JPH01194943A - Functional improvement of zeolite - Google Patents
Functional improvement of zeoliteInfo
- Publication number
- JPH01194943A JPH01194943A JP63016749A JP1674988A JPH01194943A JP H01194943 A JPH01194943 A JP H01194943A JP 63016749 A JP63016749 A JP 63016749A JP 1674988 A JP1674988 A JP 1674988A JP H01194943 A JPH01194943 A JP H01194943A
- Authority
- JP
- Japan
- Prior art keywords
- zeolite
- oxide
- catalyst
- zinc oxide
- chromium oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 36
- 239000010457 zeolite Substances 0.000 title claims abstract description 36
- 239000002131 composite material Substances 0.000 claims abstract description 17
- 239000003054 catalyst Substances 0.000 claims abstract description 16
- 239000011701 zinc Substances 0.000 claims abstract description 8
- 239000011651 chromium Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims abstract description 7
- ADCBRSDRBJKLFK-UHFFFAOYSA-N zinc chromium(3+) oxygen(2-) Chemical compound [O-2].[Cr+3].[O-2].[Zn+2] ADCBRSDRBJKLFK-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 239000000203 mixture Substances 0.000 claims abstract 3
- 238000000465 moulding Methods 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 abstract description 18
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 abstract description 9
- 229910000423 chromium oxide Inorganic materials 0.000 abstract description 9
- 239000011787 zinc oxide Substances 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 4
- 150000002739 metals Chemical class 0.000 abstract description 2
- 239000011148 porous material Substances 0.000 description 27
- 239000007789 gas Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910002090 carbon oxide Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 230000007096 poisonous effect Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【発明の詳細な説明】
ゼオライト結晶粒子は、微細な細孔構造と強い酸液性質
を有するので、細孔内に侵入できる特定の分子だけを反
応させることができる選択性の高い触媒などとして、多
方面で利用されている。本発明は、ゼオライト粒子を成
形して利用するのに際して、酸化亜鉛−酸化クロムの複
合酸化物を、ゼオライトの1〜500重量倍、好ましく
は10−50重量倍を、Z n / Cr比(原子比)
が0゜1〜10、好ましくは1〜4になるように加えて
成形し、ゼオライトの弱点を補強して、利用範囲と性能
を高めようとするものである。必要に応じては、ニッケ
ル、鉄、コバルト、モリブデン、タングステン、シルカ
、アルミナ、バナジウム、リン、カルシウム、マグネシ
ウムなどの金属、金属酸化物又は金属硫化物を、酸化亜
鉛−酸化クロム複合酸化物の100重量パーセント以下
、好ましくは5〜20重量パーセント加えて、性能を向
上させる。具体的には。[Detailed Description of the Invention] Zeolite crystal particles have a fine pore structure and strong acid liquid properties, so they can be used as highly selective catalysts that can react only with specific molecules that can enter the pores. It is used in many ways. In the present invention, when molding and using zeolite particles, a composite oxide of zinc oxide and chromium oxide is mixed in an amount of 1 to 500 times the weight of the zeolite, preferably 10 to 50 times the weight of the zeolite, at a Zn/Cr ratio (atomic ratio)
The purpose is to strengthen the weak points of the zeolite by adding and molding the zeolite so that the angle is 0°1 to 10, preferably 1 to 4, thereby increasing the range of use and performance of the zeolite. If necessary, metals, metal oxides, or metal sulfides such as nickel, iron, cobalt, molybdenum, tungsten, silica, alumina, vanadium, phosphorus, calcium, and magnesium may be added to zinc oxide-chromium oxide composite oxide. Up to a weight percent, preferably 5 to 20 weight percent, is added to improve performance. in particular.
(1)ゼオライトの細孔は非常に小さいので、通常の触
媒に対しては触媒毒となる重質な芳香族化合物や@基性
化合物は、細孔の内部に入り込めないので、細孔内の活
性点がそれらの物質によって被毒されるおそれは非常に
少ない。しかしながら、ゼオライト粒子はその外部表面
も活性であるので。(1) Since the pores of zeolite are very small, heavy aromatic compounds and @-based compounds that are poisonous to ordinary catalysts cannot enter the pores. There is very little risk that the active sites of these substances will be poisoned by these substances. However, since zeolite particles are also active on their outer surface.
そこに吸着したこれらの被毒物質によってか閉そくされ
、結果として触媒等としての性能劣化につながることが
多い。These poisonous substances adsorbed there often cause blockage, resulting in deterioration of performance as a catalyst, etc.
本発明者らは長年にわたる研究の結果、酸化亜鉛−酸化
クロムの複合酸化物は9重質な芳香族や塩基性物質によ
る阻害を受けにくく、さらに強い水素化能を有するため
、ゼオライト粒子の外部表面を保護し、細孔内部の活性
を持続させる働きが大きいことを見出した。As a result of many years of research, the present inventors have found that the composite oxide of zinc oxide and chromium oxide is less susceptible to inhibition by heavy aromatic and basic substances, and has a strong hydrogenation ability. It was discovered that it has a great effect in protecting the surface and sustaining the activity inside the pores.
(2)ゼオライト粒子は微細な細孔構造を有しているが
、成形した状態で細孔内部を有効に利用するには、ゼオ
ライト粒子を適当な大きさのマクロポアでつなぐ必要が
ある0本発明者らは長年にわたる研究の結果、酸化亜鉛
−酸化クロムの複合酸化物は、その調製方法により、1
00Å以下の中程度の細孔と、100Å以上のかなり大
きな細孔を、それぞれ独立に、かなりの範囲でその大き
さを制御できることを見出した。これは、酸化亜鉛−酸
化クロムの複合酸化物が、調製段階で種々の結晶構造を
遷移し、結晶水の放出を行なうので。(2) Zeolite particles have a fine pore structure, but in order to effectively utilize the inside of the pores in the molded state, it is necessary to connect the zeolite particles with macropores of an appropriate size. As a result of many years of research, they found that zinc oxide-chromium oxide composite oxide has a
It has been found that the sizes of medium pores of 00 Å or less and fairly large pores of 100 Å or more can be independently controlled within a considerable range. This is because the composite oxide of zinc oxide and chromium oxide undergoes various crystal structure transitions during the preparation stage and releases crystal water.
それらを利用して細孔を制御するものである。本発明に
より、ゼオライト粒子は微細な細孔構造を有しているが
、成形した状態で細孔内部を有効に利用するには、ゼオ
ライトを酸化亜鉛−酸化クロムの複合酸化物と共に成形
することにより、必要なマクロポアをかなり広い範囲に
わたって調製することができる。These are used to control pores. According to the present invention, the zeolite particles have a fine pore structure, but in order to effectively utilize the inside of the pores in the molded state, the zeolite is molded together with a composite oxide of zinc oxide and chromium oxide. , the required macropores can be prepared over a fairly wide range.
(3)ゼオライト粒子は強度的に成形されにくく、その
成形には9種々の物質が添加されて強度が保たれている
が、添加物質は1例えばゼオライト触媒としての性能を
低下させていることも多い。本発明者らは長年にわたる
研究の結果、酸化亜鉛−酸化クロムの複合酸化物を、ゼ
オライト共存下で成形させ、ある程度のマクロポアを持
たせても。(3) Zeolite particles are difficult to shape due to their strength, and 9 different substances are added to maintain their strength during shaping, but the added substances, such as 1, may reduce the performance as a zeolite catalyst. many. As a result of many years of research, the present inventors have molded a composite oxide of zinc oxide and chromium oxide in the coexistence of zeolite, and even created a composite oxide with a certain degree of macropores.
高い強度を有することができることを見出した。It has been found that it can have high strength.
[実施例コ 次に本発明を実施例によりさらに詳細に説明する。[Example code] Next, the present invention will be explained in more detail with reference to Examples.
実施例1
酸化亜鉛−酸化クロムの複合酸化物(Zn/CrJ’?
1子比=2)に対して15重量パーセントのゼオライト
が含まれるペーストを3種類の異なった圧力で、直径1
0++aのタブレットに成形し、それを粉砕して0.5
9〜0.84に仕分けしたものを空気中500℃で焼成
し、冷却後再び500℃まで昇温させながら水素気流中
で還元したものの細孔分布を第1図に示す。Example 1 Zinc oxide-chromium oxide composite oxide (Zn/CrJ'?
A paste containing 15% by weight of zeolite per particle ratio = 2) was heated at three different pressures to a diameter of 1.
Form into a tablet of 0++a and crush it to 0.5
Figure 1 shows the pore distribution of a sample that was sorted into 9 to 0.84 particles, fired at 500°C in air, cooled, and then reduced in a hydrogen stream while raising the temperature to 500°C again.
第1図中の試料1は、成形圧力をほとんど加えていない
もの、試料2は、3.2t/alの圧力で成形したもの
、試料3は、4.8t/carの圧力で成形したものを
表わす。Sample 1 in Figure 1 is one with almost no molding pressure applied, sample 2 is one molded with a pressure of 3.2t/al, and sample 3 is one molded with a pressure of 4.8t/car. represent.
試料には、半径80人付近の中程度の細孔と100〜3
00人の比較的大きな細孔が存在し、成形圧力によって
、前者の細孔の容積と後者の細孔の細孔径が制御できる
ことが示されている。The sample had medium pores with a radius of around 80 and 100–3
It has been shown that relatively large pores exist, and the volume of the former pores and the pore diameter of the latter pores can be controlled by molding pressure.
実施例2
酸化亜鉛−酸化クロムの複合酸化物には種々の結晶形態
が存在するので、成形圧力だけでなく、成形後の処理方
法によってもアクロボアを制御することができる。Example 2 Since various crystal forms exist in the composite oxide of zinc oxide and chromium oxide, acropores can be controlled not only by the molding pressure but also by the treatment method after molding.
酸化亜鉛−酸化クロムの複合酸化物(Zn/Cr原子比
=2)に対して15重量パーセントのゼオライトが含ま
れるペーストを常圧に近い圧力で成形し、それを粉砕し
て0.59〜0.84mに仕分けしたものを、4種類の
方法で処理したものの細孔分布を第2図に示す。A paste containing 15% by weight of zeolite based on a composite oxide of zinc oxide and chromium oxide (Zn/Cr atomic ratio = 2) is molded under pressure close to normal pressure, and then pulverized to form a paste of 0.59 to 0.0 Figure 2 shows the pore distribution of the pores sorted to .84 m and treated using four different methods.
第2図中の試料1は、空気中500℃で焼成し、冷却後
再び500℃まで昇温させながら水素気流中で還元した
もの、試料2は、空気中500℃で焼成し、冷却後再び
500℃まで昇温させながら水素/−酸化炭素/水蒸気
の混合ガス気流中で還元したもの、試料3は、空気中5
00℃で焼成したもの、試料4は、空気中250℃で焼
成したものを表わす。Sample 1 in Figure 2 was fired at 500°C in air, cooled and then reduced in a hydrogen stream while raising the temperature to 500°C. Sample 2 was fired at 500°C in air, cooled and then reduced again. Sample 3 was reduced in a mixed gas stream of hydrogen/carbon oxide/steam while raising the temperature to 500°C.
Sample 4 was fired at 00°C, and Sample 4 was fired at 250°C in air.
第2図により、処理条件によって細孔の容積及び細孔径
が制御できることが示されている。FIG. 2 shows that the pore volume and pore diameter can be controlled by processing conditions.
実施例3
ゼオライトは微細な細孔と強い酸液性質を有するので、
細孔内に侵入できる特定の構造の化合物を選択的に分解
する触媒として重要であるが、成形して使用する場合に
は細孔的拡散抵抗が大きく、ゼオライト本来の活性を有
効に生かすことが困難である。Example 3 Zeolite has fine pores and strong acid liquid properties, so
It is important as a catalyst that selectively decomposes compounds with a specific structure that can penetrate into zeolite pores, but when used in shaped form, the pore diffusion resistance is large, making it difficult to effectively utilize the inherent activity of zeolite. Have difficulty.
第3図に、本発明によるアクロボアを調製したゼオライ
ト触媒を用いて減圧軽油中の直鎖パラフィン類の分解を
示す。第3図には参考のため、典型的な石油精製用触媒
であるニッケルーモリブデン−アルミナ触媒による結果
を合せて示す。FIG. 3 shows the decomposition of linear paraffins in vacuum gas oil using a zeolite catalyst prepared with Acrobore according to the present invention. For reference, FIG. 3 also shows the results obtained using a nickel-molybdenum-alumina catalyst, which is a typical oil refining catalyst.
反応は高圧流通式反応装置を用い、使用触媒量50mQ
、LH3V 1hr−1、通油時間はほぼ2週間であ
る。ゼオライト触媒は、酸化亜鉛−酸化クロムの複合酸
化物(Z n / Cr原子比=2)に対して15重量
パーセントのゼオライトが含まれるペーストを、常圧に
近い圧力で成形し、それを粉砕して0.59〜0.84
mに仕分けしたものである。The reaction used a high-pressure flow reactor, and the amount of catalyst used was 50 mQ.
, LH3V 1hr-1, oil passage time is approximately 2 weeks. The zeolite catalyst is produced by molding a paste containing 15% by weight of zeolite based on a composite oxide of zinc oxide and chromium oxide (Zn/Cr atomic ratio = 2) at a pressure close to normal pressure, and then pulverizing it. 0.59-0.84
It is sorted into m.
本発明によって、高機能化されたゼオライト触媒は非常
に高活性で、反応温度325℃で、減圧軽油中の直鎖パ
ラフィン類はほぼ100%分解された。The highly functionalized zeolite catalyst according to the present invention has extremely high activity, and almost 100% of the linear paraffins in vacuum gas oil were decomposed at a reaction temperature of 325°C.
減圧軽油中の直鎖パラフィン類の選択的分解は接触脱ろ
う法として、いくつかのプロセスで工業化されており、
その詳細な運転条件は報告されていないが、一般に35
0℃前後の反応温度が採用されており1本発明による処
理がゼオライトの機能を画期的に向上させていることが
明かである。The selective decomposition of linear paraffins in vacuum gas oil has been industrialized in several processes as a catalytic dewaxing method.
Although detailed operating conditions have not been reported, generally 35
A reaction temperature of around 0° C. was employed, and it is clear that the treatment according to the present invention dramatically improves the functionality of zeolite.
第1図 : 成形圧力の異なる試料の細孔分布試料1
常圧で成形のもの
試料2 3.2t/dで成形のもの
試料3 4.8t/codで成形のもの第2図 : 加
熱処理条件の異なる試料の細孔分布
試料1 水素気流中500℃還元したもの試料2 水素
/−酸化炭素/水蒸気の混合ガス気流中500℃で還元
した
もの
試料3 空気中500℃で焼成したちの試料4 空気中
250℃で焼成したちの第3図 : 減圧軽油中の直鎖
パラフィン類の分解Figure 1: Pore distribution sample 1 of samples with different molding pressures
Sample 2 molded at normal pressure Sample 3 molded at 3.2t/d Sample 3 molded at 4.8t/cod Figure 2: Pore distribution of samples with different heat treatment conditions Sample 1 Reduction at 500°C in a hydrogen stream Sample 2: Reduced at 500℃ in a mixed gas stream of hydrogen/carbon oxide/steam Sample 3: Sample 4 fired at 500℃ in air Sample 4: fired at 250℃ in air Figure 3: Vacuum gas oil Decomposition of linear paraffins in
Claims (2)
して、ゼオライトの1〜500重量倍の酸化亜鉛−酸化
クロム複合酸化物(Zn/Cr原子比=0.1〜10)
と共に成形することを特徴とするゼオライトの高能化方
法。(1) When molding zeolite and using it as a catalyst, zinc oxide-chromium oxide composite oxide (Zn/Cr atomic ratio = 0.1-10) is 1 to 500 times the weight of zeolite.
A method for improving the performance of zeolite, characterized by molding the same with the zeolite.
して、ゼオライトの1〜500重量倍の酸化亜鉛−酸化
クロム複合酸化物(Zn/Cr原子比=0.1〜10)
及び1〜500重量倍のVIb族金属又はその化合物、V
III族金属又はその化合物及びそれらの混合物と共に成
形することを特徴とするゼオライトの高能化方法。(2) When molding zeolite and using it as a catalyst, zinc oxide-chromium oxide composite oxide (Zn/Cr atomic ratio = 0.1-10) is 1 to 500 times the weight of zeolite.
and 1 to 500 times by weight Group VIb metal or compound thereof, V
A method for improving the performance of zeolite, which comprises molding it together with a Group III metal, a compound thereof, or a mixture thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63016749A JPH0775671B2 (en) | 1988-01-27 | 1988-01-27 | Highly functionalized zeolite catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63016749A JPH0775671B2 (en) | 1988-01-27 | 1988-01-27 | Highly functionalized zeolite catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01194943A true JPH01194943A (en) | 1989-08-04 |
JPH0775671B2 JPH0775671B2 (en) | 1995-08-16 |
Family
ID=11924915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63016749A Expired - Lifetime JPH0775671B2 (en) | 1988-01-27 | 1988-01-27 | Highly functionalized zeolite catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0775671B2 (en) |
-
1988
- 1988-01-27 JP JP63016749A patent/JPH0775671B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0775671B2 (en) | 1995-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ballivet-Tkatchenko et al. | Adduct formation and further reactivity of iron carbonyl complexes introduced into a zeolite matrix | |
JP3159698B2 (en) | Titania extrudate | |
Ying et al. | Research needs assessment on nanostructured catalysts | |
EP0348204B1 (en) | Porous, metal-containing carbonaceous material | |
US1840450A (en) | Zeolite product | |
US4640908A (en) | Catalyst for the oxidation of hydrogen sulfide and process for the preparation of the catalyst | |
CN1805792B (en) | A process and catalyst for the selective hydrogenation of diolefins contained in an olefin containing stream and for the removal of arsenic therefrom and a method of making such catalyst | |
US3669906A (en) | Catalyst for purification of exhaust gases from motor vehicles and industrial plants | |
WO1999002258A1 (en) | Selective catalytic reduction for the removal of nitrogen oxides and catalyst body thereof | |
US5268091A (en) | Method for removing arsenic and phosphorus contained in liquid hydrocarbon cuts, nickel based retaining material | |
US10076748B2 (en) | Exhaust gas purification catalyst | |
JPH08266851A (en) | Method for desulfurization of gas flow and absorbent being suitable for said method | |
US5236882A (en) | Catalyst comprising a hydrogenation metal and a delaminated layered silicate | |
JPH01194943A (en) | Functional improvement of zeolite | |
CN116726972A (en) | Copper monoatomic catalyst and preparation method and application thereof | |
JP2732262B2 (en) | How to purify arsine | |
CN114768842B (en) | Method for preparing Fe-doped mesoporous titanium phosphate desulfurization catalyst without solvation | |
KR100382774B1 (en) | SELECTIVE DeNOX CATALYST, CATALYST BODY AND METHOD FOR PREPARING THEREOF | |
JPH0871418A (en) | Catalyst carrier for purification of exhaust gas and catalyst for purification of exhaust gas | |
KR20030028325A (en) | Process for Preparing Activated Carbon Having Nano-structure Photocatalyst | |
CN112439451A (en) | Low-temperature sulfur-tolerant shift catalyst, and preparation method and application thereof | |
CN113797941B (en) | Catalytic material with hydrogenation performance and preparation method and application thereof | |
US3928534A (en) | Catalyst useful at higher temperatures, especially for purification of exhaust gases from motor vehicles and industrial plants | |
JP2934978B2 (en) | Sepiolite porous body, method for producing the same, and adsorption decomposition catalyst using the same | |
WO2003082465A1 (en) | Method of preparation of calcined supported catalysts using metallosilsesquioxanes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |