JPH01196595A - Control rod for nuclear reactor - Google Patents

Control rod for nuclear reactor

Info

Publication number
JPH01196595A
JPH01196595A JP63021189A JP2118988A JPH01196595A JP H01196595 A JPH01196595 A JP H01196595A JP 63021189 A JP63021189 A JP 63021189A JP 2118988 A JP2118988 A JP 2118988A JP H01196595 A JPH01196595 A JP H01196595A
Authority
JP
Japan
Prior art keywords
neutron
sheath
control rod
wing
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63021189A
Other languages
Japanese (ja)
Other versions
JP2563429B2 (en
Inventor
Masayuki Shima
誠之 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63021189A priority Critical patent/JP2563429B2/en
Publication of JPH01196595A publication Critical patent/JPH01196595A/en
Application granted granted Critical
Publication of JP2563429B2 publication Critical patent/JP2563429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To prevent the mutual contact of hafnium metal plates and the contact of said metal plates with the inner surface of a sheath, by using a spot spacer and a ring spacer. CONSTITUTION:A sheath 15 made of high purity stainless steel having a deep U-shape cross-section is fixed to each of the protruding legs of the center tie rod 14 having a cruciform section of a control rod 10 for a nuclear reactor and a long life type neutron absorbing body 17 composed of an Hf metal plate 21. The central tie rod 14 is divided into a plurality of neutron absorbing elements 17a-17d in the axial direction thereof so that a neutron absorbing characteristic is successively lowered from an upper stage to a lower stage. The divided pieces 21a of a wing 16 in the width direction thereof are supported by a plurality of the spot spacers 22 pierced through the sheath 15 and ring spacers 22a are mounted to the leg piece piercing through the sheath 15. The thickness of the Hf metal plate in the vicinity of a side edge is made larger than that of the other part in the width direction of the wing 16. By this method, the wt. of the control rod can be reduced and the corrosion due to the contact of the Hf metal plate with the inner surface of the sheath can be also prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は原子炉の炉出力を調節、制御する原子炉用制御
棒に係り、特に長寿命型の原子炉用制御棒に係る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear reactor control rod that adjusts and controls the reactor power of a nuclear reactor, and in particular a long-life nuclear reactor control rod. Pertains to.

(従来の技術) 原子炉用制御棒は、十字状断面の中央タイロッドの各突
出脚に深いU字状断面のシースを取り付けて形成した4
箇のウィング内に多数の中性子吸収棒を装填して構成さ
れている。中性子吸収棒はSUS製被覆管内にボロンカ
ーバイド(B4C)粉末を充填して構成されている。而
して、前記被覆管内には粉末移動防止用の仕切球が一定
間隔で配置されている。
(Prior art) A control rod for a nuclear reactor is formed by attaching a sheath with a deep U-shaped cross section to each protruding leg of a central tie rod with a cross-shaped cross section.
It consists of a large number of neutron absorption rods loaded into each wing. The neutron absorption rod is constructed by filling a SUS cladding tube with boron carbide (B4C) powder. Partition balls for preventing powder movement are arranged at regular intervals within the cladding tube.

中性子吸収棒内に充填されたB4C粉末は中性子を吸収
して中性子吸収能力が次第に低下するとともに、その間
にボロン−10(”B)が中性子と反応してHeガスを
発生させ、被覆管内の圧力を上昇させる。上記の中性子
吸収能力によって定められる寿命を核的寿命と云い、被
覆管内のガス圧によって定められる寿命を機械的寿命と
云っている。
The B4C powder filled in the neutron absorption rod absorbs neutrons and its neutron absorption capacity gradually decreases. During this time, boron-10 ("B) reacts with the neutrons to generate He gas, which increases the pressure inside the cladding tube. The life determined by the above-mentioned neutron absorption capacity is called the nuclear life, and the life determined by the gas pressure inside the cladding tube is called the mechanical life.

ところで、原子炉の炉心に対して挿抜される制御棒は中
性子の照射を一様に受けるものではなく、例えば各ウィ
ングの側縁や上端部は強い中性子照射を受ける。このた
め、制御棒の側縁部や上端部近傍にある中性子吸収体は
多量の中性子を吸収し、他部の吸収体よりも早期に核的
寿命に達する。従って、他部の中性子吸収体は十分核的
寿命を残存させているにも拘らず、制御棒を放射性廃棄
物として廃棄しなければならなかった。このように使用
可能な部分があるにも拘らず、放射性廃棄物として処分
することは不経済であるだけでなく、放射性廃棄物の量
を徒に増大させ好ましくない。
By the way, control rods that are inserted into and removed from the core of a nuclear reactor are not uniformly irradiated with neutrons; for example, the side edges and upper ends of each wing are exposed to strong neutron irradiation. For this reason, the neutron absorbers near the side edges and top ends of the control rods absorb a large amount of neutrons and reach their nuclear lifetime earlier than absorbers in other parts. Therefore, the control rods had to be disposed of as radioactive waste, even though the other neutron absorbers had sufficient nuclear lifetime remaining. Even though there are usable parts, disposing of radioactive waste as radioactive waste is not only uneconomical but also undesirable because it unnecessarily increases the amount of radioactive waste.

上記の問題を解決するため制御棒の強い中性子照射を受
ける部分に、核的寿命の長い長寿命型の中性子吸収材を
配置した原子炉用制御棒が開発されている(特開昭53
−74697号)。
To solve the above problem, a nuclear reactor control rod has been developed in which a long-life neutron absorbing material with a long nuclear life is placed in the part of the control rod that is exposed to strong neutron irradiation (Japanese Patent Laid-Open No. 53
-74697).

ところが、この形式の原子炉用制御棒にあってはその寿
命は通常型の2倍程度に延長されるに過ぎず、原子炉用
制御棒の長寿命化を図る上で必ずしも十分ではなかった
However, the life of this type of nuclear reactor control rod is only about twice as long as that of a conventional type, which is not necessarily sufficient to extend the life of a nuclear reactor control rod.

特開昭53−74967号開示の原子炉用制御棒の前記
の問題を解決するものとして、さらに長寿命を示し得る
特開昭58−55887号開示の原子炉用制御棒が開発
された。この原子炉用制御棒は、制御捧各ウィング内に
長寿命型中性子吸収材からなる中実の中性子吸収板を装
填してなるものである。この中性子吸収板は炉停止余裕
の軸方向分布の小さい部位では小量の板材削り取りを行
い、逆にそれが大きい部位では多量の板材削り取りとな
るよう透孔または凹陥部を、その大きさや分布を考慮し
て設けている。
In order to solve the above-mentioned problems of the nuclear reactor control rod disclosed in JP-A-53-74967, a nuclear reactor control rod disclosed in JP-A-58-55887 was developed which can exhibit an even longer life. This control rod for a nuclear reactor has a solid neutron absorbing plate made of a long-life neutron absorbing material loaded in each wing of the control rod. This neutron absorption plate removes a small amount of plate material in areas where the axial distribution of the reactor shutdown margin is small, and conversely, in areas where the axial distribution of the reactor shutdown margin is large, a large amount of plate material is removed. This has been taken into consideration.

(発明が解決しようとする課題) ところが、特開昭53−74967号開示の原子炉用制
御棒に使用されている中性子吸収材は、高価で比重の大
きな板状ハフニウム(Hf)金属であるため、制御棒が
高価で非常に重量の大きいものとなる欠点があった。
(Problem to be Solved by the Invention) However, the neutron absorbing material used in the control rod for a nuclear reactor disclosed in JP-A-53-74967 is a plate-shaped hafnium (Hf) metal that is expensive and has a large specific gravity. However, the control rods were expensive and very heavy.

重量が大きくなると、この制御棒を取り扱う制御棒駆動
機構は耐重量的な設計変更が必要となり、従来の制御棒
駆動機構をそのまま使用することはできなかった。
As the weight increases, the design of the control rod drive mechanism that handles the control rods needs to be changed in terms of its weight capacity, and conventional control rod drive mechanisms cannot be used as is.

また、ハフニウム金属板を制御棒の中性子吸収材として
使用する場合に、ハフニウム金属板と制御棒の構造材で
あるステンレス鋼とが大きな面積で接触することになり
易く、その結果大きな面積で巾の狭い間隙が形成される
おそれがあり、耐食性の点から好ましくない。
In addition, when using a hafnium metal plate as a neutron absorbing material for a control rod, the hafnium metal plate and the stainless steel that is the structural material of the control rod tend to come into contact over a large area, and as a result, the width of the hafnium metal plate is likely to be large. There is a possibility that a narrow gap may be formed, which is unfavorable from the viewpoint of corrosion resistance.

本出願人は上記の問題を解決するものとして、さらに新
規な長寿命型原子炉用制御棒を開示した。
The present applicant has disclosed a new long-life nuclear reactor control rod to solve the above problem.

この制御棒は中性子吸収体をウィング軸方向、巾方向に
分割して各分割区分のハフニウム金属板の厚さを各区分
における中性子照射量に応じて定めたもので、これによ
り制御棒全体にわたり中性子吸収体の核的寿命を均一化
している。
This control rod has a neutron absorber divided in the wing axis direction and width direction, and the thickness of the hafnium metal plate in each division is determined according to the neutron irradiation amount in each division. The core life of the absorber is made uniform.

ところが、上記開示の制御棒では中性子吸収要素はウィ
ング巾方向に複数筒に分割して構成され、各分割区分の
ハフニウム金属板は、それ等をシー入内面から浮かせて
支持する溝と、対向するハフニウム金属板間の間隔を保
持する突起とを備えたスペーサにより支持され、2枚の
ハフニウム金属板間の空間およびハフニウム金属板とシ
ー入内面間には減速材流路が形成されている。而して、
各分割区分のハフニウム金属板の厚さはその区分の中性
子照射量分布に応じて設定する。つまり、ウィングの側
縁近傍にあるハフニウム金属板の厚さを他部にあるそれ
の厚さよりも大とすればよい。
However, in the control rod disclosed above, the neutron absorbing element is divided into a plurality of cylinders in the wing width direction, and the hafnium metal plate of each divided section faces a groove that supports them by floating them from the inner surface of the seat. The spacer is supported by a spacer having a projection that maintains the distance between the hafnium metal plates, and a moderator flow path is formed in the space between the two hafnium metal plates and between the hafnium metal plate and the inner surface of the sheet. Then,
The thickness of the hafnium metal plate in each divided section is set according to the neutron irradiation dose distribution of that section. That is, the thickness of the hafnium metal plate near the side edge of the wing may be made larger than the thickness of the hafnium metal plate in other parts.

なお、この制御棒においてはハフニウム金属板はシース
の内面から浮かして支持され、それ等が大きな面積で直
接に接触することはないから、腐食等の問題を生じるこ
とはない。
In this control rod, the hafnium metal plate is supported floating from the inner surface of the sheath, and since they do not come into direct contact over a large area, problems such as corrosion will not occur.

ところが、前記溝、突起材のスペーサがハフニウム金属
板を確実に支持するとは限らず、ハフニウム金属板がシ
ース内面と接触するおそれがあった。
However, the grooves and spacers of the projections do not necessarily support the hafnium metal plate reliably, and there is a risk that the hafnium metal plate may come into contact with the inner surface of the sheath.

本発明は上記の事情に基づきなされたもので、ハフニウ
ム金属板とシース内面とが接触する畏れがなく、しかも
比較的軽量且つ安価で従来の制御棒間動機構をそのまま
使用することができる原子炉用制御棒を提供することを
目的としている。
The present invention has been made based on the above-mentioned circumstances, and is a nuclear reactor that has no fear of contact between the hafnium metal plate and the inner surface of the sheath, is relatively lightweight and inexpensive, and can use the conventional control rod interlocking mechanism as is. The purpose is to provide control rods for

[発明の構成] (課題を解決するための手段) 本発明の原子炉用制御棒は、先端構造材および末端構造
材を連結する断面十字状の中央タイロッドと、この中央
タイロッドの各突出脚に深いU字状のシースをその開口
部において取り付けて構成したウィングと、各ウィング
内に装填した長寿命型中性子吸収体とを有し、前記長寿
命型中性子吸収体を制御棒軸方向およびウィング巾方向
に複数の区分に分割し、各区分内の中性子吸収要素の中
性子吸収特性をその区分における中性子照射量に応じて
定めたものにおいて、前記各区分の中性子吸収要素を構
成する対向するハフニウム金属板を、十字状断面で対向
する脚片を前記シースに貫通させたスポットスペーサに
より間隔を保持させ、それ等ハフニウム金属板と前記シ
ース内面とは前記脚片に装着したリングスペーサにより
離間したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The nuclear reactor control rod of the present invention includes a central tie rod having a cross-shaped cross section that connects a tip structural member and a terminal structural member, and each protruding leg of the central tie rod. The wing has a deep U-shaped sheath attached at its opening, and a long-life neutron absorber is loaded into each wing. A hafnium metal plate that is divided into a plurality of sections in a direction and in which the neutron absorption characteristics of the neutron absorption element in each section is determined according to the amount of neutron irradiation in that section, the opposing hafnium metal plates constituting the neutron absorption element of each section. The hafnium metal plates and the inner surface of the sheath are separated from each other by ring spacers attached to the leg pieces. shall be.

(作用) 上記構成の本発明原子炉用制御棒においては、中性子吸
収体を構成するハフニウム金属板をスポットスペーサに
より間隔を保持して対向させ、しかもそれ等の金属板と
シー入内面との間隔をリングスペーサによって保持させ
ているから、ハフニウム金属板同士の接触またはハフニ
ウム金属板とシース内面との接触等を生じることはなく
、減速材流路の確保は勿論良好になされ、また狭い間隙
、広い面積でのハフニウム金属板とシース内面との接触
も完全に防止されるのでこれ等両者の腐食を生じること
もない。
(Function) In the nuclear reactor control rod of the present invention having the above configuration, the hafnium metal plates constituting the neutron absorber are opposed to each other with a distance maintained by the spot spacer, and the distance between these metal plates and the inner surface of the sheath is Since the hafnium metal plates are held by ring spacers, there is no contact between hafnium metal plates or contact between the hafnium metal plates and the inner surface of the sheath, and the moderator flow path is of course well secured, and the gap is narrow and wide. Since contact between the hafnium metal plate and the inner surface of the sheath is completely prevented, corrosion of the two does not occur.

さらに、制御棒をその軸方向、巾方向に分割し各分割区
分毎に中性子照射量に対応する中性子吸収特性の中性子
吸収要素を装填しであるから、各区分の中性子吸収要素
はほぼ同時にその核的寿命に到達し、核的寿命の残存す
る制御棒を廃棄物として処理する無駄を生じることがな
い。
Furthermore, the control rod is divided into its axial and width directions, and each division is loaded with neutron absorption elements with neutron absorption characteristics corresponding to the amount of neutron irradiation. There is no waste in disposing of control rods that have reached the end of their nuclear life and have remaining nuclear life.

(実施例) 第1図は本発明一実施例全体を示す斜視図、第2図はそ
の内部に配置された中性子吸収体の配置図である。第1
図において、原子炉用制御棒10はハンドル11を備え
た先端構造材12と、末端構造材13と、前記両溝造材
を一体的に結合した横断面十字状の中央タイロッド14
とを有する。
(Embodiment) FIG. 1 is a perspective view showing an entire embodiment of the present invention, and FIG. 2 is a layout diagram of a neutron absorber arranged inside the same. 1st
In the figure, a reactor control rod 10 includes a tip structural member 12 provided with a handle 11, an end structural member 13, and a central tie rod 14 having a cross-shaped cross section, which integrally connects both groove members.
and has.

中央タイロッド14の各突出脚には、深いU字状断面の
高純度ステンレス鋼製のシース15がその開口部におい
て固着され、4箇のウィング16が形成されている。上
記のシース15内にはハフニウム(Hf)金属板からな
る長寿命型中性子吸収体17が挿入されている。
A sheath 15 made of high purity stainless steel and having a deep U-shaped cross section is secured to each protruding leg of the central tie rod 14 at its opening, and four wings 16 are formed. A long-life neutron absorber 17 made of a hafnium (Hf) metal plate is inserted into the sheath 15.

中性子吸収体17は第2図の左半に示すように、中央タ
イロッド14の軸方向に複数筒の中性子吸収要素17a
〜17dに分割されている。なお、第2図の有半ば中性
子吸収要素が装填されていない状態を示す。中性子吸収
要素の中、最下端にある17dを除いた17a〜17c
は、中央タイロッド14の各突出脚に適宜間隔をおいて
設置した中性子吸収要素支持片18に支持され、中性子
吸収要素17a〜17cはその軸方向移動を防止されて
いる。上記の各中性子吸収要素支持片18はそれぞれ中
央タイロッド14に必要な間隔をおいて突設されている
。なお、最下段の中性子吸収要素17dは末端構造材1
3に支持されている。前記各段の中性子吸収要素17a
〜17dは、上段から下段に向けて中性子吸収特性が順
に低下するようにされている。具体的に云えば、上部か
ら中性子吸収要素17a〜17dの肉厚を段階的に小さ
くしである。この結果、制御棒の反応度効果すなわち中
性子吸収特性が第3図に示すように制御棒上端から下端
に向け、段階的に低下させられることとなる。
As shown in the left half of FIG.
It is divided into ~17d. In addition, the state in which the neutron absorption element shown in FIG. 2 is not loaded is shown. Among the neutron absorption elements, 17a to 17c excluding 17d at the bottom end
are supported by neutron absorbing element support pieces 18 installed at appropriate intervals on each protruding leg of the central tie rod 14, and the neutron absorbing elements 17a to 17c are prevented from moving in the axial direction. Each of the above-mentioned neutron absorbing element support pieces 18 is provided protruding from the central tie rod 14 at necessary intervals. Note that the lowest neutron absorbing element 17d is the terminal structural member 1.
It is supported by 3. Neutron absorption elements 17a in each stage
~17d, the neutron absorption characteristics are made to decrease in order from the upper stage to the lower stage. Specifically, the thickness of the neutron absorbing elements 17a to 17d is gradually reduced from the top. As a result, the reactivity effect of the control rod, that is, the neutron absorption characteristics, is reduced stepwise from the upper end of the control rod to the lower end, as shown in FIG.

また、先端構造材12に隣接する第1段の中性子吸収要
素17aは、その上端から例えば35nm以内の領域を
、制御棒の設計、その使用態様によっては中性子吸収特
性を大きくしてスクラム特性を改善したり、逆に小さく
して制御棒引抜に伴う炉出力の変動中を減少させるよう
にしたりすることができる。また、少なくとも前記第1
段の中性子吸収要素17aの中央タイロッド14側の側
縁部およびその近傍の部位は、他部よりも中性子吸収特
性を大きくしておく。
In addition, the first stage neutron absorption element 17a adjacent to the tip structure member 12 may improve the scram characteristic by increasing the neutron absorption characteristic in a region within 35 nm from the upper end, depending on the design of the control rod and its usage. Or, conversely, it can be made smaller to reduce fluctuations in reactor output due to control rod withdrawal. Further, at least the first
The side edge portion of the stage neutron absorbing element 17a on the side of the central tie rod 14 and a portion near the side edge portion are made to have greater neutron absorbing characteristics than other portions.

ところで、長寿命型原子炉用制御棒10においては先端
構造材12は非常に多量の中性子照射を受け、これによ
る脆性化のおそれがあるので、先端構造材を高純度のス
テンレス鋼により構成し、脆性化の問題を緩和するよう
にしている。また、先端構造材12、末端構造材13お
よびこの末端構造材に取り付けられたスピードリミッタ
19はできるだけ薄肉として軽量化しておく。さらに、
先端構造材12の下部には補助ハンドルとして使用され
る空隙20が設けられている。この空隙を設けた部位は
制御棒の中性子吸収性能上、中性子吸収材を殆ど必要と
しない部位であるから、中性子吸収特性を低下させるこ
となく制御棒の重量を軽減することができる。  − 一方、空隙20上方部分の高速中性子照射量はハンドル
11上部のそれの115〜1/3程度またはそれ以下で
あることが実験的に確かめられている。従って、高速中
性子照射による空隙20上方部分の脆性化はハンドル1
1のそれの115〜173程度あるいはそれ以下とみて
よく、万一ハンドル11が脆性化した場合には空隙20
がバックアップの補助ハンドルがとして有効に作用する
ことができる。
By the way, in the control rod 10 for a long-life nuclear reactor, the tip structure material 12 is exposed to a very large amount of neutron irradiation, and there is a risk of embrittlement due to this, so the tip structure material is constructed of high-purity stainless steel. We are trying to alleviate the problem of brittleness. Further, the tip structural member 12, the terminal structural member 13, and the speed limiter 19 attached to the terminal structural member are made as thin and lightweight as possible. moreover,
A cavity 20 is provided at the bottom of the tip structure 12 to be used as an auxiliary handle. Since the region where the void is provided requires almost no neutron absorbing material in view of the neutron absorption performance of the control rod, the weight of the control rod can be reduced without reducing the neutron absorption performance. - On the other hand, it has been experimentally confirmed that the amount of fast neutron irradiation in the upper part of the cavity 20 is about 115 to 1/3 or less than that in the upper part of the handle 11. Therefore, the embrittlement of the upper part of the cavity 20 due to fast neutron irradiation will cause the handle 1 to become brittle.
It can be considered that the gap is about 115 to 173 or less than that of No. 1, and if the handle 11 becomes brittle, the void 20
There is a backup auxiliary handle that can act effectively as a back-up handle.

また、シース15内に装填される中性子吸収要素17a
〜17dは、第4図に中性子吸収要素17aにつき示す
ように、ウィング16の巾方向に分割した分割片21a
を、十字状断面で対向する2つの脚片をシース15に貫
通させた複数のスポットスペーサ22により支持させて
、シース15の側壁内面と相補形状の対向する1組のハ
フニウム金属板21.21を形成させる。なお、前記シ
ース15を貫通する脚片にはリングスペーサ22aが装
着され、各ハフニウム金属板21はシース15内面から
浮かせて支持させれている。また、2枚のハフニウム金
属板21の側縁先端間は僅かに離間されている。前記ス
ポットスペーサ22は、中性子吸収要素17a内に減速
材流路となる偏平な空間23を形成するとともに、中性
子吸収要素17aの機械的強度を向上させている。さら
に、ハフニウム金属板21とシース内面との間には減速
材流路となる偏平な空間24が形成されているなお、ハ
フニウム金属板21は0.5I〜2.0m厚さの薄板と
されている。
In addition, a neutron absorbing element 17a loaded in the sheath 15
~17d is a divided piece 21a divided in the width direction of the wing 16, as shown for the neutron absorption element 17a in FIG.
are supported by a plurality of spot spacers 22 whose two leg pieces facing each other with a cross-shaped cross section penetrate the sheath 15, and a pair of opposing hafnium metal plates 21, 21 having a shape complementary to the inner surface of the side wall of the sheath 15 are formed. Let it form. A ring spacer 22a is attached to the leg that passes through the sheath 15, and each hafnium metal plate 21 is supported so as to float from the inner surface of the sheath 15. Furthermore, the tips of the side edges of the two hafnium metal plates 21 are slightly spaced apart. The spot spacer 22 forms a flat space 23 serving as a moderator flow path within the neutron absorption element 17a, and improves the mechanical strength of the neutron absorption element 17a. Furthermore, a flat space 24 that serves as a moderator flow path is formed between the hafnium metal plate 21 and the inner surface of the sheath. There is.

第5図は前記実施例の他の位置での横断面を示す図であ
る。この図において、スポットスペーサ22がない位置
にはシース15を貫通して、前記偏平な空間24に連通
ずる減速材流入口25が設けられている。なお、これ等
の減速材流入口25は、原則としてウィング16の両側
のものが対向するように設けられている。而して、減速
材は減速材流入口25から偏平な空間24に入り、ここ
からハフニウム金属板21間の同じく偏平な空間23内
に流れ込んで制御棒ウィング内を流通する。
FIG. 5 is a cross-sectional view of the embodiment at another position. In this figure, a moderator inlet 25 that passes through the sheath 15 and communicates with the flat space 24 is provided at a position where the spot spacer 22 is not present. Note that these moderator inflow ports 25 are provided so that, in principle, those on both sides of the wings 16 face each other. Thus, the moderator enters the flat space 24 from the moderator inlet 25, flows from there into the similarly flat space 23 between the hafnium metal plates 21, and flows within the control rod wing.

以下、原子炉用制御棒の一般的な作用および前記本発明
原子炉用制御棒の作用につき説明する。
Hereinafter, the general operation of a nuclear reactor control rod and the operation of the nuclear reactor control rod of the present invention will be explained.

沸騰水型原子炉において、燃焼がある程度進んだ原子炉
炉心の軸方向核分裂性核種濃度分布は、第5図に示す曲
線Aのようになる。而して、原子炉炉心の燃焼管理は炉
心を軸方向に4等分してなされるのが一般であり、原子
炉用制御棒1oも軸方向に4等分するのが好都合である
In a boiling water reactor, the axial fissile nuclide concentration distribution in the reactor core after combustion has progressed to a certain extent is as shown by curve A shown in FIG. Generally, combustion management of a nuclear reactor core is performed by dividing the core into four equal parts in the axial direction, and it is convenient to divide the reactor control rod 1o into four equal parts in the axial direction.

すなわち、第6図の曲線Aは次のようなことを示してい
る。まず、原子炉炉心軸長をLとして、原子炉炉心の下
端(174以下)では燃焼時の燃焼の進行が遅れるため
、核分裂性核種の分布が大きくなっている。さらに、中
央部(2/4L)から上端にかけては、発生するボイド
によって中性子スペクトルの硬化現象が生じ、これによ
りプルトニウム生成反応が促進されるため、多くのボイ
ドが発生して熱中性子束が低下されるので、燃焼遅れが
生じ核分裂性核種の濃度分布が大きくなっている。
That is, curve A in FIG. 6 shows the following. First, assuming that the axial length of the nuclear reactor core is L, the progress of combustion during combustion is delayed at the lower end (174 mm or less) of the reactor core, so the distribution of fissile nuclides is large. Furthermore, from the center (2/4L) to the upper end, the voids that occur cause a hardening phenomenon of the neutron spectrum, which accelerates the plutonium production reaction, resulting in the generation of many voids and a decrease in thermal neutron flux. This causes a combustion delay and increases the concentration distribution of fissile nuclides.

原子炉炉心に第6図の曲線Aに示す核分裂性核種濃度分
布が存在する場合において、原子炉停止時の中性子増倍
率分布は第7図の曲線Bに示すようになる。中性子増倍
率が大きくなる程原子炉の停止余裕が小さく、未臨界度
が浅くなるものである。第7図の曲14!Bにおいて、
炉心上端、下端で中性子増倍率が低下しているのは、中
性子の炉心上下端からの漏洩に基づくものである。
When the nuclear reactor core has a fissile nuclide concentration distribution shown by curve A in FIG. 6, the neutron multiplication factor distribution at the time of reactor shutdown is as shown by curve B in FIG. 7. The larger the neutron multiplication factor, the smaller the reactor shutdown margin and the shallower the subcriticality. Song 14 in Figure 7! In B,
The reason why the neutron multiplication factor decreases at the upper and lower ends of the core is due to leakage of neutrons from the upper and lower ends of the core.

第8図の曲線Cは本発明の原子炉用制御棒10を使用し
た場合の制御棒軸方向の中性子照射量分布を示す。この
図から原子炉用制御棒のごく限られた領域(通常先端か
ら約30am程度)で中性子照射量が急激に上昇し、他
の部分では制御棒下端に向は中性子照射量が連続的且つ
滑らかに減少していることがわかる。
Curve C in FIG. 8 shows the neutron irradiation dose distribution in the control rod axis direction when the nuclear reactor control rod 10 of the present invention is used. This figure shows that the neutron irradiation amount increases rapidly in a very limited area of the reactor control rod (usually about 30 am from the tip), and in other parts, the neutron irradiation amount continues and smoothly towards the lower end of the control rod. It can be seen that it has decreased.

本発明の原子炉用制御棒10は、第7図に示された中性
子増倍率分布、第8図に示された中性子照射量分布に対
応して満足な制御効果が得られるように構成されている
。すなわち、原子炉用制御棒10の先端部(1/4Lの
長さ、例えば90〜95ao程度)では、中性子増倍率
の上昇(炉停止余裕の低下)や、中性子照射量増大によ
り炉停止余裕が低下し易いことに対処するため、中性子
吸収要素17aを構成するハフニウム金属板21の厚さ
を他の中性子吸収要素17b〜17dのそれよりも大き
くしである。なお、中性子吸収要素17b〜17dを構
成するハフニウム金属板の厚さも順次小さくなるように
しであることは前記した通りである。特に、原子炉用制
御棒10の下端(末端構造材13上端)から1/4Lま
での下部領域の中性子吸収特性は、その上方に隣接する
1/4Lから2/4の領域より僅かに小さくされている
。これは、中性子照射量が第8図の曲線Cに示すように
前記下部領域(下端から1/4L)において隣接する次
位の領域(下端から1/4〜2/4L)よりかなり小さ
くなるものの、中性子増倍率は第7図の曲線Bに示すよ
うに比較的大きくなることに対処するためである。
The nuclear reactor control rod 10 of the present invention is configured to obtain a satisfactory control effect in accordance with the neutron multiplication factor distribution shown in FIG. 7 and the neutron irradiation dose distribution shown in FIG. There is. That is, at the tip of the reactor control rod 10 (1/4 L length, for example, about 90 to 95 AO), the reactor shutdown margin is reduced due to an increase in the neutron multiplication factor (decreased reactor shutdown margin) and an increase in the neutron irradiation amount. In order to cope with this tendency, the thickness of the hafnium metal plate 21 constituting the neutron absorbing element 17a is made larger than that of the other neutron absorbing elements 17b to 17d. As described above, the thickness of the hafnium metal plates constituting the neutron absorbing elements 17b to 17d is also made to gradually decrease. In particular, the neutron absorption characteristics of the lower region from the lower end of the reactor control rod 10 (the upper end of the terminal structural member 13) to 1/4L are slightly smaller than the region adjacent above it from 1/4L to 2/4. ing. Although the neutron irradiation dose is considerably smaller in the lower region (1/4L from the lower end) than in the next adjacent region (1/4 to 2/4L from the lower end), as shown by curve C in Figure 8, This is to cope with the fact that the neutron multiplication factor becomes relatively large as shown by curve B in FIG.

第9図の曲線りは原子炉用制御棒のウィング巾方向の中
性子照射量分布を示す。この曲線りから中性子照射量は
ウィング16の外側すなわち側縁において急激に高くな
り、内側すなわち中央タイロッド14側では僅かに高く
なっていることがわかる。これに対処するためには第1
0図に示す曲線Eのように制御棒の反応度効果のウィン
グ巾方向分布を設定すればよい。
The curved line in FIG. 9 shows the neutron irradiation dose distribution in the wing width direction of the reactor control rod. From this curve, it can be seen that the neutron irradiation amount increases sharply on the outer side of the wing 16, that is, on the side edge, and slightly increases on the inner side, that is, on the side of the center tie rod 14. To deal with this, the first step is to
It is sufficient to set the distribution of the reactivity effect of the control rod in the wing width direction as shown in the curve E shown in FIG.

而して、各分割区分のハフニウム金属板21の厚さはそ
の区分の中性子照射量分布に応じて設定する。つまり、
第10図の曲線Eに示した反応度効果を持たせるとすれ
ば、ウィング16の側縁近傍にあるハフニウム金属板2
1の厚さを他部にあるそれの厚さよりも大とすればよい
、なお、この実施例においてはハフニウム金属板21は
シース15の内面から浮かして支持され、それ等が大き
な面積で直接に接触することはないから、腐食等の問題
を生じることはない。
Thus, the thickness of the hafnium metal plate 21 in each divided section is set according to the neutron irradiation dose distribution in that section. In other words,
If the reactivity effect shown in curve E in FIG.
In this embodiment, the hafnium metal plate 21 is supported floating from the inner surface of the sheath 15, so that the hafnium metal plate 21 can be directly attached to a large area. Since there is no contact, problems such as corrosion will not occur.

[発明の効果コ 上記から明らかなように本発明の原子炉用制御棒におい
ては、中性子吸収体を構成するハフニウム金属板をスポ
ットスペーサにより間隔を保持して対向させ、しかもそ
れ等の金属板とシー入内面との間隔をリングスペーサに
よって保持させているから、ハフニウム金属板同士の接
触またはハフニウム金属板とシース内面との接触等を生
じることはなく、減速材流路の確保は勿論良好になされ
、また狭い間隙、広い面積でのハフニウム金属板とシー
ス内面との接触も完全に防止されるのでこれ等両者の腐
食を生じることもない。
[Effects of the Invention] As is clear from the above, in the nuclear reactor control rod of the present invention, the hafnium metal plates constituting the neutron absorber are opposed to each other with a distance maintained by the spot spacer, and Since the distance between the hafnium metal plates and the inner surface of the sheath is maintained by the ring spacer, there is no contact between hafnium metal plates or contact between the hafnium metal plates and the inner surface of the sheath, and the moderator flow path is of course well maintained. Furthermore, since contact between the hafnium metal plate and the inner surface of the sheath in a narrow gap or over a wide area is completely prevented, corrosion of both will not occur.

また、中性子吸収体を制御棒軸方向に複数の中性子吸収
要素に分割し、各中性子吸収要素を構成する中性子吸収
材の板の厚さを、その分割区分における中性子照射量に
応じて定めであるだけでなく、巾方向にも分割して各巾
方向分割区分の板厚を分割区分毎の中性子照射量に応じ
て定めであるから、各中性子吸収要素の核的寿命をほぼ
等しくすることができ、放射性廃棄物の量を徒に増大さ
せるおそれはない。
In addition, the neutron absorber is divided into a plurality of neutron absorbing elements in the axial direction of the control rod, and the thickness of the neutron absorbing material plate constituting each neutron absorbing element is determined according to the neutron irradiation amount in that division. In addition, it is also divided in the width direction, and the plate thickness of each width direction division is determined according to the neutron irradiation amount for each division, so the nuclear lifetime of each neutron absorption element can be made almost equal. , there is no risk of unnecessarily increasing the amount of radioactive waste.

また、上記のように中性子吸収材の板の厚さを定めてい
るので、制御棒の重量を一層軽減することができ、通常
の制御棒用に設計された制御棒駆動機構をそのまま使用
することができる。
In addition, since the thickness of the neutron absorbing material plate is determined as described above, the weight of the control rod can be further reduced, and the control rod drive mechanism designed for normal control rods can be used as is. Can be done.

さらに、中性子吸収要素を構成する2枚の対向した中性
子吸収材の板の間を冷却材流路としであるため、反応度
が向上されている。この面からも中性子吸収材の量を低
減させることができ、制御棒重量の削減が図られる。
Furthermore, since the coolant flow path is between the two opposing neutron absorbing material plates constituting the neutron absorbing element, the reactivity is improved. From this point of view as well, the amount of neutron absorbing material can be reduced, and the weight of the control rod can be reduced.

また、中性子吸収材の板の厚さを制御棒軸方向、巾方向
区分の中性子照射量に応じて選定しであるため、高性能
で経済的な制御棒とすることができる。
Further, since the thickness of the neutron absorbing material plate is selected depending on the neutron irradiation amount in the axial direction and width direction of the control rod, a high-performance and economical control rod can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の斜視図、第2図はその内部を
模式的に示す正面図、第3図は前記実施例の軸方向反応
度分布を示す線図、第4図は第1図IV−IV線におけ
る断面図、第5図は同■−V線における断面図、第6図
は原子炉炉心の炉心軸方向核分裂性核種濃度分布を示す
線図、第7図は炉心軸方向中性子増倍率分布を示す線図
、第8図は炉心軸方向中性子照射量分布を示す線図、第
9図は制御棒ウィング巾方向中性子照射量分布を示す線
図、第10図は前記ウィング巾方向中性子照射量分布に
対処するために必要なウィングの巾方向反応度分布を示
す線図である。
FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a front view schematically showing the inside thereof, FIG. 3 is a diagram showing the axial reactivity distribution of the embodiment, and FIG. 4 is a diagram showing the axial reactivity distribution of the embodiment. Figure 1 is a cross-sectional view taken along the IV-IV line, Figure 5 is a cross-sectional view taken along the same line ■-V, Figure 6 is a diagram showing the fissile nuclide concentration distribution in the core axis direction of the reactor core, and Figure 7 is a diagram showing the core axis direction. Figure 8 is a diagram showing the neutron irradiation dose distribution in the axial direction of the core, Figure 9 is a diagram showing the neutron irradiation distribution in the control rod wing width direction, and Figure 10 is a diagram showing the neutron irradiation dose distribution in the width direction of the control rod wing. FIG. 3 is a diagram showing the widthwise reactivity distribution of the wing necessary to cope with the widthwise neutron irradiation dose distribution.

Claims (1)

【特許請求の範囲】[Claims] 先端構造材および末端構造材を連結する断面十字状の中
央タイロッドと、この中央タイロッドの各突出脚に深い
U字状のシースをその開口部において取り付けて構成し
たウィングと、各ウィング内に装填した長寿命型中性子
吸収体とを有し、前記長寿命型中性子吸収体を制御棒軸
方向およびウィング巾方向に複数の区分に分割し、各区
分内の中性子吸収要素の中性子吸収特性をその区分にお
ける中性子照射量に応じて定めたものにおいて、前記各
区分の中性子吸収要素を構成する対向するハフニウム金
属板を、十字状断面で対向する脚片を前記シースに貫通
させたスポットスペーサにより間隔を保持させ、それ等
ハフニウム金属板と前記シース内面とは前記脚片に装着
したリングスペーサにより離間したことを特徴とする原
子炉用制御棒。
A central tie rod with a cross-shaped cross section that connects the tip structural member and the terminal structural member, a wing configured by attaching a deep U-shaped sheath to each protruding leg of the central tie rod at its opening, and a wing loaded in each wing. The long-life neutron absorber is divided into a plurality of sections in the control rod axis direction and the wing width direction, and the neutron absorption characteristics of the neutron absorption elements in each section are determined in that section. In the method determined according to the neutron irradiation amount, the opposing hafnium metal plates constituting the neutron absorbing elements of each section are kept spaced apart by a spot spacer having opposing leg pieces with a cross-shaped cross section penetrated through the sheath. A control rod for a nuclear reactor, characterized in that the hafnium metal plate and the inner surface of the sheath are separated by a ring spacer attached to the leg piece.
JP63021189A 1988-02-02 1988-02-02 Control rod for nuclear reactor Expired - Lifetime JP2563429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63021189A JP2563429B2 (en) 1988-02-02 1988-02-02 Control rod for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021189A JP2563429B2 (en) 1988-02-02 1988-02-02 Control rod for nuclear reactor

Publications (2)

Publication Number Publication Date
JPH01196595A true JPH01196595A (en) 1989-08-08
JP2563429B2 JP2563429B2 (en) 1996-12-11

Family

ID=12048006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021189A Expired - Lifetime JP2563429B2 (en) 1988-02-02 1988-02-02 Control rod for nuclear reactor

Country Status (1)

Country Link
JP (1) JP2563429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128349A (en) * 2007-11-28 2009-06-11 Hitachi-Ge Nuclear Energy Ltd Control rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128349A (en) * 2007-11-28 2009-06-11 Hitachi-Ge Nuclear Energy Ltd Control rod

Also Published As

Publication number Publication date
JP2563429B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
US6137854A (en) Reactor control rod and method of manufacturing the same
JPH036493A (en) Reactor control rod
JPH01196595A (en) Control rod for nuclear reactor
JPH01287499A (en) Control rod for nuclear reactor
JP2878813B2 (en) Reactor control rod
JPH0134358B2 (en)
JPH01102391A (en) Control rod for reactor
JPH10288688A (en) Control rod for reactor
JPH021277B2 (en)
JPH073468B2 (en) Control rod for nuclear reactor
JP2735211B2 (en) Reactor control rod
JPH073469B2 (en) Control rod for nuclear reactor
JPS63271194A (en) Control rod for nuclear reactor
JP2783593B2 (en) Reactor control rod
JPS63196889A (en) Control rod for nuclear reactor
JPH022984A (en) Nuclear reactor control rod
JPH01148998A (en) Control rod for nuclear reactor
JP3009183B2 (en) Reactor core
JPH0134359B2 (en)
JP2507512B2 (en) Control rod for nuclear reactor
JPH0220077B2 (en)
JPH01148997A (en) Control rod for nuclear reactor
JPH04128691A (en) Reactor control rod
JP3121543B2 (en) Control rods for boiling water reactors and boiling water reactor cores
JPH02222868A (en) Reactor core