JPH01193656A - Current detector - Google Patents

Current detector

Info

Publication number
JPH01193656A
JPH01193656A JP1696888A JP1696888A JPH01193656A JP H01193656 A JPH01193656 A JP H01193656A JP 1696888 A JP1696888 A JP 1696888A JP 1696888 A JP1696888 A JP 1696888A JP H01193656 A JPH01193656 A JP H01193656A
Authority
JP
Japan
Prior art keywords
current
signal
detector
detectors
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1696888A
Other languages
Japanese (ja)
Inventor
Kenji Miyata
健治 宮田
Kazuo Hiramoto
和夫 平本
Masatsugu Nishi
西 政嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1696888A priority Critical patent/JPH01193656A/en
Publication of JPH01193656A publication Critical patent/JPH01193656A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a current detector with a higher S/N ratio, by connecting signals from four current detectors arranged along a beam duct to a voltage detector to extract a fine signal current alone due to an charged particle from detection signals thereof. CONSTITUTION:A sensor section is made up of four magnetic cores 2 wound with a coil and a metallic case 5. Voltage detectors 40 are arranged at an equal interval at the tip of a signal transmission line 70 to be connected separately to an arithmetic device 50. Signals V1, V2, V3 and V4 of the detectors undergoes an arithmetic processing by a specified equation and a fine current signal due to a charged particle is extracted to be shown on a current display device 60. This enables detection with a high S/N ratio against a large noise signal caused by a high frequency electromagnetic field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は荷電粒子を加速する一般的な加速器に係り、特
に微小電流をモニタするのに好適な検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a general accelerator for accelerating charged particles, and particularly to a detector suitable for monitoring minute currents.

〔従来の技術〕[Conventional technology]

従来、加速器に使われる一般的な電流検出器として、コ
イルを使った電流変換器がある。これについては、ケイ
・イー・ケイ−77−21(1978年)(KEK−7
7−21(1978))において論じられている。この
電流変換器の原理図を第2図に示す。電流検出器10は
、磁性体コア2とそれに巻きつけたコイル1及び抵抗4
で構成されており、荷電粒子ビーム3による非定常な磁
場によって、コイル1に誘導電圧が誘起され、抵抗4の
両端の電圧を計ることによって、荷電粒子ビーム3の電
流値がわかるという原理に基づいている。
Conventionally, a current converter using a coil is a common current detector used in accelerators. Regarding this, please refer to KEK-77-21 (1978) (KEK-7
7-21 (1978)). A diagram of the principle of this current converter is shown in FIG. The current detector 10 includes a magnetic core 2, a coil 1 wound around it, and a resistor 4.
It is based on the principle that an induced voltage is induced in the coil 1 by the unsteady magnetic field generated by the charged particle beam 3, and by measuring the voltage across the resistor 4, the current value of the charged particle beam 3 can be determined. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術を加速器に用いる場合、次のような課題が
ある。第3図に示すように、加速器では一般的にビーム
ダクト21に電流検出器10が設置される。このときビ
ームダクト21の延長上に高周波加速空胴20があると
き、高周波加速空胴20からカットオフ周波数よりも高
い高周波電磁場3oがビームダクト21に沿って漏れて
くる。
When the above-mentioned conventional technology is used in an accelerator, there are the following problems. As shown in FIG. 3, a current detector 10 is generally installed in a beam duct 21 in an accelerator. At this time, when the high frequency acceleration cavity 20 is located on the extension of the beam duct 21, a high frequency electromagnetic field 3o higher than the cutoff frequency leaks from the high frequency acceleration cavity 20 along the beam duct 21.

これは多かれ少なかれ必ず存在する。この高周波電磁場
3oが電流検出器10が設置されている位置を通過する
と、その高周波磁場がノイズとじて電流検出器10に検
出される。荷電粒子ビームによる微小電流を検出する場
合、この高周波磁場がノイズ信号を引き起こすため、S
/N比が低下し、場合によっては、実質上、微小電流信
号がまったく検出されない場合も起こるという問題があ
った。
This more or less always exists. When this high frequency electromagnetic field 3o passes through the position where the current detector 10 is installed, the high frequency magnetic field is detected by the current detector 10 as noise. When detecting minute currents caused by charged particle beams, this high-frequency magnetic field causes noise signals, so S
There is a problem in that the /N ratio decreases, and in some cases, virtually no minute current signal is detected at all.

本発明の目的は、電流検出器の微弱な電流を検出する場
合のS/N比を向上させることにある。
An object of the present invention is to improve the S/N ratio when a current detector detects a weak current.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、ビームダクトに沿って、従来の電流検出器
を四個設置し、それぞれの信号を以下のように処理する
ことによって、電流信号成分のみを抽出することにより
達成される。第1図に示すように、従来の電流検出器1
0をビームデクトに沿って等間隔に四個設置し、それぞ
れの検出信号を用いて荷電粒子による微小電流信号のみ
を抽出することにより、S/N比の高い電流検出器を得
る。
The above object is achieved by installing four conventional current detectors along the beam duct and processing each signal as follows to extract only the current signal component. As shown in FIG. 1, a conventional current detector 1
A current detector with a high S/N ratio is obtained by installing four zeros at equal intervals along the beam detector and extracting only minute current signals due to charged particles using the respective detection signals.

〔作用〕[Effect]

以下、本発明の作用について説明する。ビームダクトに
沿って等間隔に設置した四個の微小電流信号検出器の検
出信号をVlt Vzt Va、 Vaとおくと。
Hereinafter, the effects of the present invention will be explained. Let Vlt Vzt Va, Va be the detection signals of four minute current signal detectors installed at equal intervals along the beam duct.

V1=A+ε            ・・・(1)V
z = Ae’ 0 + (eJcP−(2)V a 
” A e”θ+εe2J’f’       −(3
)V4 =Ae”θ+ie”’f’       ・・
・(4)とおける。ここで、Aとεは複素量であり、V
l。
V1=A+ε...(1)V
z = Ae' 0 + (eJcP-(2)V a
"A e"θ+εe2J'f' −(3
)V4=Ae"θ+ie"'f'...
・(4) Here, A and ε are complex quantities, and V
l.

Vz、Va、V4に対しては実成分のみが検出される。Only real components are detected for Vz, Va, and V4.

Aの項は高周波加速空胴から漏洩してくる高周波電磁波
によるノイズ信号であり、εの項は荷電粒子による微小
電流信号である。位相Oは高周波電磁波の管内位相速度
に比例し、位相では荷電粒子の進行速度に比例する未知
量である。式(1)(2) (3) (4)には四個の
未知量A、0.t、’f’  に関する四個の独立な方
程式である。これにより、この四個の方程式を演算処理
することによって、荷電粒子による微小電流信号ξを抽
出することができる。
The term A is a noise signal due to high frequency electromagnetic waves leaking from the high frequency acceleration cavity, and the term ε is a minute current signal due to charged particles. The phase O is proportional to the in-tube phase velocity of the high-frequency electromagnetic wave, and the phase is an unknown quantity proportional to the traveling velocity of the charged particles. Equations (1), (2), (3), and (4) include four unknown quantities A, 0. These are four independent equations for t and 'f'. Thereby, by processing these four equations, it is possible to extract the minute current signal ξ due to the charged particles.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図を用いて説明する。コ
イル1を巻きつけた四個の磁性体コア2及びそれらを設
置する金属製のケース5によって構成されたセンサ部の
信号伝送線70の先に電圧検出器40を四個等間隔に配
置し、それぞれの信号V1? Vz、Va1 V4を演
算器50に入力し、演算結果である微小電流値を表示す
る装置60によって電流検出器を構成する。以上の構成
により、信号Vt+ Vi1 Va1 Va(7)四個
のデータから式(1)〜(4)に示す微小電流信号εを
演算して抽出する。
An embodiment of the present invention will be described below with reference to FIG. Four voltage detectors 40 are arranged at equal intervals at the end of the signal transmission line 70 of the sensor section, which is composed of four magnetic cores 2 around which a coil 1 is wound and a metal case 5 in which they are installed. Each signal V1? A current detector is constituted by a device 60 that inputs Vz, Va1, and V4 to a calculator 50 and displays a minute current value as a result of the calculation. With the above configuration, the minute current signal ε shown in equations (1) to (4) is calculated and extracted from the four data of the signal Vt+ Vi1 Va1 Va (7).

本実施例によれば、S/N比の高い微小電流の検出信号
を得ることができる。
According to this embodiment, a minute current detection signal with a high S/N ratio can be obtained.

本発明の第二の実施例を説明する。第一の実施例では四
個の電流センサが全て同じ特性をもつことを前提として
いる。ここでは個々の電流センサの特性が異なる場合を
考える。このとき式(1)、(2)。
A second embodiment of the present invention will be described. The first embodiment assumes that all four current sensors have the same characteristics. Here, we will consider a case where the characteristics of individual current sensors are different. At this time, equations (1) and (2).

(3)、(4)は次式で表わされる。(3) and (4) are expressed by the following equations.

Vl =νt(A+ε)        ・・・(5)
Vz = v 2(Ae’ 0 + [e”/)   
  −(6)V3=vscAe”0+ie”P)   
 ・=(7)V4=v4(Ae”e+ie”’P)  
  −(8)式(5)〜(8)から明らかなように、電
圧値vl、 VZIV3.Viから、微小電流値を抽出
するには、事前に較正係数シl、シ2.シ3.シ番を測
定して、v1/ν1.V2/ν2.V3/ν3.V4/
94 を新たな電圧値として、第一の実施例に適用させ
れば良い。
Vl = νt(A+ε)...(5)
Vz = v 2 (Ae' 0 + [e”/)
-(6)V3=vscAe"0+ie"P)
・=(7)V4=v4(Ae"e+ie"'P)
-(8) As is clear from equations (5) to (8), the voltage value vl, VZIV3. In order to extract a minute current value from Vi, calibration coefficients sil, si2. C3. Measure the si number, v1/ν1. V2/ν2. V3/ν3. V4/
94 as a new voltage value and apply it to the first embodiment.

この第二の実施例を第4図に示す。第一の実施例に対し
て新たに較正演算器41を電圧検出器40と演算装置5
0の間に設置したことを特徴とする。これにより、個々
の電流センサの特性が異なっても微小電流の検出が可能
であるという本実施例特有の効果がある。
This second embodiment is shown in FIG. In the first embodiment, a new calibration calculator 41 is added to the voltage detector 40 and the calculator 5.
It is characterized by being installed between 0 and 0. Thereby, there is an effect unique to this embodiment that even if the characteristics of the individual current sensors are different, it is possible to detect a minute current.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、加速器で荷電粒子による微小電流信号
を、高周波加速空胴からの高周波電磁場による大きなノ
イズ信号に対して、高いS/N比で検出することができ
る。
According to the present invention, it is possible to detect minute current signals caused by charged particles in an accelerator with a high S/N ratio with respect to large noise signals caused by a high frequency electromagnetic field from a high frequency acceleration cavity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統図、第2図は従来例の
説明図、第3図は問題点を示す説明図、第4図は本発明
の第二の実施例の説明図である。 1・・コイル、2・・・磁性体コア、10・・・電流検
出器、21・・・ビームダクト、40・・・電圧検出器
、60・・・電流表示装置。
Fig. 1 is a system diagram of one embodiment of the present invention, Fig. 2 is an explanatory diagram of the conventional example, Fig. 3 is an explanatory diagram showing problems, and Fig. 4 is an explanatory diagram of the second embodiment of the present invention. It is. DESCRIPTION OF SYMBOLS 1... Coil, 2... Magnetic core, 10... Current detector, 21... Beam duct, 40... Voltage detector, 60... Current display device.

Claims (1)

【特許請求の範囲】[Claims] 1、コイルを巻きつけた磁性体コア、抵抗及びそれを設
置するケースからなる電流センサをビームダクトに沿つ
て四個配置し、前記電流検出器からの信号を電圧検出器
に接続し、それぞれの検出信号から荷電粒子による微小
信号のみを抽出する演算装置及び演算結果としての微小
電流値を表示する装置を設けたことを特徴とする電流検
出器。
1. Arrange four current sensors consisting of a magnetic core wrapped with a coil, a resistor, and a case in which they are installed along the beam duct, connect the signal from the current detector to a voltage detector, and A current detector comprising: a calculation device that extracts only a minute signal due to charged particles from a detection signal; and a device that displays a minute current value as a result of the calculation.
JP1696888A 1988-01-29 1988-01-29 Current detector Pending JPH01193656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1696888A JPH01193656A (en) 1988-01-29 1988-01-29 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1696888A JPH01193656A (en) 1988-01-29 1988-01-29 Current detector

Publications (1)

Publication Number Publication Date
JPH01193656A true JPH01193656A (en) 1989-08-03

Family

ID=11930891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1696888A Pending JPH01193656A (en) 1988-01-29 1988-01-29 Current detector

Country Status (1)

Country Link
JP (1) JPH01193656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478237A (en) * 1992-02-14 1995-12-26 Nikon Corporation Implant and method of making the same
JP2009036551A (en) * 2007-07-31 2009-02-19 Institute Of Physical & Chemical Research Ct monitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478237A (en) * 1992-02-14 1995-12-26 Nikon Corporation Implant and method of making the same
JP2009036551A (en) * 2007-07-31 2009-02-19 Institute Of Physical & Chemical Research Ct monitor

Similar Documents

Publication Publication Date Title
US4847556A (en) Eddy current clearance transducing system
JP3028377B2 (en) Magnetoresistive proximity sensor
US4967153A (en) Eddy current turbomachinery blade timing system
US5610518A (en) Method and apparatus for detecting small magnetizable particles and flaws in nonmagnetic conductors
EP3862768A1 (en) Magnetism detection device, transmission line, and magnetism detection method
ATE322670T1 (en) MEASUREMENT OF VOLTAGE IN A FERROMAGNETIC MATERIAL
CN113252960A (en) External magnetic field interference suppression method suitable for direct-current power distribution network current sensor
JPH033164B2 (en)
JPH01193656A (en) Current detector
US5117181A (en) Inductive transducer with calibrating balancing core for measuring movement of an object
JPH04296663A (en) Current measuring device
US6559632B1 (en) Method and apparatus for determining linear and angular velocity of a moving body
JPH05264682A (en) Magnetic field exposure gauge
US3343414A (en) Gas velocity probe for flowing ionized gases
RU2777878C1 (en) Method for calibrating a measuring current converter
TW201828528A (en) Hollow core magnetic position sensor, position sensing system and method
JPS59214702A (en) Edge detecting device for metal body
SU979981A2 (en) Ferromagnetic article physical mechanical parameters checking method
JP2611642B2 (en) Coordinate position detector
JPS6135348A (en) Flaw detecting device for wire rope
RU2028001C1 (en) Method of compensation of temperature error of slope of characteristic of accelerometer
SU608054A1 (en) Touchless method of measuring electroconductive medium rate-of-flow
SU1068849A1 (en) Method and device for measuring magnetic induction in sheet steel
SU845077A1 (en) Device for non-destructive inspection of electroconductive articles
JPH0342779B2 (en)