JPH0119684B2 - - Google Patents

Info

Publication number
JPH0119684B2
JPH0119684B2 JP58149903A JP14990383A JPH0119684B2 JP H0119684 B2 JPH0119684 B2 JP H0119684B2 JP 58149903 A JP58149903 A JP 58149903A JP 14990383 A JP14990383 A JP 14990383A JP H0119684 B2 JPH0119684 B2 JP H0119684B2
Authority
JP
Japan
Prior art keywords
polymerization
lauryllactam
pressure
temperature
oligomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58149903A
Other languages
Japanese (ja)
Other versions
JPS6041647A (en
Inventor
Hajime Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Evonik Ltd
Original Assignee
Daicel Huels Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Huels Ltd filed Critical Daicel Huels Ltd
Priority to JP14990383A priority Critical patent/JPS6041647A/en
Publication of JPS6041647A publication Critical patent/JPS6041647A/en
Publication of JPH0119684B2 publication Critical patent/JPH0119684B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はラウリルラクタムの連続加水分解重合
によるオリゴマーの製造方法に関する。 ナイロン12はラウリルラクタムから開環重合に
よつて製造され、特に工業的に大規模に重合体を
得る場合には開環重合方法として加水分解重合方
法がとられる。 ラウリルラクタムの加水分解重合は、ラウリル
ラクタムに水を添加して昇温しナイロン12オリゴ
マーを得る方法である。周知の如くこのオリゴマ
ーはその後の工程で水を抜かれ、縮合高分子化さ
れてナイロン12となる。 併しながらラウリルラクタムの加水分解重合速
度は極めて遅く、ナイロン6のモノマーであるカ
プロラクタムの加水分解重合速度の1/10〜1/30程
度である。このため高温高圧の条件がとられる
が、それでも反応時間に長時間を要する。例えば
温度280℃〜290℃、添加水分量2〜5%、圧力15
〜30Kg/cm2の条件に於て、〜15時間の反応時間を
必要とする。このためオートクレーブを用いたバ
ツチ式重合方法に於ても大規模な高圧設備を必要
とし、連続重合方法となると更に大規模かつ複雑
な高圧装置を必要とすることになる。 又ラウリルラクタムの加水分解重合速度は、温
度を上昇すること及び添加水分量を増大すること
により更に増大するであろうと推定されるが、温
度上昇と添加水分量の増加は、重合時の圧力を極
端に、例えば100Kg/cm2以上に増加させるものと
推定される。このため、重合容器の耐圧能力の限
界からこのような条件は工業的にとり得ないと考
えられ、むしろいかに低圧の条件下で重合を可能
とするかに従来注意が向けられていた。 本発明の目的はラウリルラクタムを、小規模な
設備を用い、短かい反応時間で連続的に加水分解
重合してオリゴマーを製造する方法を提供するこ
とにある。 この目的のために本発明者は発想を転換し、ラ
ウリルラクタムの加水分解重合を極端な高温高圧
下に行うことを考え本発明に到達した。即ち、加
熱温度と添加水分量の関係が加熱温度を縦軸に、
添加水分量を横軸にとつたグラフ上(370℃、2
%)、(340℃、3%)、(325℃、10%)、(310℃、
20%)、(300℃、30%)(295℃、50%)、(360℃、
40%)の各点を結んだ線で囲まれる範囲内にある
様にしてラウリルラクタムを連続的に加水分解重
合させることによつて、本発明の目的が達成され
ることが見出された。即ちこのような条件で加水
分解重合を行うと、反応時間が30分以内に短縮さ
れ得ることが見出された。バツチ式重合に於て
は、モノマーの仕込時間、昇温時間、製品取出時
間等が長いため、このような重合時間の短縮は余
り大きな意味をなさないかも知れないが、連続重
合に於ては、高温高圧状態での滞留時間が30分以
内に確実に短縮されるため、使用する高温高圧容
器の容量が小さくなり、装置全体が小規模化でき
るだけでなく、小容量の高温高圧容器は極めて容
易に製作可能となる。即ち本発明の方法は、ラウ
リルラクタムの加水分解重合を高温高圧下で極め
て短時間に行うこととこれを連続重合方法により
行うこととを組合わせたものであり、これによ
り、工業的に非常に有利なラウリルラクタムのオ
リゴマーの連続製造方法が提供されるものであ
る。 本発明方法に使用される加熱温度と添加水分量
の範囲は具体的には第1図に示される範囲であ
る。ここで添加水分量とは、ラウリルラクタム、
共重合モノマー及び添加剤を含む重合系全体の重
量に対する水の量を重量%で表わしたものであ
る。 第1図に示される範囲より温度が低いと重合速
度が遅く、逆に高いと着色、副生成物の生成等の
問題が起る。又第1図に示される範囲より水分量
が少いと重合速度が遅く、逆に多いといたずらに
圧力が高くなり、得られたオリゴマーの重合度が
極端に低下する。 本発明の方法を実施するために用いられる連続
重合装置としては、例えば後記の実施例に見るよ
うに、熱交換用蛇管等、加熱装置につながつた管
状の容器を使用するのが望ましく、高圧ポンプに
より加熱装置を通つて管状容器にラウリルラクタ
ムおよび水が供給され、重合が行われる。 本発明の主旨は加水分解重合速度の遅いラウリ
ルラクタムを簡単な設備で連続重合することにあ
り、ラウリルラクタム単独のみならず、モノマー
成分としてラウリルラクタムとこれと共重合し得
るモノマーを本発明による方法で加水分解共重合
して共重合体オリゴマーを得ることができる。ま
た共重合可能なモノマーであれば、ポリアミドモ
ノマーに限らず、ポリエステルモノマーとも共重
合し得る。例えばホツトメルト接着剤として有用
なラウリルラクタム、カプロラクタム及びアジピ
ン酸ヘキサメチレンジアミン塩の三元共重合体も
好適に重合され得る。更にモノマー以外に重合度
調整剤、重合促進剤及び安定剤等の添加剤を加え
ることができる。 本発明の方法で得られたナイロン12オリゴマー
又は共重合オリゴマーは、通常数平均分子量Mn
が700〜4000で、減圧下又は常圧下あるいは加圧
下に加熱縮合されて、高分子ナイロン12又は共重
合体が得られる。この場合の縮合条件としては
250〜350℃の温度で2分〜5時間、窒素気流下中
常圧又は減圧下で行なう。好ましくはオリゴマー
を撹拌しながら定速で移動させることにより、連
続縮合させる。更に本発明によるオリゴマーは他
の化合物、例えばポリテトラヒドロフランと反応
させる等別の重合体の原料として用いることがで
きる。 以下本発明を実施例について説明するが、本発
明はこれらの実施例に限定されるものではない。 実施例 1〜4 第2図で示した装置によつて本発明を実施し
た。 第2図に於て、1は、その下部をヒーター1a
で200℃に加熱したサイロであり、ラウリルラク
タムが入つている。このサイロはラウリルラクタ
ムを仕込んだ後窒素置換を行い、空気の混入を避
けるため常に少量の窒素を流している。ラウリル
ラクタムはこのサイロ下部で溶融し、高圧ポンプ
2によつて蛇管6に定量圧送される。蛇管6は一
定温度に温調され、撹拌されているナイターバス
7中に浸漬されており、内径10mmφ、外径12mm
φ、長さ30mのステンレススチール製である。 3は下部に蒸気蛇管3aを持つたサイロであ
り、中に純水が入つており沸騰状態にある。沸騰
純水は高圧ポンプ4によつてナイターバス7中の
蛇管5に定量圧送される。蛇管5は内径6mmφ、
外径8mmφ、長さ5mのステンレススチール製で
ある。純水は蛇管5を通つて加熱され、次で蛇管
6に送られてラウリルラクタムに混入される。 蛇管6で加熱され、一部重合の進んだラウリル
ラクタムと水の混合物は、外部からバンドヒータ
ー8aで一定の温度に温調された内径約50mmφ、
外径約60mmφ、長さ5mのステンレススチール製
の反応管8に送られる。反応管8は内部に約50cm
間隔にスルザー(株)社製メルブレンダー(スタテイ
ツクミキサー)を合計10ケ持つている。 反応管8中で重合したオリゴマーと水の混合物
は圧力が150Kg/cm2以上になると開くレリーフ弁
9を通つてフラツシユし、サイクロン10に送ら
れる。サイクロン10に於てその上部より加熱蒸
気が、下部より溶融オリゴマーがそれぞれ分離さ
れ、オリゴマーは冷却水槽11中で冷却固化され
る。 この装置を用い、表―1に示したようにラウリ
ルラクタム圧送ポンプ2の流量、純水圧送ポンプ
4の流量、ナイターバス7の温度および反応管8
の温度を代えて各種のオリゴマーを製造した。 固化したオリゴマーは乾燥後、アセトンで24時
間ソツクスレ―抽出し、アセトン抽出量を測定し
た。これが残存モノマー量に相当する。また乾燥
オリゴマーを三菱化成(株)製電量滴定法水分計によ
り、250℃で水分測定し、概略の縮合水分量を求
めた。この値が大きい程オリゴマーの重合度が低
い。結果を表―1に示す。 尚実施例1によつて得たオリゴマーを窒素気流
中で250℃、2.5時間加熱するとナイロン12ポリマ
ーが得られた。得られたナイロン12は良好な色と
物性を有しており、25℃、0.5%m―クレゾール
溶液に於ける相対粘度1.72の重合度を有してい
た。
The present invention relates to a method for producing oligomers by continuous hydrolytic polymerization of lauryllactam. Nylon 12 is produced from lauryllactam by ring-opening polymerization, and especially when the polymer is obtained on an industrial scale, a hydrolysis polymerization method is used as the ring-opening polymerization method. Hydrolytic polymerization of lauryllactam is a method of adding water to lauryllactam and raising the temperature to obtain nylon 12 oligomer. As is well known, in a subsequent step water is removed from this oligomer and it is converted into a condensation polymer to become nylon 12. However, the hydrolytic polymerization rate of lauryllactam is extremely slow, about 1/10 to 1/30 of the hydrolytic polymerization rate of caprolactam, which is a monomer of nylon 6. For this reason, high temperature and high pressure conditions are used, but the reaction time still takes a long time. For example, temperature 280℃~290℃, added moisture content 2~5%, pressure 15
A reaction time of ~15 hours is required under conditions of ~30 Kg/ cm2 . For this reason, even a batch polymerization method using an autoclave requires large-scale high-pressure equipment, and a continuous polymerization method requires an even larger-scale and more complicated high-pressure equipment. It is also estimated that the hydrolytic polymerization rate of lauryllactam will further increase by increasing the temperature and the amount of water added, but increasing the temperature and the amount of water added will increase the pressure during polymerization. It is estimated that it will increase extremely, for example to 100Kg/cm 2 or more. For this reason, it was considered that such conditions could not be achieved industrially due to the limits of the pressure resistance of the polymerization container, and instead attention has been focused on how to make polymerization possible under low pressure conditions. An object of the present invention is to provide a method for producing oligomers by continuously hydrolyzing and polymerizing lauryllactam in a short reaction time using small-scale equipment. For this purpose, the present inventors changed their thinking and conceived the idea of carrying out hydrolytic polymerization of lauryllactam under extremely high temperature and pressure, and arrived at the present invention. In other words, the relationship between heating temperature and added moisture content is as follows with heating temperature as the vertical axis:
On a graph with added water content on the horizontal axis (370℃, 2
%), (340℃, 3%), (325℃, 10%), (310℃,
20%), (300℃, 30%) (295℃, 50%), (360℃,
It has been found that the object of the present invention can be achieved by continuously hydrolyzing and polymerizing lauryllactam within the range surrounded by lines connecting the points of 40%). That is, it has been found that when hydrolysis polymerization is carried out under such conditions, the reaction time can be shortened to within 30 minutes. In batch polymerization, the monomer charging time, temperature raising time, product removal time, etc. are long, so shortening the polymerization time may not have much meaning, but in continuous polymerization, , the residence time in a high-temperature, high-pressure state is reliably shortened to less than 30 minutes, which reduces the capacity of the high-temperature, high-pressure vessel used, which not only allows for the overall scale of the equipment, but also makes it extremely easy to construct a small-capacity high-temperature, high-pressure vessel. It will be possible to manufacture it in In other words, the method of the present invention combines the hydrolytic polymerization of lauryllactam in an extremely short period of time under high temperature and high pressure with the continuous polymerization method. A method for continuous production of advantageous lauryllactam oligomers is provided. Specifically, the range of heating temperature and amount of added water used in the method of the present invention is the range shown in FIG. Here, the amount of added water refers to lauryl lactam,
The amount of water is expressed in % by weight based on the weight of the entire polymerization system including copolymerizable monomers and additives. If the temperature is lower than the range shown in FIG. 1, the polymerization rate will be slow; if the temperature is higher than the range shown in FIG. 1, problems such as coloring and formation of by-products will occur. Moreover, if the water content is less than the range shown in FIG. 1, the polymerization rate will be slow, whereas if it is too much, the pressure will become unnecessarily high, and the degree of polymerization of the obtained oligomer will be extremely reduced. As the continuous polymerization device used to carry out the method of the present invention, it is preferable to use a tubular container connected to a heating device, such as a heat exchange coil, as shown in the examples below, and a high-pressure pump. lauryl lactam and water are fed into the tubular container through a heating device, and polymerization takes place. The gist of the present invention is to continuously polymerize lauryl lactam, which has a slow hydrolytic polymerization rate, using simple equipment, and the method according to the present invention uses not only lauryl lactam alone, but also lauryl lactam as a monomer component and a monomer that can be copolymerized therewith. A copolymer oligomer can be obtained by hydrolytic copolymerization. Further, as long as the monomer is copolymerizable, it can be copolymerized not only with polyamide monomers but also with polyester monomers. For example, terpolymers of lauryllactam, caprolactam and adipic acid hexamethylene diamine salt useful as hot melt adhesives may also be suitably polymerized. Furthermore, additives such as a polymerization degree regulator, a polymerization accelerator, and a stabilizer can be added in addition to the monomer. The nylon 12 oligomer or copolymerized oligomer obtained by the method of the present invention usually has a number average molecular weight of Mn
is 700 to 4000, and heat condensation is performed under reduced pressure, normal pressure, or increased pressure to obtain high molecular weight nylon 12 or copolymer. In this case, the condensation conditions are
The reaction is carried out at a temperature of 250 to 350°C for 2 minutes to 5 hours under a nitrogen stream at normal pressure or reduced pressure. Continuous condensation is preferably carried out by moving the oligomer at a constant speed while stirring. Furthermore, the oligomers according to the invention can be used as raw materials for other polymers, such as by reacting with other compounds, for example polytetrahydrofuran. The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. Examples 1 to 4 The present invention was carried out using the apparatus shown in FIG. In Figure 2, 1 is the lower part of the heater 1a.
It is a silo heated to 200℃ and contains lauryl lactam. This silo is filled with lauryllactam and then replaced with nitrogen, with a small amount of nitrogen constantly flowing to prevent air from entering the silo. The lauryl lactam is melted in the lower part of this silo, and is fed under constant pressure into a corrugated pipe 6 by a high-pressure pump 2. The corrugated tube 6 is immersed in a night bath 7 that is kept at a constant temperature and stirred, and has an inner diameter of 10 mmφ and an outer diameter of 12 mm.
It is made of stainless steel and has a diameter of 30m. 3 is a silo with a steam pipe 3a at the bottom, and pure water is contained therein in a boiling state. The boiling pure water is fed under constant pressure to a flexible pipe 5 in a night bath 7 by a high-pressure pump 4. The serpentine pipe 5 has an inner diameter of 6 mmφ,
It is made of stainless steel and has an outer diameter of 8 mmφ and a length of 5 m. The pure water is heated through the corrugated tube 5 and then sent to the corrugated tube 6 where it is mixed with the lauryllactam. The mixture of lauryl lactam and water, which has been heated in the corrugated pipe 6 and partially polymerized, is heated to a constant temperature from the outside with a band heater 8a, with an inner diameter of about 50 mmφ,
The reaction tube 8 is made of stainless steel and has an outer diameter of about 60 mmφ and a length of 5 m. Reaction tube 8 is approximately 50cm inside.
I have a total of 10 Mel blenders (static mixers) made by Sulzer Co., Ltd. at intervals. The mixture of oligomers and water polymerized in the reaction tube 8 flashes through a relief valve 9 that opens when the pressure reaches 150 Kg/cm 2 or more, and is sent to the cyclone 10 . In the cyclone 10, the heated steam is separated from the upper part and the molten oligomer is separated from the lower part, and the oligomer is cooled and solidified in the cooling water tank 11. Using this device, the flow rate of the lauryl lactam pressure pump 2, the flow rate of the pure water pressure pump 4, the temperature of the night bath 7, and the reaction tube 8 were determined as shown in Table 1.
Various oligomers were produced at different temperatures. After drying, the solidified oligomer was Soxhlet-extracted with acetone for 24 hours, and the amount of acetone extracted was measured. This corresponds to the amount of residual monomer. Further, the moisture content of the dried oligomer was measured at 250° C. using a coulometric titration moisture meter manufactured by Mitsubishi Kasei Corporation to determine the approximate condensed moisture content. The larger this value is, the lower the degree of polymerization of the oligomer is. The results are shown in Table-1. When the oligomer obtained in Example 1 was heated at 250° C. for 2.5 hours in a nitrogen stream, a nylon 12 polymer was obtained. The obtained nylon 12 had good color and physical properties, and a degree of polymerization with a relative viscosity of 1.72 in a 0.5% m-cresol solution at 25°C.

【表】 実施例 5 3の熱水槽に、純水の代りに44.4%カプロラク
タム水溶液を入れ、実施例1〜4と同様にして、
ラウリルラクタムとカプロラクタムの共重合オリ
ゴマーを重合した。但し、ラウリルラクタム圧送
量は12.8Kg/hr、44.4%カプロラクタム水溶液圧
送量は7.2Kg/hrとし、ナイターバス温度は345
℃、反応管温度は340℃とした。 ラウリルラクタムとカプロラクタムの重合比は
80/20であり、添加水分量は20%に相当し、滞留
時間は20〜22分間である。 得られたオリゴマーの残存モノマー量は1.5%
でほとんどがカプロラクタムであつた。縮合水分
量は1.05%であつた。この重合体を窒素気流中、
240℃で5時間加熱すると共重合体が得られ、25
℃、0.5%m―クレゾール溶液に於る相対粘度は
1.70、融点150℃であつた。 比較例 1〜3 実施例1〜4と同様にして表―2に示す本発明
の範囲を外れる条件でラウリルラクタムの加水分
解重合を行つた。結果を併せて表―2に示す。表
―2より実施例1〜4と同程度の滞留時間では大
量のモノマーが残存することがわかる。
[Table] Example 5 Put 44.4% caprolactam aqueous solution in place of pure water in the hot water bath of 3, and carry out the same procedure as in Examples 1 to 4.
A copolymerized oligomer of lauryllactam and caprolactam was polymerized. However, the amount of lauryl lactam pumped is 12.8Kg/hr, the amount of 44.4% caprolactam aqueous solution pumped is 7.2Kg/hr, and the night bath temperature is 345
℃, and the reaction tube temperature was 340℃. The polymerization ratio of lauryllactam and caprolactam is 80/20, the amount of added water corresponds to 20%, and the residence time is 20 to 22 minutes. The amount of residual monomer in the obtained oligomer is 1.5%
Most of it was caprolactam. The condensed water content was 1.05%. This polymer was heated in a nitrogen stream.
A copolymer was obtained by heating at 240℃ for 5 hours, and 25
The relative viscosity of a 0.5% m-cresol solution at °C is
1.70, and the melting point was 150°C. Comparative Examples 1 to 3 In the same manner as Examples 1 to 4, lauryllactam was hydrolyzed and polymerized under conditions outside the scope of the present invention shown in Table 2. The results are also shown in Table 2. From Table 2, it can be seen that a large amount of monomer remains at the same residence time as in Examples 1 to 4.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に於ける加熱温度と添加水分量
の関係を示す図、第2図は本発明の実施に用いら
れる装置の略示図である。 1はサイロ、2は高圧ポンプ、3は熱水槽、4
は高圧ポンプ、5は蛇管、6は蛇管、7はナイタ
ーバス、8は反応管、9はレリーフ弁、10はサ
イクロン、11は冷却水槽。
FIG. 1 is a diagram showing the relationship between the heating temperature and the amount of added water in the present invention, and FIG. 2 is a schematic diagram of the apparatus used for carrying out the present invention. 1 is a silo, 2 is a high pressure pump, 3 is a hot water tank, 4
is a high-pressure pump, 5 is a serpentine pipe, 6 is a serpentine pipe, 7 is a night bath, 8 is a reaction tube, 9 is a relief valve, 10 is a cyclone, and 11 is a cooling water tank.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱温度と添加水分量の関係が第1図に示す
(370℃、2%)、(340℃、3%)、(325℃、10%)

(310℃、20%)、(300℃、30%)、(295℃、50%)

(360℃、40%)の各点を結んだ線で囲まれる範囲
内にある様にしてラウリルラクタム又はラウリル
ラクタムとこれと共重合し得るモノマーを連続的
に加水分解重合又は共重合させることを特徴とす
るオリゴマーの製造方法。
1 The relationship between heating temperature and added moisture content is shown in Figure 1 (370℃, 2%), (340℃, 3%), (325℃, 10%)
,
(310℃, 20%), (300℃, 30%), (295℃, 50%)
,
(360℃, 40%) Continuous hydrolytic polymerization or copolymerization of lauryllactam or a monomer that can be copolymerized with lauryllactam within the range surrounded by the line connecting each point. Characteristic method for producing oligomers.
JP14990383A 1983-08-17 1983-08-17 Preparation of oligomer Granted JPS6041647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14990383A JPS6041647A (en) 1983-08-17 1983-08-17 Preparation of oligomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14990383A JPS6041647A (en) 1983-08-17 1983-08-17 Preparation of oligomer

Publications (2)

Publication Number Publication Date
JPS6041647A JPS6041647A (en) 1985-03-05
JPH0119684B2 true JPH0119684B2 (en) 1989-04-12

Family

ID=15485118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14990383A Granted JPS6041647A (en) 1983-08-17 1983-08-17 Preparation of oligomer

Country Status (1)

Country Link
JP (1) JPS6041647A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3621804A1 (en) * 1986-06-28 1988-01-07 Huels Chemische Werke Ag METHOD FOR PRODUCING A PRAEPOLYMER AMID FROM A C (DOWN ARROW) 1 (DOWN ARROW) (DOWN ARROW) 2 (DOWN ARROW) -AMINOCARBONSAEURELACTAM
US5122075A (en) * 1991-05-17 1992-06-16 Amp Incorporated Electrical connector with improved retention feature
US5409399A (en) * 1993-12-08 1995-04-25 Molex Incorporated Electrical connection assembly for mounting on a printed circuit board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289195A (en) * 1976-01-17 1977-07-26 Abobichi Enenshiyutai Gennadou Method of making polylanolinlactam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289195A (en) * 1976-01-17 1977-07-26 Abobichi Enenshiyutai Gennadou Method of making polylanolinlactam

Also Published As

Publication number Publication date
JPS6041647A (en) 1985-03-05

Similar Documents

Publication Publication Date Title
CA1056991A (en) Manufacture of polyamides
US6069228A (en) Process for preparing polyamides
RU2144048C1 (en) Continuous polyamide production process, method of preparing high- molecular polycaproamide, and polycaproamide with molecular weight 3000-14000
KR101444965B1 (en) Application of coil tube evaporators for the production of polyamides
US4539391A (en) Continuous hydrolytic preparation of polylactams
JPS58111829A (en) Preparation of polyamide
JPH0356576B2 (en)
WO2020233497A1 (en) Method for preparing environmentally friendly polyamide resin
JP2017521508A (en) Production of polyamides by hydrolytic polymerization and subsequent treatment in a kneader.
EP1007582B2 (en) Process for preparing polyamides
CA1039024A (en) Method to prepare nylon 6 prepolymer providing a final shaped article of low oligomer content
CN108178831B (en) Preparation method of PA (66-co-6T) copolymer
US5306804A (en) Discontinuous process for the production of a polyamide-6,6
US3558567A (en) Process for the production of nylon 6
JPH0119684B2 (en)
JP5861966B2 (en) Method for preparing PA-4X and PA-410 obtained by this method
JPS63286429A (en) Alpha-amino-epsilon caplolactam reformed polyamide
JP5857391B2 (en) Method for producing PA-410 and PA-410 obtained by this method
JPH07258404A (en) Continuous polymerizing method for laurolactam by hydrolysis
JP2016509118A (en) Production of polyamides by hydrolysis polymerization and multistage extraction.
KR20010080238A (en) METHOD FOR POLYMERISING ε-CAPROLACTAM TO POLYAMIDE-6
US5399662A (en) Strong non-ionic base catalyzed ring opening polymerization of lactams
JPS61166833A (en) Condensation of nylon
KR100229952B1 (en) Process for preparing polytetramethylene adipamides
US3484414A (en) Process for the continuous polymerization of lactams