JPH01195239A - Method and apparatus for heating in vacuum degassing vessel - Google Patents
Method and apparatus for heating in vacuum degassing vesselInfo
- Publication number
- JPH01195239A JPH01195239A JP1717188A JP1717188A JPH01195239A JP H01195239 A JPH01195239 A JP H01195239A JP 1717188 A JP1717188 A JP 1717188A JP 1717188 A JP1717188 A JP 1717188A JP H01195239 A JPH01195239 A JP H01195239A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- combustion
- burners
- gas
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000009849 vacuum degassing Methods 0.000 title claims abstract description 14
- 238000002485 combustion reaction Methods 0.000 claims abstract description 31
- 239000007789 gas Substances 0.000 claims abstract description 25
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000001301 oxygen Substances 0.000 claims abstract description 17
- 229910000831 Steel Inorganic materials 0.000 claims description 23
- 239000010959 steel Substances 0.000 claims description 23
- 238000007872 degassing Methods 0.000 claims description 16
- 239000000446 fuel Substances 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 19
- 239000002184 metal Substances 0.000 abstract description 19
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 230000008018 melting Effects 0.000 abstract description 4
- 238000002844 melting Methods 0.000 abstract description 4
- 239000002737 fuel gas Substances 0.000 abstract description 2
- 238000011282 treatment Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 229910001021 Ferroalloy Inorganic materials 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000009991 scouring Methods 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052728 basic metal Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は真空脱ガス方法およびその装置に関し、鋼の二
次精練、特にRH,DH,VOD等の真空脱ガス装置の
脱ガス槽内の精練中またはおよび非精練中の地金の付着
防止と地金の溶解による除去技術に係わる。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a vacuum degassing method and an apparatus thereof, and is particularly applicable to secondary refining of steel, particularly in a degassing tank of a vacuum degassing apparatus such as RH, DH, VOD, etc. It concerns the prevention of metal adhesion during scouring or non-scouring, and the removal technology by melting the metal.
〔従来の技術] 第3図に従来技術のRH脱ガス槽を例に示す。[Conventional technology] FIG. 3 shows a conventional RH degassing tank as an example.
RH脱ガス槽は中部槽l、下部槽2、浸漬管3、トップ
カバー4、真空排気口5、合金鉄投入口6で形成されて
いるのは周知である。It is well known that the RH degassing tank is composed of a middle tank 1, a lower tank 2, a dipping tube 3, a top cover 4, a vacuum exhaust port 5, and a ferroalloy input port 6.
溶鋼の二次精練、特に鋼中のH,C10の除去は、図示
しない取鍋内に満たした溶鋼中に脱ガス槽浸漬管3を浸
漬し、浸漬管3の一方に環流ガスを吹込みながら、真空
装置(図示せず)により真空排気口5から脱気して・槽
内圧を0.5 Torr程度以下まで減圧し、取鍋内の
溶鋼を脱ガス槽の下部槽2内との間で環流させながら、
かつ下部槽2内溶鋼浴面を撹拌し、撹乱させて脱炭、脱
酸、脱水素反応を促進することにより行う。Secondary refining of the molten steel, especially removal of H and C10 from the steel, is carried out by immersing the degassing tank immersion tube 3 into the molten steel filled in a ladle (not shown), and blowing circulating gas into one side of the immersion tube 3. The molten steel in the ladle is degassed from the vacuum exhaust port 5 using a vacuum device (not shown) to reduce the tank internal pressure to about 0.5 Torr or less, and the molten steel in the ladle is removed from the lower tank 2 of the degassing tank. While circulating,
In addition, the molten steel bath surface in the lower tank 2 is stirred and disturbed to promote decarburization, deoxidation, and dehydrogenation reactions.
−Mに脱l]、C10を行うのは高級鋼種であって、鋼
種によってその処理内容や処理時間をコントロールしな
がら操業するが、槽内が真空であることから、特にリム
ド処理時には槽内に溶鋼が飛散またはフォーミンクした
状態となる。-M] and C10 are applied to high-grade steels, and the process is carried out while controlling the treatment contents and treatment time depending on the steel type. However, since the inside of the tank is vacuum, especially during rimmed treatment, The molten steel will be in a state of scattering or forming.
この飛散した溶鋼等は、槽壁の耐火物温度が溶鋼の凝固
温度より低いと壁の耐火物面に付着することとなる。こ
の量は溶鋼温度や壁面温度により異なるが概略3〜lo
kg/l(溶鋼ヒートサイズ)に達することから、次チ
ャージの処理鋼種と成分が同等でない場合、例えば一般
厚扱材(C=0.18%)の精練の次に極低炭材(C=
30ppm)の精練が続くと、前チャージの付着地金が
次チャージ処理時に溶解して溶鋼中に混入すること等が
起こり、極低炭材のC的中は著しく悪くなる。従って処
理時間が長くなり、ひいては溶鋼温度の低下を来たし、
連鋳鋳込温度の確保ができないことにもなる。This scattered molten steel and the like will adhere to the refractory surface of the wall if the temperature of the refractory on the tank wall is lower than the solidification temperature of the molten steel. This amount varies depending on the molten steel temperature and wall surface temperature, but it is approximately 3~lo
kg/l (molten steel heat size), so if the steel type and composition of the next charge are not the same, for example, after refining general thick material (C = 0.18%), extremely low carbon material (C = 0.18%) is used.
If the scouring (30 ppm) continues, the deposited metal of the previous charge may be melted and mixed into the molten steel during the next charge treatment, and the C accuracy of the ultra-low carbon material will be significantly worse. Therefore, the processing time becomes longer and the temperature of the molten steel decreases.
This also makes it impossible to ensure the continuous casting temperature.
〔発明が解決しようとする問題点1
このような背景から脱ガス槽内には第3図に示すように
炭素電極7を有する電極加熱装置が設けられており、殆
ど常時、炭素電極7に高電流を通じて、槽内で抵抗加熱
により電極7の表面温度を2300℃程度に保ち、その
放射熱で槽壁面を溶鋼凝固温度より高く加熱して?8鋼
付着を防止し、または付着地金を溶解している。このよ
うにして前述のごとき問題点の解決を目指しているが未
だ次のような問題がある。[Problem to be Solved by the Invention 1] Against this background, an electrode heating device having a carbon electrode 7 is installed in the degassing tank as shown in FIG. The surface temperature of the electrode 7 is maintained at about 2300°C by resistance heating in the tank through an electric current, and the radiant heat is used to heat the tank wall to a temperature higher than the solidification temperature of the molten steel. 8 Prevents steel adhesion or dissolves adhering base metal. Although the above-mentioned problems are aimed at being solved in this way, the following problems still remain.
(1)電極の槽内挿入取合および電源供給法等の点から
、はぼ槽の中央部に一本の電極7を設けることになり、
槽壁全面の温度を鋼の凝固温度以上にするには不十分で
ある。特に槽のトップカバーや排気口部には、付着地金
10.10aが形成され、問題点の根本的解決が図れな
い。(1) From the viewpoint of the insertion of the electrode into the tank and the power supply method, one electrode 7 is installed in the center of the tank.
It is insufficient to raise the temperature of the entire surface of the tank wall to the solidification temperature of the steel. In particular, the deposited metal 10, 10a is formed on the top cover and exhaust port of the tank, making it impossible to fundamentally solve the problem.
(2)電極が消損または酸化により寿命を全うする以前
にトップカバーからの落下地金や電極支持(圧着)機構
の不備から切損し、電極使用原単位が上昇する。(2) Before the electrode reaches the end of its life due to consumption or oxidation, it is broken due to falling metal from the top cover or a defect in the electrode support (crimping) mechanism, which increases the unit consumption of the electrode.
(3)切損した電極が槽下部に留まることから、処理中
の場合はそのチャージにおいて、また非処理中の場合は
次チャージにおいて、特にC的中が悪化する。(3) Since the broken electrode remains at the bottom of the tank, the C accuracy is particularly deteriorated in the current charge if processing is in progress, and in the next charge if non-processing is in progress.
(4)電極の交換や切換え時の対応に時間がかかり、そ
の間脱ガス処理ができず、転炉吹錬から連続鋳造までの
一連の製造プロセスに支障を来す。従って、高級′M種
が増えつつあるにもかかわらず、処理時間が少なくなり
稼動率が低下する。(4) It takes time to replace or change the electrodes, and degassing cannot be performed during that time, which hinders a series of manufacturing processes from converter blowing to continuous casting. Therefore, even though the number of high-grade 'M' types is increasing, the processing time is reduced and the operating rate is lowered.
(5)非処理中は電極の消損を防止するために、N2を
槽内に封入する必要があり、そのための装置が必要であ
る。(5) During non-processing, it is necessary to seal N2 into the tank to prevent electrode consumption, and a device for this purpose is required.
(6)電気加熱はガスや燃料の燃焼による加熱に比較し
てほぼ3倍の加熱費が必要で、かつその設備費も10倍
以上である。(6) Electric heating requires approximately three times as much heating cost as heating by burning gas or fuel, and the equipment cost is also more than ten times as much.
本発明は以上のごとき種々の問題点を解決しようとする
ものである。The present invention attempts to solve the various problems mentioned above.
この目的から特開昭62−1814、特開昭58−18
5704号または第3図に示すように、簡易的なコーク
ス炉ガス(以下Cガスという)のバーナ8.9を浸漬管
3や合金鉄投入口6から挿入して槽内を加熱することも
試みたが、燃焼熱が槽全域まで行き渡らないこと′、あ
るいは燃焼用空気によって槽内付着地金が酸化してFe
Oとなり、流動しにくいばかりでな(、壁面耐火物を著
しく損傷する等の欠点があり実用化に至らなかった。For this purpose, JP-A-62-1814 and JP-A-58-18
As shown in No. 5704 or Figure 3, an attempt was also made to heat the inside of the tank by inserting a simple coke oven gas (hereinafter referred to as C gas) burner 8.9 through the immersion tube 3 or ferroalloy inlet 6. However, the heat of combustion does not reach the entire area of the tank, or the combustion air oxidizes the metal deposited inside the tank and causes Fe.
It was not only difficult to flow, but also had drawbacks such as significant damage to wall refractories, so it was not put into practical use.
[問題点を解決するための手段]
電極による槽内加熱技術の問題点を解決するには、従来
試験的使用に留まり実用化には至らなかったものの、ガ
スまたは液体燃料によるバーナυ口熱力式が最良である
と判断し、その実用化、開発を実施した。[Means for solving the problem] To solve the problem of the heating technology in the tank using electrodes, the burner υ-end thermal power type using gas or liquid fuel was used, although it had been used only on a trial basis and did not reach practical use. We determined that this was the best solution, and put it into practical use and developed it.
実用化を達成するための主な着眼点は次の項目である。The main points of focus for achieving practical application are as follows.
(a)脱ガス槽内に複数本のバーナを設ける。(a) A plurality of burners are provided in the degassing tank.
バーナは槽内に抜き差し一可能に設ける。またバーナバ
イブは火炎の熱や溶鋼熱を受けても損傷しない材料とす
るか、そのような材料で被覆する。The burner is installed in the tank so that it can be inserted and removed. Also, the burner vibe should be made of a material that will not be damaged by the heat of flames or molten steel, or should be coated with such a material.
(b)燃焼は低酸素比で行なわせ、余剰酸素が槽内に存
在しないように管理して、付着地金の酸化を生じさせな
い。これにより耐火物の保護と溶解地金の流動性を確保
する。(b) Combustion is performed at a low oxygen ratio and controlled so that excess oxygen does not exist in the tank to prevent oxidation of the deposited metal. This ensures the protection of the refractory and the fluidity of the molten metal.
以上の着眼点から具体的には次の技術手段を講じた。す
なわち、本発明方法は複数個のガス燃焼バーナを真空脱
ガス槽内に臨ませ、該バーナの槽内の位置およびガス量
、ガス噴出速度を調節して火炎の形状を調整すると共に
、該バーナに理論所要量より少ない量の燃焼用酸素を供
給し、槽内を還元性雰囲気に保持しながら燃焼を継続す
ることを特徴とする。Based on the above points of view, we specifically took the following technical measures. That is, in the method of the present invention, a plurality of gas combustion burners are placed in a vacuum degassing tank, and the position of the burners in the tank, the amount of gas, and the gas ejection speed are adjusted to adjust the shape of the flame. It is characterized by supplying a smaller amount of combustion oxygen than the theoretically required amount to the tank, and continuing combustion while maintaining the inside of the tank in a reducing atmosphere.
この発明を具体化する装置は、真空脱ガス槽において、
トップカバーを貫通するランスを上下動自在に槽内に垂
下し、該ランスには高さ方向に分布する複数のバーナを
装着し、該バーナのそれぞれの燃料量および燃焼用空気
量を制御する装置を設けたことを特徴とする真空脱ガス
槽内加熱方法およびその装置または真空脱ガス槽におい
て、側壁を貫通する複数のバーナを前進後退自在に槽内
に臨ませ、該バーナのそれぞれの燃料量および燃焼用酸
素量を制御する装置を設けたことを特徴とする真空脱ガ
ス槽内加熱方法およびその装置である。A device embodying this invention is a vacuum degassing tank, in which:
A device in which a lance that penetrates the top cover is suspended vertically into the tank, a plurality of burners distributed in the height direction are attached to the lance, and the amount of fuel and combustion air for each of the burners is controlled. A vacuum degassing tank heating method and apparatus or a vacuum degassing tank characterized in that a plurality of burners penetrating the side wall face the tank so as to be able to move forward and backward, and each burner has a fuel amount. and a device for heating a vacuum degassing tank, characterized in that a device for controlling the amount of oxygen for combustion is provided.
第1図、第2図に本発明の実施例装置を示した。 FIG. 1 and FIG. 2 show an embodiment of the present invention.
第1図の実施例は複数本のバーナ付ランス11を槽内に
上方から上下動自在(ランス昇降装置は図示せず)に設
ける。このランス11は水冷式である。このランス11
には高さ方向に分布するバーナ12を設ける。ランス1
1の内側にガスを供給する燃料供給管15と燃焼用空気
または酸素を供給する空気供給管(または酸素供給管)
16を設け、好ましくはガスと燃焼用空気または酸素と
をバーナの部分で予混合して、噴射する方式とする。酸
素は排気ガスが少なくなる点で空気より有利であり、ガ
スの燃焼速度が大きくなるため、火炎が短く高温となり
、輻射による伝熱効果が大きい。In the embodiment shown in FIG. 1, a plurality of burner lances 11 are provided in the tank so as to be movable up and down from above (the lance lifting device is not shown). This lance 11 is water-cooled. This lance 11
are provided with burners 12 distributed in the height direction. Lance 1
A fuel supply pipe 15 that supplies gas to the inside of 1 and an air supply pipe (or oxygen supply pipe) that supplies combustion air or oxygen
Preferably, the gas and combustion air or oxygen are premixed in the burner section and then injected. Oxygen has an advantage over air in that it produces less exhaust gas, and because the gas burns faster, the flame becomes shorter and hotter, and the heat transfer effect by radiation is greater.
燃焼させる時には、槽内は着火温度以上に十分保たれて
いるから、噴射された予混合ガスは直ちに火炎を形成す
る、この火炎の大きさと形成位置はバーナからの噴射量
と噴射速度により決定付けられるから、この2つの要素
を調節する調節装置を設ける。また燃焼用空気(または
酸素)比の調整を行う。これらの調整のために調節装置
20が設けられる。During combustion, the inside of the tank is kept well above the ignition temperature, so the injected premixed gas immediately forms a flame. The size and position of this flame are determined by the amount and speed of injection from the burner. Therefore, an adjustment device is provided to adjust these two elements. Also adjusts the combustion air (or oxygen) ratio. An adjustment device 20 is provided for these adjustments.
第1図の具体的実施例は次の通りである。The specific embodiment of FIG. 1 is as follows.
槽内径2500mmψ、槽高9000mmのRH脱ガス
槽に表面に耐火物被覆を施した水冷ランス11を挿入し
、このランス11に12個の予混合バーナ12を設け、
各バーナからCガス2.0Nrn’/minと燃焼用空
気比、0.8すなわち空気量4.0 N m″/min
/min相当(富化率50%)し予混合させてバーナ噴
出速度30m/sで槽内に噴出した。このとき燃焼火炎
13は500〜700mm長で、燃焼温度2200℃の
火炎を形成する。この燃焼を10分間継続したところ、
槽壁耐火物面の温度は1650℃まで上昇すると共に、
付着地金的700kgを完全に溶解することができた。A water-cooled lance 11 with a refractory coating on the surface was inserted into an RH degassing tank with a tank inner diameter of 2500 mmψ and a tank height of 9000 mm, and 12 premix burners 12 were installed in this lance 11.
C gas 2.0 Nrn'/min from each burner and combustion air ratio 0.8, that is, air amount 4.0 N m''/min
/min (enrichment rate: 50%), premixed, and ejected into the tank at a burner ejection speed of 30 m/s. At this time, the combustion flame 13 has a length of 500 to 700 mm and forms a flame with a combustion temperature of 2200°C. After continuing this combustion for 10 minutes,
The temperature of the refractory surface of the tank wall rose to 1650℃, and
It was possible to completely dissolve 700 kg of adhered metal.
なお、バーナからの噴出条件は脱ガス装置の規模によっ
て大きく異なるものである。Note that the conditions for ejection from the burner vary greatly depending on the scale of the degassing device.
また、電極加熱の場合と異って、真空下での燃焼による
火炎形成の不具合面はあるものの、槽内圧力が1oOT
orr以上なら充分可能であるし、また、処理と処理の
間には取鍋のハンドリングや槽の補修等の必要な時間が
あるので、前記槽内加熱は充分可能である。Also, unlike the case of electrode heating, although there is the disadvantage of flame formation due to combustion under vacuum, the internal pressure of the tank is 1oOT.
orr or more, and since there is necessary time for handling the ladle and repairing the tank between treatments, the heating in the tank is fully possible.
上記実施例での加熱原単位は、電極加熱の場合の約11
5〜1/lOである。さらに電極加熱と同様、槽内な還
元性雰囲気に保持できることから付着地金の酸化が防止
されると共に、火炎を短く維持することができることも
合わせて、槽壁耐火物の損傷は従来技術(電極加熱方式
)と同等である。The heating unit in the above example is about 11 in the case of electrode heating.
5 to 1/1O. Furthermore, as with electrode heating, the tank can be maintained in a reducing atmosphere, which prevents oxidation of the deposited metal and also keeps the flame short. heating method).
すなわち1本技術によって、前述のごとき電極加熱によ
る数々の問題点を一度に解決することができる。That is, with this one technique, many of the problems caused by electrode heating as described above can be solved at once.
第2図は本発明の別の実施例であり、槽の横方向から、
複数本のバーナを進退自在に挿入する方式で、槽内の各
部分ごとに付近のバーナの火炎を調節することにより、
各部分の状態に応じて地金を溶解したり、壁面を加熱し
たりするのに有効である。FIG. 2 shows another embodiment of the present invention, in which from the side of the tank,
By inserting multiple burners so that they can move forward and backward, the flame of the nearby burners can be adjusted for each part of the tank.
It is effective for melting metal and heating walls depending on the condition of each part.
[発明の効果]
Cガス2.ONrrr’/m i n 、空気4Nrr
?/minのバーナ12本を脱ガス槽内に設けて、10
分間槽内加熱した結果、壁面温度を1600℃〜169
0℃に上昇することができ、かつ700kgの付着地金
を溶解できたことから、槽内加熱および地金溶解に要す
るコストは概略10円/l(溶WA)であった。[Effect of the invention] C gas 2. ONrrr'/min, air 4Nrr
? /min 12 burners are installed in the degassing tank, and 10
As a result of heating in the tank for minutes, the wall temperature was 1600℃~169℃.
Since the temperature could be raised to 0° C. and 700 kg of adhered metal could be melted, the cost required for heating the tank and melting the metal was approximately 10 yen/l (molten WA).
以上から槽内バーナ加熱技術は電極加熱方式に比べて次
のような利点(効果)がある。From the above, the tank burner heating technology has the following advantages (effects) compared to the electrode heating method.
(イ)バーナの形成位置をバーナランスの挿入黴および
燃料ガスと燃焼空気の量と噴出速度を制御することによ
り、自在に変更できるので、槽内の全域または任意の位
置で、壁面加熱および地金の溶解ができる。(b) The formation position of the burner can be changed freely by controlling the insertion mold of the burner lance and the amount and ejection speed of fuel gas and combustion air. Can melt gold.
(ロ)バーナの燃焼は、空気比1.0以下望ましくは0
.9以下で行うので、槽内付着地金の酸化が起こらず、
地金の除去はもちろん、耐火物の損傷も生ずることなく
、所期の目的を達する。(b) Burner combustion should be carried out at an air ratio of 1.0 or less, preferably 0.
.. Since the temperature is 9 or below, oxidation of the metal deposited in the tank does not occur.
The desired purpose is achieved without removing the bare metal or damaging the refractories.
(ハ)処理対象チャージ毎に槽内加熱を実施することに
より、前チャージの影響を受けることがなく、成分的中
率、特にC的中率が向上する。従って、鋼種毎の脱ガス
処理時間が安定し、溶鋼温度制御も容易で、転炉から連
鋳までの工程を一貫管理することができ、′!A鋼プロ
セス全体のコスト削減ができる。(c) By heating the tank for each charge to be processed, the component accuracy, especially the C accuracy, is improved without being affected by the previous charge. Therefore, the degassing treatment time for each steel type is stable, the molten steel temperature can be easily controlled, and the process from converter to continuous casting can be managed consistently.'! The cost of the entire A steel process can be reduced.
(ニ)非処理中槽内を還元性雰囲気に維持する必要がな
い。(d) There is no need to maintain a reducing atmosphere inside the tank during non-processing.
(ホ)設備費は電極加熱方式のl/l O以下で。(E) The equipment cost is less than 1/1 O of the electrode heating method.
かつ運転費も1/I O以下である。Moreover, the operating cost is less than 1/I.
(へ)バーナで燃焼中、排気系を作動させるか、別の排
ガス処理装置を設けることにより、万−Cガスが過剰と
なった場合でも槽内および槽外での爆発の危険性を回避
することができる。(f) Avoid the risk of explosion inside and outside the tank even if there is an excess of 1000-C gas by operating the exhaust system or installing another exhaust gas treatment device during combustion in the burner. be able to.
第1図、第2図は本発明の実施例の脱ガス槽の縦断面図
、第3図は従来の脱ガス槽の縦断面図である。
l・・・中部槽、2・・・下部槽、3・・・浸漬管、4
・・・トップカバー、5・−真空排気口、6・−合金鉄
投入口、7・・・槽内加熱電極、8.9・・−実験用バ
ーナ、10・・−槽内付着地金、11・・・ランス、1
2.14・・・バーナ、13・・・火炎、15・−燃料
(ガス)供給管、16・・−空気(酸素)供給管。1 and 2 are longitudinal sectional views of a degassing tank according to an embodiment of the present invention, and FIG. 3 is a longitudinal sectional view of a conventional degassing tank. l...Middle tank, 2...Lower tank, 3...Immersion pipe, 4
...Top cover, 5.--Vacuum exhaust port, 6.--Ferroalloy input port, 7.--Heating electrode in the tank, 8.9.--Experimental burner, 10.--Basic metal deposited in the tank, 11... Lance, 1
2.14... Burner, 13... Flame, 15... Fuel (gas) supply pipe, 16... Air (oxygen) supply pipe.
Claims (1)
C、H、Oなどを除去する真空脱ガス方法において、複
数個のガス燃焼バーナを真空脱ガス槽内に臨ませ、該バ
ーナの槽内の位置およびガス量、ガス噴出速度を調節し
て火炎の形状を調整すると共に、該バーナに理論所要量
より少ない量の燃焼用酸素を供給し、槽内を還元性雰囲
気に保持しながら燃焼を継続することを特徴とする脱ガ
ス槽内加熱方法。 2 真空脱ガス槽において、トップカバーを貫通するラ
ンスを上下動自在に槽内に垂下し、該ランスには高さ方
向に分布する複数のバーナを装着し、該バーナのそれぞ
れの燃料量および燃焼用酸素量を制御する装置を設けた
ことを特徴とする真空脱ガス槽内加熱装置。3 真空脱
ガス槽において、側壁を貫通する複数のバーナを前進後
退自在に槽内に臨ませ、該バーナのそれぞれの燃料量お
よび燃焼用酸素量を制御する装置を設けたことを特徴と
する真空脱ガス槽内加熱装置。[Claims] 1. In a vacuum degassing method in which C, H, O, etc. in the molten steel are removed by suctioning and circulating molten steel in a ladle under vacuum, a plurality of gas combustion burners are installed in a vacuum degassing tank. The shape of the flame is adjusted by adjusting the position of the burner in the tank, the amount of gas, and the gas jetting speed, and the burner is supplied with a smaller amount of combustion oxygen than the theoretically required amount. A heating method in a degassing tank characterized by continuing combustion while maintaining a reducing atmosphere. 2. In a vacuum degassing tank, a lance that penetrates the top cover is suspended into the tank so as to be able to move vertically, and a plurality of burners distributed in the height direction are attached to the lance, and the amount of fuel and combustion of each of the burners is adjusted. A heating device for a vacuum degassing tank, characterized in that it is equipped with a device for controlling the amount of oxygen used. 3. A vacuum degassing tank, characterized in that a plurality of burners penetrating the side wall face the tank so as to be able to move forward and backward, and a device is provided for controlling the amount of fuel and the amount of oxygen for combustion in each of the burners. Heating device inside the degassing tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1717188A JPH01195239A (en) | 1988-01-29 | 1988-01-29 | Method and apparatus for heating in vacuum degassing vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1717188A JPH01195239A (en) | 1988-01-29 | 1988-01-29 | Method and apparatus for heating in vacuum degassing vessel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01195239A true JPH01195239A (en) | 1989-08-07 |
Family
ID=11936510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1717188A Pending JPH01195239A (en) | 1988-01-29 | 1988-01-29 | Method and apparatus for heating in vacuum degassing vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01195239A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02305915A (en) * | 1989-05-17 | 1990-12-19 | Sumitomo Metal Ind Ltd | Production of extra-low carbon steel |
EP0584814A2 (en) * | 1992-08-26 | 1994-03-02 | Nippon Steel Corporation | Process and apparatus for vacuum degassing molten steel |
WO1996037633A1 (en) * | 1995-05-26 | 1996-11-28 | Technometal Gesellschaft für Metalltechnologie mbH | Process for post-combustion of reaction gases produced during the vacuum processing of steel |
JP2010184247A (en) * | 2009-02-10 | 2010-08-26 | Kazuhito Kito | Heating device, and method for controlling flame in the same |
-
1988
- 1988-01-29 JP JP1717188A patent/JPH01195239A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02305915A (en) * | 1989-05-17 | 1990-12-19 | Sumitomo Metal Ind Ltd | Production of extra-low carbon steel |
EP0584814A2 (en) * | 1992-08-26 | 1994-03-02 | Nippon Steel Corporation | Process and apparatus for vacuum degassing molten steel |
EP0584814A3 (en) * | 1992-08-26 | 1994-09-07 | Nippon Steel Corp | Process and apparatus for vacuum degassing molten steel |
US5413623A (en) * | 1992-08-26 | 1995-05-09 | Nippon Steel Corporation | Process and apparatus for vacuum degassing molten steel |
US6042633A (en) * | 1995-05-25 | 2000-03-28 | Technometal Gesellschaft Fur Metalltechnologie Mbh | Process for post-combustion of reaction gases produced during the vacuum processing of steel |
WO1996037633A1 (en) * | 1995-05-26 | 1996-11-28 | Technometal Gesellschaft für Metalltechnologie mbH | Process for post-combustion of reaction gases produced during the vacuum processing of steel |
CN1060526C (en) * | 1995-05-26 | 2001-01-10 | 金属技术股份有限公司 | Process for post-combustion of reaction gases produced during the vacuum processing of steel |
JP2010184247A (en) * | 2009-02-10 | 2010-08-26 | Kazuhito Kito | Heating device, and method for controlling flame in the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6805724B2 (en) | Method for particulate introduction for metal furnaces | |
KR920000524B1 (en) | Melting furnace and method for melting metal | |
US6749661B2 (en) | Method for melting and decarburization of iron carbon melts | |
EP0584814B1 (en) | Process and apparatus for vacuum degassing molten steel | |
EP2989402B1 (en) | Method for melting metal material in a melting plant | |
JPH01195239A (en) | Method and apparatus for heating in vacuum degassing vessel | |
RU62048U1 (en) | INSTALLING A BUCKET FURNACE | |
EP0334915B1 (en) | Process for heating molten steel contained in a ladle | |
JP7139879B2 (en) | Ladle refining method for molten steel | |
JP3272372B2 (en) | Tank heating method and apparatus for vacuum degassing tank | |
WO2010016553A1 (en) | Iron bath-type melting furnace | |
US4792125A (en) | Consumable lance | |
JPS61235506A (en) | Heating up method for molten steel in ladle | |
JP2718093B2 (en) | Electric furnace with tuyere | |
JP2652311B2 (en) | Vacuum degassing tank attached metal processing method and vacuum degassing method | |
JPH032934B2 (en) | ||
JP3090542B2 (en) | Operation method of vacuum processing equipment | |
JP3754154B2 (en) | Blowing acid decarburization refining method of stainless steel under vacuum | |
JPH08199223A (en) | Gas blowing tuyere | |
JPH0987733A (en) | Method for vacuum-degassing molten steel | |
SU1750433A3 (en) | Method of blasting melt in bottoms steel smelting unit | |
JPH09256030A (en) | Method for preventing sticking of skull to vacuum degassing vessel | |
JPH05339621A (en) | Heater for vacuum degassing chamber | |
JPH0625734A (en) | Heating method of vacuum degassing bath | |
JPH08134529A (en) | Smelting of extra low carbon steel |