JPH01193814A - Method for driving liquid crystal optical shutter array - Google Patents

Method for driving liquid crystal optical shutter array

Info

Publication number
JPH01193814A
JPH01193814A JP1997688A JP1997688A JPH01193814A JP H01193814 A JPH01193814 A JP H01193814A JP 1997688 A JP1997688 A JP 1997688A JP 1997688 A JP1997688 A JP 1997688A JP H01193814 A JPH01193814 A JP H01193814A
Authority
JP
Japan
Prior art keywords
time
liquid crystal
shutter array
voltage
optical shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1997688A
Other languages
Japanese (ja)
Inventor
Hideo Ichinose
秀男 一ノ瀬
Hiroshi Kitayama
北山 啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Engineering Ltd
Original Assignee
NEC Corp
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Engineering Ltd filed Critical NEC Corp
Priority to JP1997688A priority Critical patent/JPH01193814A/en
Publication of JPH01193814A publication Critical patent/JPH01193814A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent degradation in a memory characteristic, etc., even if an optical shutter array is operated at a high speed and is driven for a long period of time by decreasing the voltage to be impressed to a liquid crystal in the time left when the time required for writing and erasing is subtracted from address time to 0 volt. CONSTITUTION:The erasing and writing time at the time of time sharing driving is set at the required min. pulse width in the case of writing an image by having the optical shutter array, imaging element and photosensitive body and exposing the photosensitive body by the light emitted from a light source and controlled by the optical shutter array. The zero volt is set within the time after the erasing and writing time is subtracted from the address time necessary for exposing of one dot. The deterioration in the memory characteristic is decreased by inserting the zero volt in the driving time when the sum of the erasing and writing time of the liquid crystal is small with respect to the address time at the time of the time sharing driving and, therefore, the driving of the high- speed light crystal optical shutter array is enabled with a high contrast.

Description

【発明の詳細な説明】 本発明は、電子写真方式のプリンタヘッド等に用いられ
る液晶光シャッタアレイの駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving a liquid crystal optical shutter array used in an electrophotographic printer head or the like.

(従来の技術) 液晶素子は従来、直視型の表示素子として精力的に研究
開発が行われ、現在では広く用いられている。一方で液
晶を用いた光変調素子も利用されている0例えば、感光
体への照射光を光変調素子を用いて強度変調し、この結
果得られる感光体上の潜像をトナーを用いて普通紙上に
現像する方式のプリンターが知られている。プリンター
の光源や光変調素子および結像光学系等を含めた部分は
プリンターヘッドと呼ばれている。プリンターヘッドに
用いられる液晶光変調素子は液晶光シャツターとして機
能する。この池にも液晶光変調素子は光学論理素子等に
広く応用されるが、いずれも入射光強度を空間的に変調
する機能を用いるものであり、以下では液晶光変調素子
をプリンターへ・・Iドに用いる場合を例に挙げて説明
する。
(Prior Art) Liquid crystal elements have been actively researched and developed as direct-view display elements, and are now widely used. On the other hand, light modulation elements using liquid crystals are also used. For example, a light modulation element is used to modulate the intensity of the light irradiated onto a photoreceptor, and the resulting latent image on the photoreceptor is normally converted into a latent image using toner. Printers that develop images on paper are known. The part of the printer that includes the light source, light modulation element, imaging optical system, etc. is called the printer head. The liquid crystal light modulator used in the printer head functions as a liquid crystal light shutter. In this case, liquid crystal light modulation elements are widely applied to optical logic elements, etc., but all of them use the function of spatially modulating the intensity of incident light. This will be explained by taking as an example the case where it is used in a code.

近年、プリンターに対しては高速・高解像度・低価格・
低騒音・コンパクトさ等の要求が高まりつつあり、それ
に答えてレーザビームプリンター等のノンインパクトプ
リンターが広く使われつつある。このような状況におい
て液晶シャッターアレイを用いた液晶プリンターは特に
その低l1fli格性の故に大きな需要が見込まれ、活
発に開発が進められており、二周波駆動液晶を用いた液
晶プリンターが開発されている。
In recent years, printers have become faster, higher resolution, lower priced, and
Demand for low noise, compactness, etc. is increasing, and in response to these demands, non-impact printers such as laser beam printers are becoming widely used. Under these circumstances, LCD printers using LCD shutter arrays are expected to be in high demand, especially due to their low l1fli characteristics, and are being actively developed, and LCD printers using dual-frequency drive LCDs have been developed. There is.

また近年、応答速度が速い液晶として強誘電性液晶が開
発され、高速化が図られている。
Furthermore, in recent years, ferroelectric liquid crystals have been developed as liquid crystals with high response speeds, and efforts are being made to increase the speed.

強誘電性液晶には、電圧除去後も電圧印加時の配向状態
が保持される双安定性と呼ばれる特性があり、この特性
を利用した時分割駆動方法が提案されている。例えば、
昭和60年電気・情報関連学会連合大会予稿集17−4
.359<1985>には次の方法が提案されている。
Ferroelectric liquid crystals have a property called bistability, in which the orientation state at the time of voltage application is maintained even after the voltage is removed, and a time-division driving method that utilizes this property has been proposed. for example,
Proceedings of the 1985 Electrical and Information Society Federation Conference 17-4
.. 359 <1985> proposes the following method.

液晶印加電圧と応答時間との間にはある電圧を境にして
、それ以下では応答時間は電圧の逆数の2乗に比例して
いるのに対し、それ以上では電圧の逆数に比例するとい
う関係があることに注目し、駆動電圧として適切な電圧
を選びその場合の応答に必要な最小時間をパルス幅とし
て、パルス状の電圧を液晶に印加して、駆動させる。さ
らに直流的な電圧が液晶に印加されないようにするため
に1回の走査時間を書き込み走査と、消去走査に分け、
選択時には書き込み走査と、消去走査では逆極性の駆動
電圧が印加されるようにする。一方、非選択時には、電
圧の低い交流電界を印加する方法が提案されている。し
かし、この方法では1回の走査時間は強誘電性液晶の応
答時間の4倍必要になる。そこでさらに高速動作可能な
駆動方法として、日本学術振興会情報14学用有機材料
第142委員会A部会(液晶部会)第31回研究会資料
13頁には次の方法が提案されている。これは液晶への
印加電圧の違いによる応答時間の違いを利用したもので
、第14図に示すように走査信号と選択信号を図のよう
に選び液晶に印加される電圧を回で囲んだ波形になるよ
うにしている。この駆動方法では走査時において前半で
前のメモリー状態を消去し、選択時には電圧の高いパル
スを印加し、非選択時にはスイッチングが起こらないよ
うな電圧の低いパルスを印加する。つまり選択時におい
て非走査時には印加電圧が低くなり走査時には十分に応
答していたパルス幅の時間内で液晶が十分に応答せず、
スイッチングは起こらない。一方非選択時においては前
半はOVが印加されるが、後半には選択時よりもパルス
幅が短かく電圧の低いパルスを印加して液晶を駆動する
方法である。この場合は、1本の走査電極の走査に強誘
電性液晶の応答時間の2倍の時間で良いが、液晶には直
流成分の電圧が印加される。
There is a relationship between the voltage applied to the liquid crystal and the response time, below which the response time is proportional to the square of the reciprocal of the voltage, whereas above it the response time is proportional to the reciprocal of the voltage. Taking note of this, an appropriate voltage is selected as the driving voltage, and a pulsed voltage is applied to the liquid crystal to drive it, with the minimum time required for the response in that case as the pulse width. Furthermore, in order to prevent direct current voltage from being applied to the liquid crystal, one scanning time is divided into writing scanning and erasing scanning.
At the time of selection, driving voltages of opposite polarity are applied during write scanning and erasing scanning. On the other hand, a method has been proposed in which a low-voltage alternating current electric field is applied when the selection is not made. However, in this method, the time required for one scan is four times the response time of the ferroelectric liquid crystal. Therefore, as a driving method capable of higher-speed operation, the following method is proposed on page 13 of the 31st Study Group Materials of the 142nd Committee on Organic Materials for Academic Use, Subcommittee A (Liquid Crystal Subcommittee), Information 14, Japan Society for the Promotion of Science. This takes advantage of the difference in response time due to the difference in the voltage applied to the liquid crystal, and as shown in Figure 14, the scanning signal and selection signal are selected as shown in the figure, and the waveform that surrounds the voltage applied to the liquid crystal in circles is shown in Figure 14. I'm trying to make it happen. In this driving method, the previous memory state is erased in the first half of scanning, a high voltage pulse is applied during selection, and a low voltage pulse that does not cause switching is applied during non-selection. In other words, during selection, the applied voltage is low during non-scanning, and the liquid crystal does not respond sufficiently within the pulse width time that it responded sufficiently during scanning.
No switching occurs. On the other hand, in the non-selected state, OV is applied in the first half, but in the second half, a pulse with a shorter pulse width and lower voltage than in the selected state is applied to drive the liquid crystal. In this case, scanning with one scanning electrode may take twice the response time of the ferroelectric liquid crystal, but a DC component voltage is applied to the liquid crystal.

(発明が解決しようとする問題点) 強誘電性液晶は、従来のTN液晶等に比べて、応答が早
いが、液晶に悪影響を及ぼす直流的な電圧が印加されな
い様な駆動を行うと、消去走査、書込走査の2つの分け
て2回走査を行わなければならず、強誘電性液晶の応答
時間の4倍の時間が1本の走査電極の走査に必要となる
(Problem to be solved by the invention) Ferroelectric liquid crystals have a faster response than conventional TN liquid crystals, etc., but when driven in such a way that no direct current voltage is applied that would have a negative effect on the liquid crystals, the ferroelectric liquid crystals disappear. It is necessary to perform two scans, a scan and a write scan, and it takes four times the response time of the ferroelectric liquid crystal to scan one scan electrode.

一方、高速応答性を優先して1本の走査電極の走査が応
答時間の2@どなるよう駆動すると駆動時に直流成分電
圧が印加されメモリ性が保持されにくくなり、その影響
は直流成分電圧印加時間の経過と共に罪著になる。
On the other hand, if high-speed response is prioritized and one scanning electrode is driven so that the scanning time is 2@2 of the response time, a DC component voltage will be applied during driving, making it difficult to maintain memory properties, and this will affect the DC component voltage application time. As time passes, it becomes a crime.

本発明の目的は、上記の欠点と除去して高速動作を行い
長時間駆動を行っても、メモリ性紙下等の問題を生じる
ことがない液晶光シャッタアレイの駆動方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for driving a liquid crystal optical shutter array that eliminates the above-mentioned drawbacks and does not cause problems such as memory loss even when operated at high speed and for a long time. .

(問題を解決するための手段) 本発明は光源、光シャッタアレイ、結像素子、感光体を
有し、前記光源から発し前記光シャッタアレイによって
制御された光で前記感光体の露光を行い、画像を書込む
方式の電子写真方式プリンティング装置に用いられる強
誘電性液晶光シャッタアレイの時分割駆動方法において
、走査電極と選択電極間に挟持された強誘電性液晶に、
<イ〉走査時は、少くとも前記強誘電性液晶の応答時間
幅よりも広い時間幅でそれぞれ、第1の安定状態にする
電圧パルスを印加する第1の工程と、その後に第1また
は第2の安定状態にする電圧パルスを印加する第2の工
程とからなり、り口)非走査時は、前記強誘電性液晶が
応答しないような低電圧または狭いパルス幅の電圧パル
スを印加する第3の工程とからなり、 前記感光体に画像を書き込むのに必要なアドレス時間か
ら前記第1および第2の工程または第3の工程を引いた
余りの時間は印加電圧を○■とすることを特徴とする液
晶光シャッタアレイの駆動方法と提供する。
(Means for Solving the Problem) The present invention includes a light source, a light shutter array, an imaging element, and a photoconductor, and exposes the photoconductor with light emitted from the light source and controlled by the light shutter array, In a time-division driving method for a ferroelectric liquid crystal optical shutter array used in an image writing type electrophotographic printing device, a ferroelectric liquid crystal sandwiched between a scanning electrode and a selection electrode is
<B> During scanning, a first step of applying a voltage pulse to bring the first stable state into a first stable state with a time width wider than the response time width of the ferroelectric liquid crystal, followed by a first step or a first step (2) During non-scanning, the second step is to apply a voltage pulse to bring the ferroelectric liquid crystal into a stable state. 3 steps, and for the remaining time after subtracting the first and second steps or the third step from the address time required to write an image on the photoreceptor, the applied voltage is set to ○■. A method for driving a liquid crystal optical shutter array characterized by its features is provided.

(作用) 配向処理を行った2枚の電極基板により形成された液晶
光シャッタアレイ中の強誘電性液晶は、電圧除去後も電
圧印加時の状態を保持するいわゆる双安定性動作を行う
。これは通常メモリ性と言われる。
(Function) The ferroelectric liquid crystal in the liquid crystal optical shutter array formed by the two electrode substrates subjected to alignment treatment performs a so-called bistable operation in which the state at the time of voltage application is maintained even after the voltage is removed. This is usually called memory property.

このメモリ性を利用し、強誘電性液晶の高速応答性を生
した時分割駆動方法では、液晶に直流成分の電圧が印加
される。このような直流成分が液晶に印加されるとメモ
リ性が電圧印加時間の経過と共に低下することが実験に
よって確認された。実験結果を次に示す。
In a time-division driving method that takes advantage of this memory property and produces high-speed response of ferroelectric liquid crystals, a DC component voltage is applied to the liquid crystals. It has been confirmed through experiments that when such a DC component is applied to a liquid crystal, the memory property decreases as the voltage application time elapses. The experimental results are shown below.

第2図のような1周期での電圧の平均が負になるような
電圧波形を液晶に連続的に印加し、第2図のA点での光
の透過率の時間変化を説明したところ、第3図のように
なり時間経過と共に透過率が低くなることがわかった。
By continuously applying a voltage waveform such that the average voltage in one period is negative to the liquid crystal as shown in Fig. 2, and explaining the change in light transmittance over time at point A in Fig. 2, As shown in FIG. 3, it was found that the transmittance decreased with time.

この例では負の電圧を印加した場合にON状態になるよ
うに偏光板の染件を選んでいる。
In this example, the dyeing of the polarizing plate is selected so that it will be in an ON state when a negative voltage is applied.

また第4図のようにパルス幅を第2図の場合よりも狭い
幅で、但し、液晶が十分にONまたはOFF出来るパル
ス幅に設定した電圧波形で同様の実験を行い第4図のB
点を観測したところ第5図のようになり第3図よりも透
過率の低下が少ないことが確認された。したがって、パ
ルス幅を狭くすることで、液晶の長寿命化が図れるとい
える。
In addition, as shown in Fig. 4, we conducted a similar experiment using a voltage waveform with a pulse width narrower than that shown in Fig. 2, but set to a pulse width that is sufficient to turn the liquid crystal ON or OFF.
When the points were observed, the results were as shown in FIG. 5, and it was confirmed that the decrease in transmittance was smaller than in FIG. 3. Therefore, it can be said that by narrowing the pulse width, the life of the liquid crystal can be extended.

ところが、液晶光シャッタアレイの時分割駆動時のシャ
ッタアレイ素子1つにデータを書込むアドレス時間は液
晶材料の応答速度だけでは決定出来ない。これは電子写
真方式のプリンタの主要部である感光体の露光特性が関
係している為で、−最に、感光体が十分に露光出来るた
めに必要な時間幅がアドレス時間と考えられる。
However, the address time for writing data into one shutter array element during time-division driving of a liquid crystal optical shutter array cannot be determined solely by the response speed of the liquid crystal material. This is because it is related to the exposure characteristics of the photoreceptor, which is the main part of an electrophotographic printer.Finally, the address time is considered to be the time width required for the photoreceptor to be sufficiently exposed.

したがって、駆動パルス幅を狭くすると、アドレス時間
から書込み及び消去に必要な時間を引いた時に余分な時
間が発生する。この余った時間に液晶に加わる電圧をO
ボルトとすればメモリ性低下及び駆動時のコントラスト
低下に与える影響が少なくなる。この駆動波形を第1図
に示す。
Therefore, when the drive pulse width is narrowed, extra time is generated when the time required for writing and erasing is subtracted from the address time. During this extra time, reduce the voltage applied to the liquid crystal.
If the voltage is set to volts, the influence on deterioration of memory properties and deterioration of contrast during driving will be reduced. This drive waveform is shown in FIG.

従って時分割駆動時の消去及び書込み時間は必要最小限
のパルス幅に設定し、1ドツトの露光に必要なアドレス
時間から消去及び書込み時間を引いた時間内はOボルト
に設定すればより長寿命でしかも高速性を生かした液晶
光シャッタアレイの駆動が行なえる。
Therefore, the erasing and writing times during time-division driving should be set to the minimum necessary pulse width, and the lifetime will be extended by setting the erasure and writing times to O volts during the address time required for one dot exposure minus the erasing and writing times. Moreover, the liquid crystal optical shutter array can be driven by taking advantage of its high speed.

(実施例) 以下、本発明の実施例を挙げて詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail by giving examples.

第6図は本発明の一実施例に使用する液晶光シャッタア
レイを模式的に示す分解斜視図で、第7図は第6図に示
すAA’断面図である。走査電極15が設けられたポリ
イミドの配向膜19が塗布されたガラス基板11を一方
向にラビングし、さらに基板11に対向し信号電極14
が設けられ配向膜19が塗布された基板20を一方向に
ラビングし、基板11.20をスペーサー18を介して
2μmの間隔でラビング方向が平行になるように接着し
、基板11.20間に液晶材13として帝国化学社製の
TKF−8616(商品名)を充填しである。走査電極
15は1mmあたり16本形成されていて、1/4デユ
ーティ−の時分割駆動で駆動するため、信号電極14は
1本で4本の走査電極15と対向する形状になっている
。信号電極14は信号電極駆動回路16で、走査電極1
5は走査電極駆動回路17で駆動される。さらに素子は
2枚の偏光板12で挟まれており、シャ・・!タドット
の数は全部で4096ドツトである。
FIG. 6 is an exploded perspective view schematically showing a liquid crystal optical shutter array used in an embodiment of the present invention, and FIG. 7 is a cross-sectional view along line AA' shown in FIG. 6. A glass substrate 11 coated with a polyimide alignment film 19 provided with scanning electrodes 15 is rubbed in one direction, and signal electrodes 14 are formed opposite to the substrate 11.
The substrate 20 provided with the alignment film 19 and coated with the alignment film 19 is rubbed in one direction, and the substrates 11.20 are bonded via the spacer 18 at intervals of 2 μm so that the rubbing directions are parallel to each other. The liquid crystal material 13 was filled with TKF-8616 (trade name) manufactured by Teikoku Kagaku Co., Ltd. Sixteen scanning electrodes 15 are formed per 1 mm and driven by time-division driving with a 1/4 duty, so that one signal electrode 14 faces four scanning electrodes 15. The signal electrode 14 is a signal electrode drive circuit 16, and the scanning electrode 1
5 is driven by a scan electrode drive circuit 17. Furthermore, the element is sandwiched between two polarizing plates 12, and...! The total number of dots is 4096.

第6図、第7図に示す液晶光シャッタアレイに第8図、
第10図に示すような電圧を印加して動作させる。第8
図のは本発明と比較するための波形でフレーム周期は1
.1mSで1/4デユーティ−なので1アドレス時間は
275μsとして駆動した。−■oで消去され、■oで
書込まれる。
In the liquid crystal light shutter array shown in FIGS. 6 and 7, as shown in FIG.
It is operated by applying a voltage as shown in FIG. 8th
The waveform shown in the figure is for comparison with the present invention, and the frame period is 1.
.. Since the duty was 1/4 at 1 mS, one address time was set to 275 μs. - Erased with ■o, written with ■o.

消去及び書込み時間はlアドレス時間275μSの半分
の137.5μsである。なお非走査時の前半はOボル
トで後半は士VOが0と一2■oの交番電圧である。こ
の部分の周波数は50KHzで■。=10Vで動作させ
た。
The erase and write time is 137.5 μs, which is half of the l address time of 275 μS. Note that during non-scanning, the first half is O volts, and the second half is an alternating voltage of 0 and 12 o. The frequency of this part is 50KHz■. = 10V.

一方、第10図の波形では書込みと消去には必要最小限
のパルス幅を設定し1アドレス時間がら書込み及び消去
時間を引いた時間はOボルトにしている。ここでは走査
時選択時で消去パルスと書込みパルスは共に100μS
で残りの75μSは0ボルトである。走査時・非選択時
には消去パルス100μs以外の175μSは0ボルト
である。非走査時・選択時では前半100μSと最後尾
の75μsがOボルトでそれ以外は±voである。非走
査時・非選択時では前半100μsと最後尾の75μs
がDボルトでそれ以外はOボルトと一2Voの交番電圧
である。ここでら■oはIOボルトで、交番電圧部分は
50 K I−1zである。
On the other hand, in the waveform of FIG. 10, the minimum necessary pulse width is set for writing and erasing, and the time obtained by subtracting the writing and erasing time from one address time is set to O volts. Here, when scanning is selected, the erase pulse and write pulse are both 100 μS.
The remaining 75 μS is 0 volt. During scanning and non-selection, the voltage is 0 volts for 175 μs other than the 100 μs erase pulse. During non-scanning/selection, the first 100 μs and the last 75 μs are O volts, and the rest is ±vo. During non-scanning/non-selection, the first half is 100 μs and the last 75 μs.
is D volts, and the rest are alternating voltages of O volts and -2Vo. Here, ra is IO volts, and the alternating voltage part is 50 K I-1z.

第8図、第10図のそれぞれにおいて液晶に最も多くの
直流成分電圧が印加されるデータの組合せの波形を第9
図と第11図に示す。この第9図と第11図の波形を液
晶光シャッタアレイに連続的に印加してもメモリ性の変
化を観測した。なおメモリ性を観測する為の電圧波形を
第12図に示す。この第12図の電圧波形を液晶光シャ
ッタアレイに印加して0点の変1ヒを観測した。光源は
He−Neレーザで受光素子はフォトダイオードを使用
した。この結果を第13図に示す。aは第9図の波形の
結果、bは第11図の波形の結果である。0ボルトを挿
入した駆動方法の方がメモリ性の劣化が約1/4に減少
している。
The waveform of the data combination in which the most DC component voltage is applied to the liquid crystal in each of Figures 8 and 10 is shown in Figure 9.
As shown in FIG. Even when the waveforms shown in FIGS. 9 and 11 were continuously applied to the liquid crystal optical shutter array, changes in memory properties were observed. Incidentally, the voltage waveform for observing the memory property is shown in FIG. The voltage waveform shown in FIG. 12 was applied to the liquid crystal optical shutter array, and changes in the zero point were observed. The light source was a He-Ne laser, and the light receiving element was a photodiode. The results are shown in FIG. a is the result of the waveform in FIG. 9, and b is the result of the waveform in FIG. 11. In the driving method in which 0 volt is inserted, the deterioration in memory performance is reduced to about 1/4.

このように時分割駆動時のアドレス時間に対して液晶の
消去と書込み時Eの和が小さな場合には駆動期jmにO
ボルトを挿入することによってメモリ性の劣化を少なく
することが可能な為、高コントラストで高速な液晶光シ
ャッタアレイの駆動が出来ろ。
In this way, if the sum of E during erasing and writing of the liquid crystal is small with respect to the address time during time-division driving, O during the driving period jm
By inserting bolts, it is possible to reduce memory deterioration, making it possible to drive high-contrast, high-speed liquid crystal optical shutter arrays.

(発明の効果) 以上述べたように、本発明によればメモリ性の劣化を少
なく出来るので高コントラストで高品質の電子写真方式
のプリンタ用液晶光シャッタアレイの駆動が実現可能と
なる。
(Effects of the Invention) As described above, according to the present invention, since deterioration of memory performance can be reduced, it is possible to drive a liquid crystal optical shutter array for an electrophotographic printer with high contrast and high quality.

図面の簡単な説明 第1図は本発明により液晶光シャッタアレイに印加する
電圧波形を示す図、第2図、第4図は液晶に印加される
電圧波形図で第3図、第5図はそれぞれの場合の光の透
過率と経過時間の関係を示す図である。第6図は本発明
の一実施例に使用する液晶光シャッタアレイの模式的な
斜視図、第7図は第6図に示すAA’断面図である。第
8図は従来性われている駆動波形を示す図で、第9図は
第8図の駆動方法での印加電圧の一例を示す。第10図
は本発明により液晶光シャッタアレイに印加する電圧波
形を示す図で、第11図は第10図の駆動方法での印加
電圧の一例を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows voltage waveforms applied to the liquid crystal light shutter array according to the present invention, FIGS. 2 and 4 show voltage waveforms applied to the liquid crystal, and FIGS. 3 and 5 show voltage waveforms applied to the liquid crystal light shutter array. It is a figure which shows the relationship between the light transmittance and elapsed time in each case. FIG. 6 is a schematic perspective view of a liquid crystal optical shutter array used in an embodiment of the present invention, and FIG. 7 is a cross-sectional view taken along line AA' shown in FIG. FIG. 8 is a diagram showing conventional driving waveforms, and FIG. 9 shows an example of applied voltage in the driving method of FIG. 8. FIG. 10 is a diagram showing a voltage waveform applied to the liquid crystal optical shutter array according to the present invention, and FIG. 11 is a diagram showing an example of the applied voltage in the driving method of FIG. 10.

第12図(a)は液晶に印加される電圧波形図であり、
同図(b)はその光学応答波形を示す図である。第13
図は第9図と第11図の電圧波形を液晶に印加したとき
の第12図の電圧波形に対する光透過率変化と時間経過
との関係を示す図である。第14図は従来の駆動波形を
示す図である。
FIG. 12(a) is a voltage waveform diagram applied to the liquid crystal,
FIG. 4B is a diagram showing the optical response waveform. 13th
The figure shows the relationship between the change in light transmittance and the passage of time for the voltage waveform in FIG. 12 when the voltage waveforms in FIGS. 9 and 11 are applied to the liquid crystal. FIG. 14 is a diagram showing conventional drive waveforms.

Claims (1)

【特許請求の範囲】 光源、光シャッタアレイ、結像素子、感光体を有し、前
記光源から発し前記光シャッタアレイによつて制御され
た光で前記感光体の露光を行い、画像を書込む方式の電
子写真方式プリンティング装置に用いられる強誘電性液
晶光シャッタアレイの時分割駆動方法において、走査電
極と選択電極間に挟持された強誘電性液晶に、 (イ)走査時は、少くとも前記強誘電性液晶の応答時間
幅よりも広い時間幅でそれぞれ、第1の安定状態にする
電圧パルスを印加する第1の工程と、その後に第1また
は第2の安定状態にする電圧パルスを印加する第2の工
程とからなり、 (ロ)非走査時は、前記強誘電性液晶が応答しないよう
な低電圧または狭いパルス幅の電圧パルスを印加する第
3の工程とからなり、 前記感光体に画像を書き込むのに必要なアドレス時間か
ら前記第1および第2の工程または第3の工程を引いた
余りの時間は印加電圧をOVとすることを特徴とする液
晶光シャッタアレイの駆動方法。
[Scope of Claims] A light source, a light shutter array, an imaging element, and a photoreceptor are provided, and the photoreceptor is exposed to light emitted from the light source and controlled by the light shutter array to write an image. In a time-division driving method of a ferroelectric liquid crystal optical shutter array used in an electrophotographic printing apparatus, the ferroelectric liquid crystal sandwiched between a scanning electrode and a selection electrode is exposed to at least the above-mentioned conditions during scanning. A first step of applying a voltage pulse to bring the first stable state to a first stable state, respectively, with a time width wider than the response time width of the ferroelectric liquid crystal, and then applying a voltage pulse to bring the first or second stable state to the ferroelectric liquid crystal. (b) during non-scanning, a third step of applying a voltage pulse with such a low voltage or narrow pulse width that the ferroelectric liquid crystal does not respond; A method for driving a liquid crystal optical shutter array, characterized in that the applied voltage is set to OV during the remaining time after subtracting the first and second steps or the third step from the address time required to write an image on the LCD.
JP1997688A 1988-01-29 1988-01-29 Method for driving liquid crystal optical shutter array Pending JPH01193814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1997688A JPH01193814A (en) 1988-01-29 1988-01-29 Method for driving liquid crystal optical shutter array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1997688A JPH01193814A (en) 1988-01-29 1988-01-29 Method for driving liquid crystal optical shutter array

Publications (1)

Publication Number Publication Date
JPH01193814A true JPH01193814A (en) 1989-08-03

Family

ID=12014219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1997688A Pending JPH01193814A (en) 1988-01-29 1988-01-29 Method for driving liquid crystal optical shutter array

Country Status (1)

Country Link
JP (1) JPH01193814A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215240A (en) * 1986-03-17 1987-09-21 Hitachi Ltd Time-division driving method for ferroelectric liquid crystal element
JPS635326A (en) * 1986-06-25 1988-01-11 Nec Corp Driving method for liquid crystal element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215240A (en) * 1986-03-17 1987-09-21 Hitachi Ltd Time-division driving method for ferroelectric liquid crystal element
JPS635326A (en) * 1986-06-25 1988-01-11 Nec Corp Driving method for liquid crystal element

Similar Documents

Publication Publication Date Title
US5177475A (en) Control of liquid crystal devices
JP2549433B2 (en) Electro-optical modulator driving method and printer
US5095376A (en) Apparatus and method for driving an optical printer having a liquid crystal optical switch
US5221980A (en) Method for driving ferroelectric liquid crystal light valve of light writing type
JP4067528B2 (en) Recording element
EP1548494B1 (en) Method and apparatus for driving display
JPH01193814A (en) Method for driving liquid crystal optical shutter array
JPS63285521A (en) Method for driving liquid crystal light shutter array
JPH07104519B2 (en) Method for driving optical writing type liquid crystal light valve device
JPS63285520A (en) Method for driving liquid crystal light shutter array
JP2007299016A (en) Recording device
JP2604597B2 (en) Image forming device
JPH01270030A (en) Method of driving liquid crystal optical shutter array
JPS6170532A (en) Driving method of liquid crystal element
JP2584235B2 (en) Image forming apparatus and driving method thereof
JPS63118129A (en) Driving method for liquid crystal shutter head
JP2536859B2 (en) LCD printer
JPS62280825A (en) Driving method for liquid crystal element
JPH0363624A (en) Method for driving liquid crystal optical shutter array
JP2534748B2 (en) Liquid crystal optical shutter array element and driving method thereof
JP2890649B2 (en) Driving method of optical shutter device and optical shutter device using this method
JPS5991073A (en) Printer
JPS635326A (en) Driving method for liquid crystal element
JPS62260125A (en) Method for driving optical modulating element
JPS63108323A (en) Image forming device