JPH01194924A - Oxygen-enriching equipment - Google Patents

Oxygen-enriching equipment

Info

Publication number
JPH01194924A
JPH01194924A JP63018258A JP1825888A JPH01194924A JP H01194924 A JPH01194924 A JP H01194924A JP 63018258 A JP63018258 A JP 63018258A JP 1825888 A JP1825888 A JP 1825888A JP H01194924 A JPH01194924 A JP H01194924A
Authority
JP
Japan
Prior art keywords
air
zeolite
circuit
oxygen
packed tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63018258A
Other languages
Japanese (ja)
Inventor
Akihiko Sugiyama
明彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63018258A priority Critical patent/JPH01194924A/en
Priority to US07/264,875 priority patent/US4896514A/en
Priority to KR1019890000966A priority patent/KR920001511B1/en
Publication of JPH01194924A publication Critical patent/JPH01194924A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40003Methods relating to valve switching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To improve the yield of O2 by connecting in parallel both the air feed circuits and the bypass circuits to the air introduction sides of a plurality of zeolite adsorption towers and also connecting both an exhaust circuit and the O2-enriching circuits having the throttle mechanisms to an air conduction side in parallel. CONSTITUTION:Outside air is compressed by an air compressor 2 via an air filter 1 and introduced into a zeolite packed tower A via an air feed circuit 17a and simultaneously one part is reduced by the throttle mechanism 15a of a bypass circuit 18a and introduced into the zeolite packed tower A and N2 is adsorbed and removed. O2-enriched air is throttled to the atmospheric pressure by the throttle mechanism 19a of an O2-enriching circuit 20a and sent to a feed pipe. On the other hand, the air obtained by reducing high-pressure air to the atmospheric pressure or the reduced pressure with a throttle mechanism 15b is introduced into a zeolite packed tower B and reduced-pressure desorption and purging action are performed and the air having high N2 concentration is discharged to the outside via an exhaust circuit 22.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、高G度酸素を生成して供給可能な酸素富化装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an oxygen enrichment device capable of generating and supplying high-G oxygen.

(従来の技術) 近時、ゼオライトを利用した酸素富化システムが研究さ
れている。これは、たとえば第9図に示すような構成で
ある。すなわち、1はエアフィルタ、2は空気圧縮機縮
機、3は四方弁であり、これらは直列に接続される。上
記四方弁3にゼオライト充填塔Aとゼオライト充填塔B
が並列に接続され、さらにこれらゼオライト充填塔A、
Bから逆止弁4a、4bを介して合流し、この合流光に
絞り機構5が接続され、さらにこの端部は被空調室に開
口する。また、それぞれのゼオライト充填塔A、Bと逆
止弁4a、4bとの間は、バイパス絞り機構6を設けた
バイパス管7で連通ずる。
(Prior Art) Recently, oxygen enrichment systems using zeolites have been studied. This is a configuration as shown in FIG. 9, for example. That is, 1 is an air filter, 2 is an air compressor, and 3 is a four-way valve, which are connected in series. Zeolite packed tower A and zeolite packed tower B are connected to the four-way valve 3.
are connected in parallel, and these zeolite packed towers A,
The light from B joins together via the check valves 4a and 4b, a diaphragm mechanism 5 is connected to this joined light, and this end opens into the air-conditioned room. Further, the respective zeolite packed towers A and B and the check valves 4a and 4b are communicated through a bypass pipe 7 provided with a bypass throttling mechanism 6.

上記四方弁3の残りのボートには、室外に開口する排気
マフラ8が接続される。
An exhaust muffler 8 that opens outdoors is connected to the remaining boats of the four-way valve 3.

しかして、空気圧縮機2を駆動すると、新鮮な外気がエ
アフィルタ1に吸込まれて濾過され、空気圧縮機2で高
圧空気に変り、四方弁3を介して一方のゼオライト充填
塔AまたはB内に供給される。たとえば、空気圧縮機2
側からの高圧空気がゼオライト充填塔A内に供給され、
このゼオライト充填塔A内に充填されている多数のゼオ
ライト粒子によって供給空気中の窒素N2成分を吸着さ
せる、いわゆる吸着作用をなし、ゼオライト充填塔Aか
らの導出空気中の酸素濃度を高める(酸素富化する)こ
とができる。このゼオライト充填塔Aから吐出される高
濃度酸素空気の一部を、逆止弁4aを介して絞り機構5
に導き、大気圧にして室内側に導く。また、ゼオライト
充填塔Aがらの導出空気の一部はバイパス管7内のバイ
パス絞り機構6を介して他方のゼオライト充填塔B内に
圧送される。このため、ゼオライト充填塔B内のゼオラ
イト粒子に吸着している窒素N2成分をこの供給空気に
よって排出させる、いわゆる減圧脱着およびパージ作用
をなし、窒素N24度の高い空気を排気マフラ8を介し
て外部に排出する。
When the air compressor 2 is driven, fresh outside air is sucked into the air filter 1 and filtered, and then converted into high-pressure air by the air compressor 2. is supplied to For example, air compressor 2
High pressure air is supplied from the side into the zeolite packed tower A,
The large number of zeolite particles packed in this zeolite packed tower A performs a so-called adsorption action that adsorbs the nitrogen N2 component in the supplied air, increasing the oxygen concentration in the air discharged from the zeolite packed tower A (oxygen enrichment). can be converted into A part of the high concentration oxygen air discharged from this zeolite packed tower A is passed through a check valve 4a to a throttle mechanism 5.
and then bring it to atmospheric pressure and guide it indoors. Further, a part of the air discharged from the zeolite packed tower A is forced into the other zeolite packed tower B via the bypass throttling mechanism 6 in the bypass pipe 7. For this reason, the nitrogen N2 component adsorbed on the zeolite particles in the zeolite packed tower B is discharged by this supplied air, so-called vacuum desorption and purging action is performed, and the air with a high nitrogen N24 degree is passed through the exhaust muffler 8 to the outside. to be discharged.

この状態で所定時間が経過すると、四方弁3が切換操作
されて空気圧縮機2側がらの高圧空気がゼオライト充填
塔B内に供給され、充填されている多数のゼオライト粒
子が供給空気中の窒素N2成分を吸青し、吐出空気中の
酸素濃度を高める(酸素富化する)。このゼオライト充
填塔Bから吐出される高濃度酸素の空気を逆止弁4b、
絞り機構5を順次介して被空調室側に導くことができる
。またゼオライト充填塔Bからの吐出空気の一部は、バ
イパス管7とバイパス絞り機構6を介して他方のゼオラ
イト充填塔A内に圧送される。ゼオライト充填塔A内に
滞在する窒素N2成分はこの供給空気によって排出され
、窒素N2のa度が高い空気を排気マフラ8を介して外
部に排出できる。
When a predetermined period of time has elapsed in this state, the four-way valve 3 is switched and high-pressure air from the air compressor 2 side is supplied into the zeolite-packed tower B, and the large number of zeolite particles packed therein are absorbed by the nitrogen in the supplied air. Absorbs N2 components and increases the oxygen concentration in the discharged air (oxygen enrichment). The high concentration oxygen air discharged from this zeolite packed tower B is controlled by a check valve 4b,
It can be guided to the air-conditioned room side through the throttle mechanism 5 sequentially. Further, a part of the air discharged from the zeolite packed tower B is sent under pressure into the other zeolite packed tower A via the bypass pipe 7 and the bypass throttle mechanism 6. The nitrogen N2 component staying in the zeolite packed tower A is discharged by this supplied air, and the air with a high degree of nitrogen N2 can be discharged to the outside via the exhaust muffler 8.

このようにして構成することにより、被空調室空気中の
酸素濃度を効率よく高めることができ、太陽光の日射状
態や天候等に左右されることな(常に安定して高濃度の
酸素を得られる。
With this configuration, it is possible to efficiently increase the oxygen concentration in the air of the air-conditioned room, and it is not affected by sunlight conditions, weather, etc. It will be done.

しかしながら、ここに用いられる上記四方弁3は高価で
コストに悪影響があるばかりでなく、機構的に複雑であ
るところから故障発生率が大であり、信頼性が不充分で
ある。
However, the four-way valve 3 used here is not only expensive and has an adverse effect on cost, but also has a high failure rate due to its mechanical complexity and is insufficiently reliable.

そこで第10図に示すように、各ゼオライト充填塔A、
Bの空気導入側に三方弁10a、10bを設け、空気圧
縮機2に対して並列に接続することが考えられる。これ
ら三方弁10a、10bの残りのボートは図示しない排
気マフラに連通される。各ゼオライト充填塔A、Bの空
気導出側は、先に説明した第9図ものと同一の配管構造
になっている。
Therefore, as shown in FIG. 10, each zeolite packed tower A,
It is conceivable to provide three-way valves 10a and 10b on the air introduction side of B and connect them in parallel to the air compressor 2. The remaining ports of these three-way valves 10a and 10b are communicated with an exhaust muffler (not shown). The air outlet side of each of the zeolite packed towers A and B has the same piping structure as that shown in FIG. 9 described above.

この場合、上記各三方弁10a、10bを互いに逆方向
に切換操作することにより、同一の作用効果を得る。し
かも、三方弁10a、10bは上記四方弁3と比較して
廉価であり、かつ構造的にも簡素化されている。
In this case, the same effect can be obtained by switching the three-way valves 10a and 10b in opposite directions. Moreover, the three-way valves 10a and 10b are less expensive and structurally simpler than the four-way valve 3.

しかるに、上記いずれの構成にしても、一方のゼオライ
ト充填塔で窒素N2成分をゼオライト粒子から減圧脱着
およびパージするには、他方のゼオライト充填塔で得ら
れた高濃度酸素の一部をバイハス管7に分流し、かつそ
のゼオライト充填塔に導入することにより可能としてい
る。すなわち、ゼオライトに対する脱着作用をなすため
に、せっかく得られた製品ガスである高濃度酸素の空気
を使用しなければならず、不経済的である。
However, in any of the above configurations, in order to depressurize and purge the nitrogen N2 component from the zeolite particles in one zeolite packed column, a part of the high concentration oxygen obtained in the other zeolite packed column is transferred to the bypass tube 7. This is possible by splitting the flow into the zeolite-packed tower. That is, in order to perform the desorption effect on the zeolite, it is necessary to use air with a high concentration of oxygen, which is the product gas obtained with great effort, which is uneconomical.

さらにまた、脱着作用をなすための高濃度酸素の空気が
過剰に流れないように、上記バイパス管7にセンサなど
を設けて流量を制御するものもあるが、信頼性の点で不
安が残り、その割にはコストに悪影響がある。
Furthermore, there are some devices that control the flow rate by installing a sensor in the bypass pipe 7 to prevent the flow of high-concentration oxygen air for the desorption effect, but there are concerns about reliability. This has a negative impact on costs.

(発明が解決しようとする課題) 本発明は、上述したようにゼオライトから窒素N2成分
を脱芒するのに、製品ガスである高濃度酸素空気を用い
ることによる不経済性を除去し、回路の一部を変更する
ことにより、上記窒素N2成分の脱着作用を全て空気圧
縮機から供出される原料ガスである空気を用いることに
より、コスト的に有利で信頼性の向上を図れる酸素富化
装置を提供することを目的とする。
(Problems to be Solved by the Invention) As described above, the present invention eliminates the uneconomical effects of using high-concentration oxygen air as a product gas to remove the nitrogen N2 component from zeolite, and By making some changes, we have created an oxygen enrichment device that is advantageous in terms of cost and improves reliability by using air, which is the raw material gas supplied from the air compressor, to perform the desorption action of the nitrogen N2 component. The purpose is to provide.

〔発明の構成〕[Structure of the invention]

(課題を解決する手段) 本発明は、空気圧縮機に複数のゼオライト充填塔を接続
し、これらゼオライト充填塔に上記空気圧縮機から高圧
空気を送って交互に吸着作用と脱着作用をさせることに
より連続的に高濃度酸素の空気を得るものにおいて、上
記空気圧縮機に対して各ゼオライト充填塔を並列に接続
し、各ゼオライト充填塔の空気導入側に切換弁を有する
空気供給回路と第1の絞り機構を有するバイパス回路を
並列に接続し、各ゼオライト充填塔の空気導出側に切換
弁を有する排気回路と第2の絞り機構を有する酸素富化
回路とを並列に接続したことを特徴とする酸素富化装置
である。
(Means for Solving the Problems) The present invention connects a plurality of zeolite-packed towers to an air compressor, and sends high-pressure air from the air compressor to these zeolite-packed towers to alternately perform adsorption and desorption actions. In an apparatus that continuously obtains air with high concentration of oxygen, each zeolite packed tower is connected in parallel to the air compressor, and an air supply circuit having a switching valve on the air introduction side of each zeolite packed tower and a first air supply circuit are provided. A bypass circuit having a throttling mechanism is connected in parallel, and an exhaust circuit having a switching valve and an oxygen enrichment circuit having a second throttling mechanism are connected in parallel on the air outlet side of each zeolite packed tower. It is an oxygen enrichment device.

(作用) このようにして構成することにより、一方のゼオライト
充填塔において供給空気から窒素N2成分の吸着作用を
なして高濃度酸素の空気を得、他方のゼオライト充填塔
には空気圧縮機から吐出される空気を第1の絞り機構を
介して導入し、この供給空気で窒素N2成分の脱着作用
をなして窒素を放出し、さらに排気回路に導いて外部に
排出する。
(Function) With this configuration, one zeolite-packed tower adsorbs the nitrogen N2 component from the supplied air to obtain air with high concentration of oxygen, and the other zeolite-packed tower is discharged from the air compressor. The supplied air is introduced through the first throttling mechanism, and the supplied air acts to desorb the nitrogen N2 component to release the nitrogen, which is further led to the exhaust circuit and discharged to the outside.

(実施例) 以下、本発明の一実施例を図面にもとづいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図はたとえばヒートポンプ式の空気調和iKに後述
する酸素富化装置Sを組込んだ例である。なお説明すれ
ば、11は空気調和機Kを(1■成する室外ユニットで
あり、ここには図示しない圧縮機、四方切換弁、室外側
熱交換器、膨張弁等の各冷凍サイクル構成機器や送風機
等が収容されるとともに上記酸素富化装置Sが収容され
る。
FIG. 1 shows an example in which an oxygen enrichment device S, which will be described later, is incorporated into a heat pump type air conditioner iK. To explain, 11 is an outdoor unit that constitutes the air conditioner K (1), and includes various refrigeration cycle components such as a compressor, four-way switching valve, outdoor heat exchanger, expansion valve, etc. A blower and the like are housed therein, as well as the oxygen enrichment device S mentioned above.

12は被空調室R内に配設され上記室外ユニ・ソト11
とともに空気調和機Kを構成する室内ユニ・ソトであり
、この内部には図示しない室内側熱交換器および送風機
の他に、混合部13が収容される。
12 is arranged in the air-conditioned room R and is connected to the outdoor uni-soto 11 mentioned above.
It is also an indoor unit that constitutes the air conditioner K, and a mixing section 13 is accommodated therein in addition to an indoor heat exchanger and a blower (not shown).

室内ユニット11と室外ユニット12とは、冷媒管Pと
送気管14で連通される。上記冷媒管Pは冷凍サイクル
機器を接続し、かつ送気管14はその一端部が上記酸素
富化装置Sに接続し、他端部は混合部13に接続する。
The indoor unit 11 and the outdoor unit 12 are communicated with each other through a refrigerant pipe P and an air supply pipe 14. The refrigerant pipe P connects the refrigeration cycle equipment, and the air supply pipe 14 has one end connected to the oxygen enrichment device S and the other end connected to the mixing section 13.

上記酸素富化装置Sは、第2図に示すように構成される
。空気圧縮機2の吸込側にエアフィルタ1を接続するこ
とは同一である。この吐出側は三方向に分岐され、第1
の絞り機構15aと三方弁16およびもう一方の第1の
絞り機構15bが並列に接続される。上記三方弁16の
残りのニボートは各ゼオライト充填塔A、Bに接続され
、それぞれ専用の空気供給回路17a、17bを構成す
る。また、上記各節1の絞り機構15a、15bはそれ
ぞれ空気供給回路17a、17bの三方弁16とゼオラ
イト充填塔A、Bとの間に接続され、それぞれバイパス
回路18a、18bを構成する。
The oxygen enrichment device S is configured as shown in FIG. Connecting the air filter 1 to the suction side of the air compressor 2 is the same. This discharge side is branched into three directions, and the first
The throttle mechanism 15a, the three-way valve 16, and the other first throttle mechanism 15b are connected in parallel. The remaining ports of the three-way valve 16 are connected to each of the zeolite packed towers A and B, forming dedicated air supply circuits 17a and 17b, respectively. Further, the throttling mechanisms 15a and 15b of each node 1 are connected between the three-way valves 16 of the air supply circuits 17a and 17b and the zeolite packed towers A and B, respectively, and constitute bypass circuits 18a and 18b, respectively.

一方、各ゼオライト充填塔A、Bの空気導出側には、そ
れぞれ第2の絞り機構19a、19bを有する酸素富化
回路20a、20bが接続される。
On the other hand, oxygen enrichment circuits 20a and 20b having second throttling mechanisms 19a and 19b are connected to the air outlet side of each zeolite packed tower A and B, respectively.

これら酸素富化回路20a、20bは、ともに第1図で
示す送気管14に連通ずる。さらにまた、各ゼオライト
充填塔A、Bと第2の絞り機構19a、19bとの間か
ら分岐して三方弁21に接続され、この三方弁21の残
りのポートは図示しない排気マフラを介して外部に連通
ずる排気回路22が設けられる。
These oxygen enrichment circuits 20a, 20b both communicate with the air pipe 14 shown in FIG. Furthermore, it is branched from between each zeolite packed tower A, B and the second throttling mechanism 19a, 19b and connected to a three-way valve 21, and the remaining ports of this three-way valve 21 are externally connected via an exhaust muffler (not shown). An exhaust circuit 22 is provided which communicates with the.

しかして、空気圧縮機2を駆動し、外気をエアフィルタ
1に導いて濾過し、空気圧縮機2で高圧に圧縮して吐出
する。三方弁16がたとえばゼオライト充填塔A方向に
切換えた状態であれば、空気供給回路17aを介して高
圧空気がゼオライト充填塔Aに導入される。同時に極く
少量ではあるが、高圧空気の一部がバイパス回路18a
に導かれ、第1の絞り機構158で減圧されてゼオライ
ト充填塔Aに導入される。このとき空気導出側の三方弁
21は逆方向であるゼオライト充填塔B側に連通してい
て、ゼオライト充填塔A側は閉成されている。上記ゼオ
ライト充填塔Aの空気導出側は第2の絞り機構19aの
みに連通ずることになり、この内部は加圧されて供給さ
れる空気から窒X N 2成分を多数のゼオライト粒子
に吸着する、いわゆる吸着作用をなす。このゼオライト
充填塔Aから導出するときは高濃度酸素の空気(酸素富
化)となり、さらに酸素富化回路20aに導かれる。こ
こで第2の絞り機構19aにより大気圧になるまで絞ら
れ、上記第1図で示す送気管14に放出される。この高
濃度酸素の空気は送気管14から混合部13に送られ、
室内ユニット12の熱交換器で熱交換した空気と混合し
て被空調室Rに送風される。一方、空気圧縮機2から吐
出される高圧空気がバイパス回路18bに導かれると、
第2の絞り機構15bがこの空気を大気圧まで減圧する
。そして充填塔Bに導かれると、多数のゼオライト粒子
からここに吸着されてる窒素N2成分を排出する、いわ
ゆる減圧脱着およびパージ作用をなし、窒素N2の濃度
が高い空気を導出する。
The air compressor 2 is then driven to guide outside air to the air filter 1 where it is filtered, compressed to high pressure by the air compressor 2, and discharged. If the three-way valve 16 is in a state where it is switched toward the zeolite packed column A, for example, high pressure air is introduced into the zeolite packed column A via the air supply circuit 17a. At the same time, a small amount of high-pressure air flows into the bypass circuit 18a.
is introduced into the zeolite packed column A after being depressurized by the first throttling mechanism 158. At this time, the three-way valve 21 on the air outlet side communicates with the zeolite packed column B side, which is the opposite direction, and the zeolite packed column A side is closed. The air outlet side of the zeolite packed tower A is communicated only with the second throttling mechanism 19a, and the interior of the zeolite packed tower A is pressurized to adsorb nitrogen XN two components from the supplied air onto a large number of zeolite particles. It has a so-called adsorption effect. When the air is discharged from the zeolite packed tower A, it becomes air with a high concentration of oxygen (oxygen enriched), and is further guided to the oxygen enrichment circuit 20a. Here, the air is throttled down to atmospheric pressure by the second throttling mechanism 19a and discharged into the air pipe 14 shown in FIG. 1 above. This highly concentrated oxygen air is sent from the air pipe 14 to the mixing section 13,
The mixed air is mixed with the air that has undergone heat exchange with the heat exchanger of the indoor unit 12, and is blown into the air-conditioned room R. On the other hand, when the high pressure air discharged from the air compressor 2 is guided to the bypass circuit 18b,
The second throttle mechanism 15b reduces the pressure of this air to atmospheric pressure. When the air is led to the packed tower B, the nitrogen N2 component adsorbed there is discharged from a large number of zeolite particles, which performs a so-called vacuum desorption and purging action, leading to air with a high concentration of nitrogen N2.

この空気は、三方弁21が開放しているところから、排
気回路22を介して外部に排出される。すなわち、空気
圧縮機2から供給した空気である原料ガスによる減圧脱
着およびパージ作用をなす。
This air is exhausted to the outside through the exhaust circuit 22 from where the three-way valve 21 is open. That is, the raw material gas, which is the air supplied from the air compressor 2, performs depressurization and desorption and purge actions.

また、一部のパージガスは排気回路22から分流して第
2の絞り機4R19bに導かれるが、この絞り作用によ
る圧力低下があるとともにゼオライト充填塔B内が大気
圧に減圧されているので極めて少量しか流れず、無視で
きる。
In addition, some of the purge gas is diverted from the exhaust circuit 22 and guided to the second throttle device 4R19b, but there is a pressure drop due to this throttling action and the pressure inside the zeolite packed tower B is reduced to atmospheric pressure, so the amount is extremely small. It only flows and can be ignored.

適宜時間この状態を継続したならば、各三方弁16.2
1を互いに逆方向に切換える。したがってゼオライト充
填塔Aでは原料ガスである空気を用いて、充填するゼオ
ライト粒子に吸着した窒素N2成分を排出する、いわゆ
る減圧脱着およびパージ作用をなし、窒素濃度が高くな
った空気を排気回路22に排出する。ゼオライト充填塔
Bにおいては、導入した空気から窒素N2成分をゼオラ
イト粒子に吸着する、いわゆる吸着作用をなして高濃度
酸素の空気(酸素富化)とし、酸素富化回路20bに導
くことができる。
If this state continues for an appropriate period of time, each three-way valve 16.2
1 in opposite directions. Therefore, in the zeolite packed tower A, air, which is a raw material gas, is used to discharge the nitrogen N2 component adsorbed on the zeolite particles packed, which is a so-called vacuum desorption and purge action, and the air with a high nitrogen concentration is sent to the exhaust circuit 22. Discharge. In the zeolite packed tower B, the nitrogen N2 component from the introduced air is adsorbed onto the zeolite particles, which is a so-called adsorption action, to form air with a high concentration of oxygen (oxygen enrichment), which can be led to the oxygen enrichment circuit 20b.

第3図に示すように、各三方弁16.21を互いに同時
に逆方向に切換え操作をなすことにより、各ゼオライト
充填塔A、Bにおいては上述の作用を繰返し、被空調室
Rには高濃度酸素の空気が連続して供給される。しかも
、得られた高濃度酸素の空気を減圧脱着およびパージ作
用に費やすことなく全て被空調室Rに供出できるので、
酸素収率(酸素富化量/原料ガス供給量)が従来よりも
大幅に増大する。このように、各三方弁16.21の切
換え時間の設定にさほど神経を使う必要がなくなり、ま
たこの高a度酸素の出力流量を$制御するだめに第1.
第2の絞り機構15a、15b。
As shown in Fig. 3, by simultaneously switching the three-way valves 16 and 21 in opposite directions, the above-mentioned action is repeated in each of the zeolite packed towers A and B, and the air-conditioned room R has a high concentration. Oxygen air is continuously supplied. Moreover, all of the obtained high-concentration oxygen air can be delivered to the air-conditioned room R without spending on depressurization desorption and purging.
The oxygen yield (oxygen enrichment amount/raw material gas supply amount) is significantly increased compared to the conventional method. In this way, there is no need to be so careful in setting the switching time of each three-way valve 16, 21, and in order to control the output flow rate of this high-altitude oxygen, the first.
Second diaphragm mechanism 15a, 15b.

19a、19bを可変絞りにした場合にも、安定した減
圧脱着およびパージ作用が得られる。
Even when the throttles 19a and 19b are made variable, stable vacuum desorption and purging actions can be obtained.

なお上記実施例においては、各三方弁16゜21を同時
に逆方向に切換えるようにしたが、これに限定されるも
のではなく、第4図に示す示すように、切換えのタイミ
ングをわずかにずらすようにしてもよい。これによって
、各ゼオライト充填塔A、Bにおける空気加圧速度が急
激にならず、流速を低く制御できる。供給される空気の
流速が低下すれば、各ゼオライト充填塔A、B内におい
て供給空気とゼオライト粒子との接触時間が長くなり、
さらに高濃度の酸素が得られる。すなわち第5図(A)
に示すように、上記三方弁16゜21を同時に逆方向に
切換えることにより得られる酸素濃度の変動が比較的大
であったが、この切換えタイミングをわずかにずらすこ
とにより、同図(B)に示すように酸素濃度の変動を極
力抑制できる。
In the above embodiment, each of the three-way valves 16 and 21 were switched in the opposite direction at the same time, but the invention is not limited to this, and as shown in FIG. 4, the timing of switching may be slightly shifted. You may also do so. As a result, the air pressurization rate in each zeolite packed tower A, B does not become rapid, and the flow rate can be controlled to be low. If the flow rate of the supplied air decreases, the contact time between the supplied air and the zeolite particles in each zeolite packed tower A and B increases,
Furthermore, a higher concentration of oxygen can be obtained. That is, Fig. 5(A)
As shown in Figure (B), the variation in oxygen concentration obtained by simultaneously switching the three-way valves 16° and 21 in the opposite direction was relatively large, but by slightly shifting the switching timing, As shown, fluctuations in oxygen concentration can be suppressed as much as possible.

また第2図に示す上記実施例の構成では、ゼオライト粒
子から脱着した窒素N2成分を含む空気が排気回路22
を介して外部に排出される際に、その一部は酸素富化回
路20a、20bに分流してしまう。ただしこの回路2
0a、20bには第2の絞り機++5719a、19b
が設けられているところから、その流量が絞られ、はと
んど無視できる量であることは、先に説明した通りであ
る。そしてさらに、この量を絞って信頼性を向上するに
は、第6図に示す回路構成を採用すればよい。各酸素富
化回路20a、20bの第2の絞り機構19a、19b
から先を合流し、この合流した先に第3の絞り機構25
を設ける。他の配管は第2図のものと同様であるので、
同番号を付して説明を省略する。たとえば、ゼオライト
充填塔Aにて得られた高濃度酸素の空気は第3の絞り機
$1が25を介して被空調室に供給される。また一部の
高濃度酸素の空気は他方の酸素富化回路2Ob側に導か
れ、第2の絞り機構19bに到達する。しかるに、ゼオ
ライト充填塔B側では減圧脱着およびパージ作用をなし
、窒素濃度が高い空気が排気回路22に吐出されるとと
もに酸素富化回路20bに導かれる。そして第2の絞り
機構19bを導出したところで、上記酸素富化回路20
aから分流した高濃度酸素空気と衝突する。各節2の絞
り機構19a、19bの絞り量を同一としておけば互い
の圧力が等しいこととなり、結局、いずれの空気もそれ
以上進まない。すなわち、窒素N2成分を含んだ空気は
全て排気回路22から排出されることとなり、被空調室
Rには全く導かれない。
Furthermore, in the configuration of the above embodiment shown in FIG.
When the oxygen is discharged to the outside through the oxygen enrichment circuits 20a and 20b, a part of it is diverted to the oxygen enrichment circuits 20a and 20b. However, this circuit 2
0a, 20b has a second squeezer ++5719a, 19b
As explained above, the flow rate is restricted due to the presence of the auxiliary tube, and the flow rate is almost negligible. Furthermore, in order to reduce this amount and improve reliability, the circuit configuration shown in FIG. 6 may be adopted. Second throttling mechanism 19a, 19b of each oxygen enrichment circuit 20a, 20b
The third aperture mechanism 25 is connected to the merging point.
will be established. Since the other piping is the same as that in Figure 2,
The same number will be given and the explanation will be omitted. For example, the high-concentration oxygen air obtained in the zeolite-packed tower A is supplied to the air-conditioned room through the third throttle device $1 25. Further, a part of the air with high concentration of oxygen is guided to the other oxygen enrichment circuit 2Ob side and reaches the second throttle mechanism 19b. However, on the zeolite packed tower B side, depressurization desorption and purging are performed, and air with a high nitrogen concentration is discharged to the exhaust circuit 22 and guided to the oxygen enrichment circuit 20b. Then, when the second throttle mechanism 19b is led out, the oxygen enrichment circuit 20
It collides with high-concentration oxygen air separated from a. If the throttling amounts of the throttling mechanisms 19a and 19b of each node 2 are made the same, the mutual pressures will be equal, and as a result, neither air will advance any further. That is, all the air containing the nitrogen N2 component is exhausted from the exhaust circuit 22, and is not introduced into the air-conditioned room R at all.

また、空気圧縮機2から吐出される高圧空気の切換えを
なすために三方弁16を備え、かつ排気の切換えをなす
ために三方弁21を備えたが、これに限定されるもので
はなく、第7図に示すようにしてもよい。すなわち、各
ゼオライト充填塔A。
Further, although the three-way valve 16 is provided to switch the high-pressure air discharged from the air compressor 2, and the three-way valve 21 is provided to switch the exhaust air, the present invention is not limited to this. It may be configured as shown in FIG. That is, each zeolite packed column A.

Bの空気導入側に二方弁25a、26bを備えた空気供
給回路27a、27bをバイパス回路18a、18bと
並列に設ける。また空気導出側には酸素富化回路20a
、20bから分岐し、かつそれぞれ二方弁28a、28
bを有する排気回路29a、29bを設ける。互いの二
方弁26a。
Air supply circuits 27a and 27b equipped with two-way valves 25a and 26b are provided on the air introduction side of B in parallel with bypass circuits 18a and 18b. In addition, an oxygen enrichment circuit 20a is provided on the air outlet side.
, 20b, and two-way valves 28a, 28, respectively.
Exhaust circuits 29a and 29b having exhaust circuits 29a and 29b are provided. mutual two-way valves 26a.

26bと二方弁28a、28bを逆に開閉すれば、上記
実施例と同様の作用効果を得られる。
By opening and closing the two-way valves 26b and the two-way valves 28a and 28b in the opposite manner, the same effects as in the above embodiment can be obtained.

また上記各実施例においては、2本のゼオライト充填塔
A、Bを用いて酸素富化をなすようにしたが、ゼオライ
ト充填塔の本数は限定されない。
Further, in each of the above Examples, oxygen enrichment was achieved using two zeolite packed towers A and B, but the number of zeolite packed towers is not limited.

さらにまた第8図に示すように、酸素富化装置Saを小
型化し、高濃度酸素を送る送気管30をたとえばビニー
ルチューブなど可撓性のあるものから形成し、この端部
をヘッドフオンHに接続する。上記へッドフオンHは使
用者の耳当て部分にスピーカが内蔵され、リードプラグ
31を介して図示しないアンプに接続される、通常用い
られる音響用のものである。上記送気管30は、一方の
耳当て部分の外面側に設けられるガイド端子32に接続
され、かつこのガイド端子32から使用者の口元まで延
出する剛性のある中空パイプである導管33が接続され
る。上記導管33の端部には、使用者の口元と鼻に向か
って高濃度酸素の空気を吹出す吹出口体34が設けられ
る。したがって、使用者はへッドフオンHで音楽等を楽
しみながら、高濃度酸素空気を体内に取入れることがで
きる。
Furthermore, as shown in FIG. 8, the oxygen enrichment device Sa is miniaturized, and the air pipe 30 for sending high-concentration oxygen is formed from a flexible material such as a vinyl tube, and the end thereof is connected to the headphones H. do. The headphone H has a built-in speaker in the earpiece of the user, and is connected to an amplifier (not shown) via a lead plug 31, and is a commonly used audio device. The air pipe 30 is connected to a guide terminal 32 provided on the outer surface of one of the earmuffs, and a conduit 33 which is a rigid hollow pipe extending from the guide terminal 32 to the user's mouth. Ru. An outlet body 34 is provided at the end of the conduit 33 to blow out air containing high concentration oxygen toward the user's mouth and nose. Therefore, the user can take in high-concentration oxygen air into the body while enjoying music etc. with the headphones H.

たとえば医療用や健康維持用として、酸素ボンベかう延
出されるマウスマスクや鼻カニュラを用いるものと比較
して、吹出し部分が直接使用者に接触しないですみ、衛
生面での保守が不要で手間がかからない。また吹出し部
分を保持するもの(手あるいはバンド)が不要で、使い
勝手がよい。
For example, for medical and health maintenance purposes, compared to using a mouth mask or nasal cannula that extends through an oxygen cylinder, the blowing part does not come into direct contact with the user, and sanitary maintenance is unnecessary and time-consuming. It doesn't cost. Furthermore, there is no need for anything to hold the blowing part (hands or band), making it easy to use.

上記へッドフオンHを携帯用ステレオに接続し、かつ酸
素富化装置をさらに小型化して携帯できるようにすれば
、使い勝手がより向上するとともに、いわゆるファッシ
ョン感覚に勝れることになり、携帯用ステレオを愛好す
る使用者に好まれる期待がある。
If the Headphone H described above is connected to a portable stereo and the oxygen enrichment device is further miniaturized so that it can be carried, it will be more convenient to use, and it will be more fashionable. There are expectations that it will be liked by enthusiast users.

あるいはまた、ヘッドフオンHの耳当て部分にあるスピ
ーカを除去し、変って小型の酸素富化装置を収容するこ
ともできる。
Alternatively, the speakers in the earmuffs of Headphones H can be removed to accommodate a smaller oxygen enrichment device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ゼオライト粒子に
対する窒素N2成分の減圧脱芒およびパージ作用をなす
のに原料ガスである供給空気をそのまま使用するから、
高濃度酸素の収率の向上を図れ、経済効率の改溌化を得
る。しかも、従来の回路(14成を大幅に変更すること
なく、比較的簡単な回路変更ですみ、コストへの悪影響
を抑制するなどの効果を奏する。
As explained above, according to the present invention, since the supplied air, which is the raw material gas, is used as it is to carry out the decompression and purging action of the nitrogen N2 component on the zeolite particles,
Improve the yield of highly concentrated oxygen and improve economic efficiency. Moreover, a relatively simple circuit change is required without significantly changing the conventional circuit (14 configurations), and there are effects such as suppressing the negative impact on costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の一実施例を示し、第1図
は酸素富化装置を空気調和機に組込みその取付状態を示
す概略構成図、第2図は酸素富化装置の回路構成図、第
3図は切換弁の切換タイミング特性図、第4図ないし第
8図は本発明の池の実施例を示し、第4図は切換弁の切
換タイミング特性図、第5図(A)、(B)は酸素濃度
の変化図、第6図および第7図は互いに異なる酸素富化
装置の回路構成図、第8図は酸素富化装置をヘッドフォ
ンに接続した状態の説明図、第9図および第10図は互
いに本発明の従来例を示す互いに異なる酸素富化装置の
回路構成図である。 2・・・空気圧縮機、A、B・・・ゼオライト充填塔、
16・・・切換弁(三方弁)、17a、17b・・・空
気供給回路、15a、15b・・・第1の絞り機構、1
8a、18b・・・バイパス回路、21・・・切換弁(
三方弁)、22・・・排気回路、19a、19b・・・
第2の絞り機構、20a、20b・・・酸素富化回路。 出願人代理人 弁理士 鈴江武彦 シ「 第3図 時5(A) 第5図
Figures 1 to 3 show one embodiment of the present invention, Figure 1 is a schematic configuration diagram showing the installation state of an oxygen enrichment device incorporated into an air conditioner, and Figure 2 is a circuit diagram of the oxygen enrichment device. The configuration diagram, FIG. 3 is a switching timing characteristic diagram of the switching valve, FIGS. 4 to 8 show embodiments of the pond of the present invention, FIG. 4 is a switching timing characteristic diagram of the switching valve, and FIG. ), (B) are diagrams of changes in oxygen concentration, Figures 6 and 7 are circuit configuration diagrams of different oxygen enrichment devices, Figure 8 is an explanatory diagram of the oxygen enrichment device connected to headphones, 9 and 10 are circuit configuration diagrams of different oxygen enrichment devices showing conventional examples of the present invention. 2... Air compressor, A, B... Zeolite packed tower,
16...Switching valve (three-way valve), 17a, 17b...Air supply circuit, 15a, 15b...First throttle mechanism, 1
8a, 18b...Bypass circuit, 21...Switching valve (
three-way valve), 22...exhaust circuit, 19a, 19b...
Second throttle mechanism, 20a, 20b...oxygen enrichment circuit. Applicant's agent Patent attorney Takehiko Suzue "Figure 3 Time 5 (A) Figure 5

Claims (1)

【特許請求の範囲】[Claims] 空気圧縮機に複数のゼオライト充填塔を接続し、これら
ゼオライト充填塔に上記空気圧縮機から高圧空気を送っ
て交互に吸着作用と脱着作用をさせることにより連続的
に高濃度酸素(酸素富化)の空気を得るものにおいて、
上記空気圧縮機に対して各ゼオライト充填塔を並列に接
続し、各ゼオライト充填塔の空気導入側に切換弁を有す
る空気供給回路と第1の絞り機構を有するバイパス回路
とを並列に接続し、各ゼオライト充填塔の空気導出側に
切換弁を有する排気回路および第2の絞り機構を有する
酸素富化回路とを並列に接続したことを特徴とする酸素
富化装置。
Multiple zeolite-packed towers are connected to an air compressor, and high-pressure air is sent from the air compressor to these zeolite-packed towers to alternately adsorb and desorb, thereby continuously producing high-concentration oxygen (oxygen enrichment). In those who obtain the air of
Each zeolite packed tower is connected in parallel to the air compressor, and an air supply circuit having a switching valve and a bypass circuit having a first throttling mechanism are connected in parallel to the air introduction side of each zeolite packed tower, An oxygen enrichment device characterized in that an exhaust circuit having a switching valve and an oxygen enrichment circuit having a second throttling mechanism are connected in parallel to the air outlet side of each zeolite packed tower.
JP63018258A 1987-10-31 1988-01-28 Oxygen-enriching equipment Pending JPH01194924A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63018258A JPH01194924A (en) 1988-01-28 1988-01-28 Oxygen-enriching equipment
US07/264,875 US4896514A (en) 1987-10-31 1988-10-31 Air-conditioning apparatus
KR1019890000966A KR920001511B1 (en) 1988-01-28 1989-01-27 Oxygen-enriching equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63018258A JPH01194924A (en) 1988-01-28 1988-01-28 Oxygen-enriching equipment

Publications (1)

Publication Number Publication Date
JPH01194924A true JPH01194924A (en) 1989-08-04

Family

ID=11966655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63018258A Pending JPH01194924A (en) 1987-10-31 1988-01-28 Oxygen-enriching equipment

Country Status (2)

Country Link
JP (1) JPH01194924A (en)
KR (1) KR920001511B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010103464A (en) * 2000-05-10 2001-11-23 구자홍 Air-conditioner
KR100444922B1 (en) * 2001-09-19 2004-08-18 주식회사 대우일렉트로닉스 Air conditioner with device for generating perfume

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010103464A (en) * 2000-05-10 2001-11-23 구자홍 Air-conditioner
KR100444922B1 (en) * 2001-09-19 2004-08-18 주식회사 대우일렉트로닉스 Air conditioner with device for generating perfume

Also Published As

Publication number Publication date
KR890012131A (en) 1989-08-24
KR920001511B1 (en) 1992-02-15

Similar Documents

Publication Publication Date Title
US4880443A (en) Molecular sieve oxygen concentrator with secondary oxygen purifier
JP4301452B2 (en) Gas concentration method and apparatus
US7637989B2 (en) Rapid cycle pressure swing adsorption oxygen concentration method and mechanical valve for the same
SE0103386D0 (en) Process and device in connection with the production of oxygen or oxygen enriched air
US11874026B2 (en) Air conditioner and control method therefor
CA2197738A1 (en) Vsa adsorption process with energy recovery
KR101647017B1 (en) Oxygen concentrating method and apparatus having condensate water removing function
JP2004536687A (en) Air conditioner
JPH01194924A (en) Oxygen-enriching equipment
KR20170059988A (en) Oxygen concentration device
CN107921357B (en) Oxygen separator with improved efficiency
JP3723478B2 (en) Concentrated oxygen supply device
JP4739662B2 (en) Oxygen concentrator
JPH0256126B2 (en)
JP2005532165A (en) Oxygen-enriched air supply device
CN113277486A (en) Combined nitrogen making machine and nitrogen making process thereof
JPH11267439A (en) Gas separation and gas separator for performing same
KR100565210B1 (en) Air separator
KR100521156B1 (en) vacuum swing adsorption method
JPH06341667A (en) Air conditioner with oxygen-enriching function
JP7262250B2 (en) High oxygen gas supply device and method
KR20000053669A (en) Household Oxygen Generated Air Cleaner
KR100500403B1 (en) gas concentration method
KR100698170B1 (en) Oxygen generator
KR100614848B1 (en) Oxygen Concentrator