましい。 以上本発明では、樹脂、溶剤及び低分子量ポリ
エチレン系樹脂の組合せにより、厚塗りした場合
の焼膨れとタレの問題を適切に回避し、もつて、
1コートdry200μ以上の厚膜塗装と、塗装直後の
焼付炉装入が可能となる。 次に本発明の実施例を説明する。 〔実施例 〕 本発明による塗料(A)〜(E)の組成とその焼付条件
を第1表に、また比較例たる塗料(F)〜(J)の組成と
その焼付条件を第2表に示した。塗料は一液型或
いは二液型とし、二液型の場合には、溶剤分をベ
ースと硬化剤に適当量ずつふり分けた。不揮発分
は約60%であつた。 試験片(50×150×3.2mm熱延鋼板、表面シヨツ
トブラスト)に塗料(A)〜(E)及び比較例の塗料(F)〜
(J)をそれぞれ膜厚をかえて塗装し、直後に各々第
1表及び第2表に示した条件の熱風乾燥炉に装入
した。 塗装は、B型粘度計の100回転粘度が15ポイズ
になるように各々配合表に示した組成の溶剤で希
釈した後、エアスプレーを用いて行つた。 上記の試験片を熱風乾燥炉に装入したときの昇
温曲線の一例(焼付温度:190℃)を第2図に示
す。昇温曲線は被塗装物の形状及び炉能力によつ
て異るが、大略装入後10〜60分で被塗装物温度が
炉温に達する。取り出し後、外観の観察を行つて
焼膨れ限界膜厚とタレ限界膜厚の判定を行つた。
第3表はこの判定結果を示すものであるが、いず
れの限界膜厚についても比較例のものに較べ本発
明のものが高い値を示していることが判る。
The present invention relates to a baking paint that can be coated in a thick film and is used for anticorrosion coating on the inner surface of steel pipes. Paints used for corrosion prevention are classified into air-dry paints and baking paints depending on the drying process. Of these, the former is a type of paint that dries and hardens at room temperature to form a coating, while the latter is a type of paint that undergoes a curing reaction and forms a cured coating by heating it in an oven, etc. after application. It can be said that baking paints have better coating film performance than room temperature paints for the following reasons. (1) It is based on the premise of providing sufficient heat for the reaction, and it is possible to design the crosslinking density to be higher than that of air-drying paints. (2) Low molecular weight substances such as unreacted curing agent or solvent remaining in the coating film should be small. (3) The functional groups used in the curing reaction are sufficiently active near the baking temperature, and even if they do remain, they have low reactivity at room temperature, making the coating film less susceptible to infiltration of environmental substances. To become. By the way, the inner surfaces of steel pipes are usually coated with various anti-corrosion coatings depending on the type and temperature of the fluid flowing inside them. teeth,
A baking paint such as baking phenol paint or baking phenol epoxy paint is applied in 4 to 6 coats to a film thickness of about 200μ. This type of baking paint exhibits better corrosion resistance when applied thickly (150 to 300μ), and is relatively high in temperature (over 50°C) and moisture free.
It is known that long-term corrosion resistance can be obtained even in environments where oil and corrosive gases (H 2 S, CO 2 , etc.) are present. It is applied to steel pipes under relatively harsh environments such as lines. However, even baking paints with such excellent corrosion resistance have the following drawbacks, mainly in terms of workability. (1) From the standpoint of work efficiency, it is ideal to charge the baking paint into a baking oven immediately after painting and bake it to harden it, but in this case, solvents and reaction by-products (mainly condensed water) ) tends to cause swelling due to rapid volatilization. The degree of blistering depends on the thickness of the coating film; the thicker the film, the more blistering occurs. The critical thickness of the current baking paint for blistering is about 100μ. (2) During baking, the polymerization reaction progresses little by little as the temperature rises, but the viscosity of the applied paint is rather strongly influenced by the temperature itself and drops significantly. For this reason, sagging is likely to occur, but sagging depends on the film thickness, and the thicker the film, the more likely it is to sag.
The sagging limit of current baking paints is about 150μ wet film thickness (50-70μ dry film thickness). For these reasons, if it is assumed that the coating is baked immediately after coating, there is a problem in that with conventional baking paints, a dry film thickness of about 70 μm can be applied at most each time. For this reason, the 200μ
If a coating film thickness higher than that is required, a complicated process of 4 coats and 4 bakes must be used.
There is a problem that the painting workability is very poor. The present invention solves the drawbacks of conventional baking paints, and provides a baking paint that can obtain a thick film of 200μ or more in one coating, thereby enabling efficient painting and baking treatments. Its purpose is to provide. For this reason, the present invention provides a bake-curable resin in which an epoxy resin is blended with an acid anhydride, an aromatic amine, or a novolac phenol as a curing agent;
A mixture of multiple components whose boiling point (bp) satisfies the following formula (3), 90% by weight or more of the component whose boiling point (bp) satisfies the following formula (1), and a boiling point (bp) that satisfies the following formula (2). ) BP (℃) Baking temperature (℃) -50 (℃) ……(1) BP (℃) Baking temperature (℃) ……(2) bp (℃) Baking temperature (℃) + 40 (℃) ... (3) Its basic feature is that it contains a low molecular weight polyethylene additive. As mentioned above, conventional baking paints have problems of blistering and sagging when applied thickly, and the present invention provides a new paint that solves these two problems at the same time. be. The coating material of the present invention contains a resin, a solvent, and an additive, to which a pigment is added if necessary. It is necessary to use a resin that is cured by a crosslinking reaction rather than condensation, and epoxy-acid anhydride, epoxy-aromatic amine, or epoxy-novolac phenol type resins are used. With other resins, low-boiling reaction products such as water and aldehyde are produced as by-products during curing (reaction), and these products gasify and cause blistering. The solvent is composed of multiple components, and must satisfy the following conditions from the viewpoint of preventing blistering. That is,
For 90% by weight or more of the solvent used, the boiling point must satisfy the following formula (1), and for 40% by weight or more, the boiling point must satisfy formula (2). Boiling point baking temperature -50°C...(1) Boiling point baking temperature...(2) By using the above resin and a solvent that satisfies these conditions, the prevention of blistering, which is the first main objective of the present invention, can be achieved. can do. Regarding this solvent, conventionally, based on the basic idea of volatilizing as much of the solvent as possible before the paint film gels, it is common practice to use a considerable proportion of low-to-medium boiling point solvents with a boiling point of 150℃ or less in baking paints. It was considered customary. However, according to research conducted by the present inventors, the above-mentioned conventional thinking is not necessarily valid when applying a thick film of paint (for example, wet 400μ).
Rather, it was discovered that the unevenness of the coating film caused by early volatilization of the solvent actually promoted the occurrence of blisters.Based on this knowledge, repeated experiments revealed that It has been found that by using a large amount of a relatively high boiling point solvent that satisfies the conditions of formulas (1) and (2) above, a coating film that does not cause blistering even when applied thickly can be obtained. As mentioned above, the boiling point of the solvent is regulated in relation to the baking temperature. The baking temperature required here differs depending on the resin system, and also differs in relation to the baking time. For example, to produce cast products, bisphenol A type epoxy resin (molecular weight approx.
360) with metaphenylenediamine, it is usually left at room temperature for 24 hours and then heated at 150°C for a long period of about 6 hours. Furthermore, when curing with phthalic anhydride, heating at 150°C for about 8 hours is required. On the other hand, when using these resin systems as baking paints, long-term heating is practically impossible in terms of work efficiency, and it is necessary to increase the baking temperature and shorten the baking time. Bisphenol A mentioned above
When curing mold epoxy resin with metaphenylene diamine, it will harden in about 1 hour if the baking temperature is set to 190°C. Therefore, in the present invention, for example, when baking is performed at 190°C for 1 hour using such a resin, 90% by weight or more of the solvent used has a boiling point of 140°C or higher, and 40% by weight or more has a boiling point of 190°C or higher. Something is necessary. However, if the amount of a solvent whose boiling point is higher than the baking temperature is increased, it naturally causes a problem of residual solvent, which deteriorates the durability of the coating film. For this reason, it is practically preferable to limit the blending amount of the solvent that satisfies the above formula (2) to about 80% by weight. FIG. 1 shows the relationship between the boiling point of the solvent and the baking temperature in equations (1) and (2) above. Here, for example, the baking temperature is 180℃, and each temperature is 200℃.
a, b, with boiling points of ℃, 170℃, 150℃, 110℃,
When using a solvent consisting of components c and d, the weight percentages of each of the above components are [a],
If expressed as [b], [c], and [d], it is necessary to adjust the proportions of the components so as to satisfy the following conditions: [a] 40% [a] + [b] + [c] 90%. Such solvents include, for example, 50 parts of Solbest #150 (boiling point: 190-204°C), 20 parts of methoxybutyl acetate (boiling point: 173°C), 20 parts of cyclohexanone (boiling point: 156°C), and xylene (boiling point: 156°C).
138℃) or 40 parts of isophorone (boiling point 210℃) or butyl cellosolve (boiling point 170℃).
℃) 30 parts, cyclohexanone (boiling point 156℃) 20 parts,
and 10 parts of xylene (boiling point 138°C). The upper limit of the boiling point of the solvent is the baking temperature plus 40℃.
(See Example C) In particular, it is practically preferable to set the baking temperature plus 30°C. If a solvent has a boiling point higher than this, the solvent will remain in the coating film after baking and will gradually evaporate, causing distortion within the film, resulting in a decrease in the adhesion of the coating film. As an additive, it is essential to use a low molecular weight polyethylene additive. This additive is commonly used as a pigment settling prevention agent in air-drying paints such as tar-epoxy or epoxy paints. This takes advantage of the property of low-molecular-weight polyethylene, which swells with solvents and imparts thixotropic properties to the paint. Thixotropic property is a property in which when the viscosity of a paint is measured at low shear rates (for example, 5 to 10 rpm with a B-type viscometer) and high shear rates (60 to 100 rpm), the viscosity at the latter is lower than at the former. This property is thought to be caused by the loose internal structure of the paint liquid. If this property were to be imparted to the paint, when painting with air spray, etc., the viscosity would be reduced due to the high shear rate at the time of discharge and the atomization property would be improved. Since no shearing force is applied afterwards, the viscosity increases and sag is less likely, which is a favorable result for thick film coatings. Based on these facts, the present inventors investigated and found that when a low molecular weight polyethylene additive is used in combination with the above-mentioned relatively high boiling point solvent, thixotropic properties increase as the paint temperature increases due to baking. The inventors have discovered that this strengthens the viscosity, thereby canceling out the decrease in viscosity caused by temperature rise, and as a result, the critical film thickness at which sagging occurs can be significantly improved. This enhanced thixotropic property is probably due to the fact that the degree of swelling of the low molecular weight polyethylene additive increases as the coating temperature increases. Although the pigment is not particularly limited, it is preferable to avoid using pigments that are flat in shape, such as talc. As described above, in the present invention, the problems of blistering and sagging when thickly applied can be appropriately avoided by the combination of resin, solvent, and low molecular weight polyethylene resin, and
It is possible to paint a thick film with a dry coating of 200μ or more per coat and to load it into a baking oven immediately after painting. Next, embodiments of the present invention will be described. [Example] The compositions and baking conditions of paints (A) to (E) according to the present invention are shown in Table 1, and the compositions and baking conditions of paints (F) to (J) as comparative examples are shown in Table 2. Indicated. The paint was either a one-component type or a two-component type, and in the case of a two-component type, appropriate amounts of solvent were distributed into the base and curing agent. The non-volatile content was about 60%. Paints (A) to (E) and comparative paint (F) to test pieces (50 x 150 x 3.2 mm hot rolled steel plate, surface shot blasted)
(J) were coated with different film thicknesses, and then immediately placed in a hot air drying oven under the conditions shown in Tables 1 and 2, respectively. The coating was performed using air spray after diluting with a solvent having the composition shown in the recipe table so that the 100 revolution viscosity measured by a B-type viscometer was 15 poise. Figure 2 shows an example of the temperature rise curve (baking temperature: 190°C) when the above test piece was placed in a hot air drying oven. Although the temperature rise curve varies depending on the shape of the object to be coated and the furnace capacity, the temperature of the object to be coated will reach the furnace temperature approximately 10 to 60 minutes after charging. After taking it out, the external appearance was observed and the critical film thickness for blistering and the critical film thickness for sagging were determined.
Table 3 shows the results of this determination, and it can be seen that the films of the present invention exhibit higher values for all critical film thicknesses than those of the comparative examples.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔実施例 〕〔Example 〕

80A×5.5m鋼管(JIS G3452)の内面をシヨツ
トブラストし、第1表中の塗料(A)をwet 450μ厚
で塗装した。この塗装は鋼管を回転(60rpm)し
ながらエアレスボールガンを挿入して塗装する方
法で行つた。塗装後直ちに試験管を180℃に設定
したプロパンガス炉(熱風循環方式)に装入し、
1時間加熱後取り出した。これによる塗膜の外観
は良好であり、膜厚はdry200〜250μであつた。 以上述べた本発明によれば、厚塗りした場合の
タレや焼膨れを生ずることなくdry200μ以上の厚
膜を1回の塗装で得ることができ、このため数コ
ート―数ベークという繁雑な工程を採ることなく
能率的な塗装作業を行うことができるという効果
がある。
The inner surface of an 80A x 5.5m steel pipe (JIS G3452) was shot blasted and painted with paint (A) in Table 1 to a wet thickness of 450μ. This painting was done by inserting an airless ball gun into the steel pipe while rotating it (60 rpm). Immediately after painting, place the test tube into a propane gas furnace (hot air circulation method) set at 180℃.
After heating for 1 hour, it was taken out. The resulting coating film had a good appearance and a dry film thickness of 200 to 250 μm. According to the present invention described above, it is possible to obtain a thick film of dry 200μ or more in one coating without causing sagging or blistering when thickly coated, and this eliminates the complicated process of several coats and several bakes. This has the effect of allowing efficient painting work to be carried out without having to remove any paint.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明(1)及び(2)式における溶剤の沸点
と焼付温度との関係を示すものである。第2図は
熱風乾燥炉内での被塗装物の昇温曲線の一例を示
すものである。
FIG. 1 shows the relationship between the boiling point of the solvent and the baking temperature in formulas (1) and (2) of the present invention. FIG. 2 shows an example of the temperature rise curve of the object to be coated in the hot air drying oven.

Claims (1)

【特許請求の範囲】 1 エポキシ樹脂に硬化剤として酸無水物、芳香
族アミンまたはノボラツクフエノールのいずれか
を配合した焼付硬化性樹脂と、沸点(bp)が下
記(3)式を満足する複数の成分を混合してなり、沸
点(bp)が下記(1)式を満足する成分を90重量%
以上、沸点(bp)が下記(2)式を満足する成分を
40〜80重量%含む溶剤と、 bp(℃)焼付温度(℃)−50(℃) ……(1) bp(℃)焼付温度(℃) ……(2) bp(℃)焼付温度(℃)+40(℃) ……(3) 低分子量ポリエチレン系添加剤とを含む厚塗型
焼付塗料。
[Scope of Claims] 1. A bake-hardenable resin in which an epoxy resin is blended with an acid anhydride, an aromatic amine, or a novolac phenol as a hardening agent, and a plurality of resins whose boiling points (bp) satisfy the following formula (3). 90% by weight of the components whose boiling point (bp) satisfies the following formula (1)
Above, the components whose boiling point (bp) satisfies the following formula (2) are
Solvent containing 40 to 80% by weight, bp (℃) Baking temperature (℃) -50 (℃) ... (1) BP (℃) Baking temperature (℃) ... (2) BP (℃) Baking temperature (℃) ) +40 (℃) ...(3) Thick coating type baking paint containing low molecular weight polyethylene additive.
JP9691883A 1983-06-02 1983-06-02 Thick coating banking paint Granted JPS59223758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9691883A JPS59223758A (en) 1983-06-02 1983-06-02 Thick coating banking paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9691883A JPS59223758A (en) 1983-06-02 1983-06-02 Thick coating banking paint

Publications (2)

Publication Number Publication Date
JPS59223758A JPS59223758A (en) 1984-12-15
JPH0119700B2 true JPH0119700B2 (en) 1989-04-12

Family

ID=14177735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9691883A Granted JPS59223758A (en) 1983-06-02 1983-06-02 Thick coating banking paint

Country Status (1)

Country Link
JP (1) JPS59223758A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118574A (en) * 1987-06-10 1989-05-11 Union Carbide Corp High solid dripping resistant alicylic epoxy coating containing low molecular weight and high tg organic polymer dripping resistant additive

Also Published As

Publication number Publication date
JPS59223758A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
US5855960A (en) Topcoating composition and film-forming process by use of the same
US4971727A (en) Conductive primer for plastics or conductive primer surfacer paint and coated plastics molded products
JP3184614B2 (en) Corrosion protection coating method for steel
JP2002527552A (en) Curable coating composition
JPH0119700B2 (en)
US2887404A (en) Composition
JPH10296171A (en) Method for coating plastic base material
US3069291A (en) Primer composition for adhesion of methyl methacrylate lacquer to metal, process and article produced thereby
JPS592468B2 (en) Epoxy resin anticorrosive paint composition
JPS61182940A (en) Corrosion preventive metallic product
JP2700048B2 (en) Manufacturing method of pre-primed galvanized steel sheet
JPS6141267B2 (en)
JPS59222267A (en) Formation of paint coated film
JP2872761B2 (en) Coating method
JPH01146965A (en) Primer composition for fluorocarbon resin paint
JPS6141260B2 (en)
JPS60152573A (en) Thermosetting paint
JP2883958B2 (en) Waterborne intermediate coating
JP2883699B2 (en) Waterborne intermediate coating
JPS60163978A (en) Rust-resisting paint
KR100335312B1 (en) Gas-checking resistant acryl resin composition
JPH0559947B2 (en)
KR100335311B1 (en) Paint composition containing gas-checking resistant acryl resin composition
JPS6141266B2 (en)
JPH0120660B2 (en)