JPH0119440B2 - - Google Patents

Info

Publication number
JPH0119440B2
JPH0119440B2 JP19414681A JP19414681A JPH0119440B2 JP H0119440 B2 JPH0119440 B2 JP H0119440B2 JP 19414681 A JP19414681 A JP 19414681A JP 19414681 A JP19414681 A JP 19414681A JP H0119440 B2 JPH0119440 B2 JP H0119440B2
Authority
JP
Japan
Prior art keywords
particle size
fine powder
particles
ash
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19414681A
Other languages
Japanese (ja)
Other versions
JPS5896695A (en
Inventor
Hiroichi Sakano
Akira Oosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19414681A priority Critical patent/JPS5896695A/en
Publication of JPS5896695A publication Critical patent/JPS5896695A/en
Publication of JPH0119440B2 publication Critical patent/JPH0119440B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、石炭を炭素質の微粉と灰分(鉱物
質)の微粉とに分離できるようにした、石炭の乾
式脱灰方法に関する。 最近、石油の代替燃料として石炭の利用開発が
盛んであるが、石炭の場合、石油に比べて灰分が
多く燃料のみならず化学製品原料として用いられ
る際にも支障をきたすことが多いので、石炭から
事前に灰分となる鉱物質の除去(以下、単に脱灰
という。)を行なう必要がある。 そこで、従来、浮遊選鉱法、重液沈澱法、OA
法(Oil Agglomeration法)等により、石炭を細
粒化して鉱物質を除去する技術が開発されてき
た。 しかしながら、これらの従来の方法では、いず
れも次のような不具合がある。 (1) 石炭粉末を水中において脱灰するため、含水
率が高くなり、その脱水に費用がかかる。 (2) 脱灰率に限度があり、又これを自由に調整す
ることが困難である。 (3) 媒体として用いる水は液体であるため、気体
に較べて流体抵抗が大きく、石炭粒子がこの中
を移動するのに時間がかかつて、能率的でな
い。 (4) 脱灰性能を良くするために添加剤等の化学薬
品や油を添加する必要があり、これの調整等の
操作条件が多く、操作が複雑で調整に高度の技
術を要する。 本発明は、上述の諸問題の解決をはかろうとす
るもので、2種類の乾式分離手段を組み合わせる
ことにより、原料炭を効率よく炭素質の微粉と灰
分の微粉とに分離できるようにした、石炭の乾式
脱灰方法を提供することを目的とする。 このため本発明の方法は、原料炭を粉砕して数
ミクロンないし数十ミクロンの大きさの炭素質の
微粉と灰分の微粉との混合物にしてから、この混
合物を篩等による幾何学的分級手段によりそれぞ
れ一定の粒子範囲にある複数の粒子径段階に分級
しておき、各粒子径段階ごとに、重力、遠心力あ
るいは慣性力等を利用した終末速度による後続選
別手段により上記の炭素質の微粉と灰分の微粉と
に分離するに際して、各粒子径段階における最小
粒子径をd1、最大粒子径をd2とする場合に、粒子
径d1の灰分粒子の上記後続選別手段力場内におけ
る終末速度が粒子径d2の炭素質粒子のそれよりも
速くなるように、それぞれd1、d2を定めることを
特徴としている。 原料炭を微粉化した場合、その微粉は炭素質の
微粉と鉱物質の微粉すなわち灰分とに分かれる
が、両者は混合された状態のままであるため、灰
分を含まぬ良質の微粉炭を得る場合には、この両
者を分離しなければならない。 一般に微粒子の分離方法には粒子の寸法そのも
のに着目した篩等による幾何学的な分級手段A
と、重力、遠心力その他の慣性力を利用した選別
手段Bとがあり、特に後者の分離では粒子径その
もののみでなく、これに比重が加わつた、いわゆ
る粒子の終末速度によつて選別が行なわれる。 流体中で粒子を落下させた時、最初、粒子の落
下速度は速まるが、速くなるにつれて流体抵抗が
増大し、この抵抗力が重力と等しくなつた時に、
粒子はそれ以上加速されることなく、一定速度で
落下する。この終末的に到達する速度を終末速度
という。したがつて、粒子径が同じ2つの粒子を
比較すれば、流体抵抗は同じになるので、比重が
大で、従つて重力の大きい粒子のほうが、当然、
比重が小で、重力の小さい粒子より終末速度が大
となる。 本発明の方法の特徴とするところは、上述の2
種の分離手段の分離特性の相異を利用し、これら
を組み合わせることによつて、上述の微粉炭から
鉱物質の微粉を取り除き、炭素質の良質な微粉炭
を乾燥状態のまま採取する点にある。 原料炭を微粉化したそのままの状態では、炭素
質の微粉も鉱物質の微粉も、その粒子径は後者の
方がやや細かい領域にあるとはいえ、両者の粒子
径の領域は大筋として重複するため、分級方法A
のみによつては基本的には分離が困難である。 また両微粉の比重差(炭素質微粉は約1、鉱物
質微粉は約2)に着目して、選別手段Bによつ
て、分離を行なおうとしても、これでは粉体の終
末速度による分離が行なわれるため、粒径の大き
い炭素粉と粒径の小さい鉱物粉とが同一の挙動を
示し、炭素粉、鉱物粉の分離は基本的に困難であ
る。 しかしながら、選別手段Bについては粒子径が
同じであれば、終末速度は微粉の比重のみによつ
て定まるので、まず分級方法Aによつて原料微粉
をいくつかの粒子径段階に分級しておき、各粒子
径段階ごとに選別手段Bを適用すれば、原料微粉
を炭素質微粉と鉱物質微粉とに分離することが可
能となるのである。 第1図に原料微粉の粒子径の度数分布を示す。
図中に斜線を施した部分は分級手段Aによつて分
割された粒子径の1つの粒子径段階を示し、この
範囲での原料微粉の幾何学的な粒子径はd1とd2
の間にある。この範囲の原料微粉が比重の小さい
炭素質微粉と比重の大きい鉱物質の微粉とに選別
手段Bによつて分離され得るためには、粒子径d2
における炭素質微粉の終末速度が粒子径d1におけ
る炭素質微粉の終末速度より遅ければよいことに
なり、この境界の終末速度に選別手段Bによる分
離終末速度を設定しておけば、両者は分離し得る
ことになる。 すなわち、第3図に示すように、同一粒子径に
おいては、灰分粒子の終末速度は炭素質粒子のそ
れよりも速く、それぞれの終末速度は粒子径の増
大と共に増加する。今、終末速度v1に対応する灰
分粒子の粒子径をd1、炭素質粒子の粒子径をd2
すれば、d1とd2の間にはさまれた粒子径領域にお
いては、灰分粒子の終末速度は総てv1より大、炭
素質粒子のそれは常にv1より小となる。従つて、
終末速度v1による選別を行なえば、灰分粒子と炭
素質粒子は完全に分割される。 第2図に本発明の分離プロセスを示す。第2図
において原料端は、粉砕機1で数μ〜数十μの大
きさの微粉状に粉砕され、篩等の幾何学的分級手
段としての分級機2と、重力、遠心力あるいは慣
性力等を利用した後続選別手段としての分離機3
とで分離される。 粉砕機1としてはローラ・ミル、バウル・ミ
ル、ボール・ミル、チユーブ・ミルその他の微粉
砕機を用いることができ、これらのミルについて
は市販品があつて、すでに技術が確立されている
が、後続の分離プロセスから考えて、粒子径の範
囲の狭いものほど経済的である。 粉砕機1によつて粉砕された原料微粉は実線で
示したラインで分級機2に供給され、幾何学的に
粒子径の各段階に分級される。分級機2について
は、すでに技術の確立されている篩を使用すれば
よい。 分級機2によつて粒子径段階別に分級された原
料微粉は、更に実線で示したラインを通つて分離
機3に供給される。 分離機3では、各粒子径段階ごとに比重差によ
つて炭素質の微粉と灰分(鉱物質)の微粉とに分
離され、それぞれ2重線および破線で示したよう
に集められる。 分離機3としては、重力沈降式分離機、遠心力
式分離機等が考えられるが、鋭い分離の行なわれ
るものほど有効であるので前者については上昇流
式、後者については回転内向流を利用した分離機
が効果的である。いずれも分離用の流体としては
空気その他の気体を用いることにより、能率的に
乾燥した状態で炭素質の微粉を採取することがで
きる。 次に、本発明の石炭の乾式脱灰方法の一実施例
を示す。現在市販されている篩の目開きに相当す
る灰分粒子および炭素質粒子の終末速度は、第1
表の通りとなる。
The present invention relates to a dry deashing method for coal, which makes it possible to separate coal into carbonaceous fine powder and ash (mineral substance) fine powder. Recently, there has been active development of the use of coal as an alternative fuel to petroleum, but coal has a higher ash content than petroleum, which often causes problems when used not only as a fuel but also as a raw material for chemical products. It is necessary to remove mineral substances that turn into ash (hereinafter simply referred to as deashing) in advance. Therefore, conventionally, flotation method, heavy liquid precipitation method, OA
Techniques have been developed to refine coal into fine grains and remove mineral substances by methods such as the oil agglomeration method. However, all of these conventional methods have the following problems. (1) Since coal powder is deashed in water, the water content is high and dewatering is expensive. (2) There is a limit to the demineralization rate, and it is difficult to freely adjust it. (3) Since water used as a medium is a liquid, it has greater fluid resistance than gas, and it takes time for coal particles to move through it, making it inefficient. (4) In order to improve the deashing performance, it is necessary to add chemicals such as additives and oil, and there are many operating conditions for adjusting these, making the operation complicated and requiring advanced technology. The present invention aims to solve the above-mentioned problems, and by combining two types of dry separation means, coking coal can be efficiently separated into carbonaceous fine powder and ash fine powder. The purpose is to provide a method for dry deashing of coal. Therefore, in the method of the present invention, raw coal is pulverized into a mixture of carbonaceous fine powder with a size of several microns to several tens of microns and ash fine powder, and then this mixture is subjected to geometric classification using a sieve or the like. The above-mentioned carbonaceous fine powder is classified into a plurality of particle size stages each within a certain particle range using When separating ash into fine powder and ash, if the minimum particle size at each particle size stage is d 1 and the maximum particle size is d 2 , the terminal velocity of ash particles with particle size d 1 in the force field of the subsequent sorting means is is characterized in that d 1 and d 2 are respectively determined so that the particle diameter is faster than that of carbonaceous particles having a particle diameter of d 2 . When coking coal is pulverized, the fine powder is separated into carbonaceous fine powder and mineral fine powder, that is, ash, but since the two remain in a mixed state, it is necessary to obtain high-quality pulverized coal that does not contain ash. The two must be separated. In general, methods for separating fine particles include geometric classification methods such as sieves that focus on the size of the particles themselves.
and sorting means B that utilize gravity, centrifugal force, and other inertial forces.In the latter separation in particular, sorting is performed not only by the particle diameter itself, but also by the so-called final velocity of the particles, which is the addition of specific gravity. It will be done. When particles fall in a fluid, their falling speed increases at first, but as the speed increases, fluid resistance increases, and when this resistance becomes equal to gravity,
The particles fall at a constant speed without being accelerated any further. This terminal velocity is called the terminal velocity. Therefore, if we compare two particles with the same particle size, the fluid resistance will be the same, so the particle with higher specific gravity and therefore greater gravity will naturally
They have a small specific gravity and a higher terminal velocity than particles with smaller gravity. The method of the present invention is characterized by the above-mentioned two
By utilizing the differences in the separation characteristics of the seed separation means and combining them, fine mineral powder can be removed from the above-mentioned pulverized coal, and high-quality pulverized coal with carbonaceous quality can be collected in a dry state. be. When coking coal is pulverized as it is, the particle size ranges of both carbonaceous fine powder and mineral fine powder generally overlap, although the latter is in a slightly smaller range. Therefore, classification method A
Basically, it is difficult to separate them by using only a single method. Furthermore, even if an attempt is made to separate the two fine powders by focusing on the difference in specific gravity (about 1 for carbonaceous fine powder and about 2 for mineral fine powder) using sorting means B, this method will not allow separation due to the final velocity of the powder. As a result, carbon powder with a large particle size and mineral powder with a small particle size exhibit the same behavior, and it is basically difficult to separate the carbon powder and mineral powder. However, for sorting means B, if the particle diameter is the same, the terminal velocity is determined only by the specific gravity of the fine powder, so first, the raw material fine powder is classified into several particle size stages by classification method A, By applying the sorting means B to each particle size stage, it becomes possible to separate the raw material fine powder into carbonaceous fine powder and mineral fine powder. Figure 1 shows the frequency distribution of the particle diameter of the raw material fine powder.
The shaded area in the figure shows one particle size step of the particle size divided by the classification means A, and the geometric particle size of the raw material fine powder in this range is the difference between d 1 and d 2 . between. In order for the raw material fine powder in this range to be separated into carbonaceous fine powder with a low specific gravity and mineral fine powder with a high specific gravity by the sorting means B, the particle size d 2 is required.
It is sufficient that the terminal velocity of the carbonaceous fine powder at the particle size d1 is lower than the terminal velocity of the carbonaceous fine powder at the particle size d1 , and if the final velocity of separation by the sorting means B is set to the terminal velocity of this boundary, the two can be separated. It will be possible. That is, as shown in FIG. 3, for the same particle size, the terminal velocity of ash particles is faster than that of carbonaceous particles, and each terminal velocity increases as the particle diameter increases. Now, if the particle size of the ash particles corresponding to the terminal velocity v 1 is d 1 and the particle size of the carbonaceous particles is d 2 , then in the particle size region sandwiched between d 1 and d 2 , the ash content is The terminal velocity of all particles is greater than v 1 , and that of carbonaceous particles is always less than v 1 . Therefore,
When sorting is performed using the terminal velocity v 1 , ash particles and carbonaceous particles are completely separated. FIG. 2 shows the separation process of the present invention. In Fig. 2, the raw material end is crushed into a fine powder with a size of several microns to several tens of microns by a crusher 1, and a classifier 2 as a geometric classification means such as a sieve, and gravity, centrifugal force, or inertial force. Separator 3 as a subsequent sorting means using etc.
It is separated by As the crusher 1, a roller mill, bowl mill, ball mill, tube mill, or other fine crusher can be used, and these mills are commercially available and the technology has already been established. Considering the subsequent separation process, the narrower the particle size range, the more economical it is. The raw material fine powder pulverized by the pulverizer 1 is supplied to the classifier 2 along the line shown by the solid line, and is geometrically classified into various stages of particle size. As for the classifier 2, a sieve whose technology has already been established may be used. The raw material fine powder classified into particle size stages by the classifier 2 is further supplied to the separator 3 through a line shown by a solid line. In the separator 3, carbonaceous fine powder and ash (mineral substance) fine powder are separated at each particle size stage based on the difference in specific gravity, and collected as shown by double lines and broken lines, respectively. As the separator 3, a gravity sedimentation type separator, a centrifugal force type separator, etc. can be considered, but the sharper the separation, the more effective it is, so the former uses an upward flow type, and the latter uses a rotating internal counterflow type. Separators are effective. In either case, by using air or other gas as the separation fluid, carbonaceous fine powder can be efficiently collected in a dry state. Next, an embodiment of the coal dry deashing method of the present invention will be described. The terminal velocity of ash particles and carbonaceous particles corresponding to the mesh size of currently commercially available sieves is
As shown in the table.

【表】 この表から、170メツシユの篩を通過して、200
メツシユの篩は通過しない粒子は、74〜88μの径
を有することになる。この範囲の粒子では、終末
速度は、灰分では75.4cm/sec以上、炭素質では
33.6cm/sec以下となるので、50cm/secの流速で
下から吹きあげる気流中に両粒子の混合物を投入
すれば、炭素質粒子は上方へ吹きあげられ、灰分
粒子は下方へ落下するので、両者を分離できる。
これは、他の篩目の領域についてもいえること
で、それぞれについて、吹きあげ気流の流速を示
すと、第2表のようになる。
[Table] From this table, after passing through a sieve of 170 meshes, 200
Particles that do not pass through the mesh sieve will have a diameter of 74-88μ. For particles in this range, the terminal velocity is greater than 75.4 cm/sec for ash and
33.6cm/sec or less, so if a mixture of both particles is thrown into the airflow blowing up from below at a flow rate of 50cm/sec, the carbonaceous particles will be blown upwards and the ash particles will fall downwards. The two can be separated.
This also applies to other sieve mesh areas, and Table 2 shows the flow velocity of the blowing air current for each area.

【表】【table】

【表】 第4図は、幾何学的分級手段としての通常の多
段式の篩を用いた分級機2の構成と、その格段ご
との金網のメツシユ数および各粒子径段階の最小
粒子径d1、最大粒子径d2を示しており、88μ以上
の粒子と20μ以下の粒子は廃棄され、その間の粒
径のものは、分離機3に送られる。なお、図にお
いて、符号21は加振機を示す。 第5図は、終末速度による後続選別手段として
の分離機3の具体例を示すもので、上昇流式分離
機の例である。このように分離機3は、上述の幾
何学的分級機2で分けられた粒子径のグループご
とに1個必要であり、この図では、74〜88μの粒
子径範囲のグループに対応する例を示している。
すなわち、上述の分級機2の170メツシユの篩を
通過し、200メツシユの篩を通過しなかつた粒子
を炭素質と灰分とに分けるもので、上昇気流の流
速は50cm/secになつている。なお、図において、
符号31,32は回転弁を示す。 このようにして、本発明の方法によれば、次の
ような効果ないし利点を得ることができる。 (1) 脱灰媒体としての気体が用いられ、乾式であ
るので、脱水を必要とせず、また流体抵抗が少
なく、脱灰が迅速に行なわれる。 (2) 2種の分離手段の分離特性の相異を利用して
脱灰が行なわれるので、各分離手段について
は、すでに確立されている技術を利用できるの
で、運転操作が容易である。 (3) 2種の分離手段を効果的に組合わせて利用し
ているので、高度の分離精度を得ることができ
る。
[Table] Figure 4 shows the configuration of the classifier 2 that uses a normal multi-stage sieve as a geometric classification means, the mesh number of wire mesh for each stage, and the minimum particle diameter d 1 of each particle size stage. , indicates the maximum particle diameter d 2 , particles of 88μ or more and particles of 20μ or less are discarded, and particles with a particle size between them are sent to the separator 3. In addition, in the figure, the code|symbol 21 shows a vibration exciter. FIG. 5 shows a specific example of the separator 3 as a subsequent sorting means based on terminal velocity, and is an example of an upward flow type separator. In this way, one separator 3 is required for each particle size group divided by the above-mentioned geometric classifier 2, and in this figure, an example corresponding to a group of particle sizes ranging from 74 to 88μ is shown. It shows.
That is, the particles that passed through the 170-mesh sieve of the classifier 2 mentioned above but did not pass through the 200-mesh sieve are separated into carbonaceous matter and ash, and the flow rate of the upward air current is 50 cm/sec. In addition, in the figure,
Reference numerals 31 and 32 indicate rotary valves. In this way, according to the method of the present invention, the following effects and advantages can be obtained. (1) Since gas is used as the deashing medium and it is a dry process, there is no need for dehydration, there is little fluid resistance, and deashing is performed quickly. (2) Since deashing is carried out by taking advantage of the difference in separation characteristics between the two types of separation means, already established technology can be used for each separation means, so operation is easy. (3) Since two types of separation means are effectively combined and utilized, a high degree of separation accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原料粉炭の粒子径の度数分布を示すグ
ラフであり、第2図は本発明の石炭の乾式脱灰方
法におけるプロセスのブロツク図であり、第3図
はその終末速度による選別原理を示すグラフであ
り、第4図は本発明の一実施例としての石炭の乾
式脱灰方法に用いられる幾何学的分級手段の模式
図であり、第5図は同じく終末速度による後続選
別手段の模式図である。 1……粉砕機、2……篩等の幾何学的分級手段
による分級機、3……重力、遠心力あるいは慣性
力等を利用した選別手段による分離機、21……
加振機、31,32……回転弁。
Figure 1 is a graph showing the frequency distribution of particle diameters of raw pulverized coal, Figure 2 is a process block diagram of the dry coal deashing method of the present invention, and Figure 3 shows the principle of sorting based on terminal velocity. FIG. 4 is a schematic diagram of a geometrical classification means used in a coal dry deashing method according to an embodiment of the present invention, and FIG. 5 is a schematic diagram of a subsequent classification means based on terminal velocity. It is a diagram. 1... A crusher, 2... A classifier using a geometric classification means such as a sieve, 3... A separator using a sorting means using gravity, centrifugal force, inertial force, etc., 21...
Vibrator, 31, 32...Rotary valve.

Claims (1)

【特許請求の範囲】[Claims] 1 原料炭を粉砕して数ミクロンないし数十ミク
ロンの大きさの炭素質の微粉と灰分の微粉との混
合物にしてから、この混合物を篩等による幾何学
的分級手段によりそれぞれ一定の粒子範囲にある
複数の粒子径段階に分級しておき、各粒子径段階
ごとに、重力、遠心力あるいは慣性力等を利用し
た終末速度による後続選別手段により上記の炭素
質の微粉と灰分の微粉とに分離するに際して、各
粒子径段階における最小粒子径をd1、最大粒子径
をd2とする場合に、粒子径d1の灰分粒子の上記後
続選別手段力場内における終末速度が粒子径d2
炭素質粒子のそれよりも速くなるように、それぞ
れd1、d2を定めることを特徴とする、石炭の乾式
脱灰方法。
1. After pulverizing raw coal into a mixture of carbonaceous fine powder with a size of several microns to several tens of microns and fine ash powder, this mixture is divided into a certain particle range by geometric classification means such as a sieve. The particles are classified into a plurality of particle size stages, and each particle size stage is separated into the above-mentioned carbonaceous fine powder and ash fine powder by subsequent sorting means based on terminal velocity using gravity, centrifugal force, inertial force, etc. When the minimum particle size at each particle size stage is d 1 and the maximum particle size is d 2 , the terminal velocity of the ash particles with particle size d 1 in the force field of the subsequent sorting means is carbon with particle size d 2 A method for dry demineralization of coal, characterized in that d 1 and d 2 are determined to be faster than those for coarse particles.
JP19414681A 1981-12-02 1981-12-02 Process for dry deashing of coal Granted JPS5896695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19414681A JPS5896695A (en) 1981-12-02 1981-12-02 Process for dry deashing of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19414681A JPS5896695A (en) 1981-12-02 1981-12-02 Process for dry deashing of coal

Publications (2)

Publication Number Publication Date
JPS5896695A JPS5896695A (en) 1983-06-08
JPH0119440B2 true JPH0119440B2 (en) 1989-04-11

Family

ID=16319673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19414681A Granted JPS5896695A (en) 1981-12-02 1981-12-02 Process for dry deashing of coal

Country Status (1)

Country Link
JP (1) JPS5896695A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189964A (en) * 1988-12-01 1993-03-02 Rich Jr John W Process for burning high ash particulate fuel
US4961756A (en) * 1988-12-01 1990-10-09 Rich Jr John W Fluidized-bed combustion fuel
JP2564217Y2 (en) * 1991-03-08 1998-03-04 オークマ株式会社 Rotating machine with detector
JP2008266549A (en) * 2007-04-20 2008-11-06 Yoshio Abe Sulfur separation system
JP2009057532A (en) * 2007-08-30 2009-03-19 Yoshio Abe Centrifugal sulfur separator
JP2015030737A (en) * 2013-07-31 2015-02-16 三菱重工業株式会社 Method for manufacturing modified coal

Also Published As

Publication number Publication date
JPS5896695A (en) 1983-06-08

Similar Documents

Publication Publication Date Title
US5676710A (en) Coal preparation system
US5975446A (en) Pulverizing apparatus
JP2007054773A (en) Unburned carbon removal method in coal ash
AU659236B2 (en) Production method of ash-removed high-concentration coal-water slurry
KR20070112263A (en) Method of separating foreign particle
US2842319A (en) Method of producing ultra-clean coal
JPH0119440B2 (en)
US4765545A (en) Rice hull ash filter
US5575824A (en) Coal preparation device
US4257882A (en) Method of pre-concentrating heterogeneous mineral mixtures
EP0223573B1 (en) Method of preparing fine-particle high-loaded coal-water slurry
US2594929A (en) Method for refining trinidad lake asphalt
JP2000237626A (en) Milling and sieving apparatus
Abel Removing pyrite from coal by dry-separation methods
JPS6181490A (en) Solid separation by simultaneously breaking and aggregating
JP3211420B2 (en) Classifier
JPS6157688A (en) Production of coal-water slurry
JPH0975774A (en) Magnetic separator
JPS5922994A (en) Method and apparatus for wet granulation and deashing of coal
USH981H (en) Process for selective grinding of coal
JPS59157185A (en) Preparation of coal-water slurry
JPS61166890A (en) Production of deashed highly concentrated coal water slurry
JPS58215493A (en) Preparation of low-ash coal
GB2172519A (en) Filter aid
Tavares et al. Spiral concentration for cleaning fines from major Brazilian coalfields